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ABSTRACT

Entity Resolution (ER) is defined as the algorithmic problem of
determining when two or more entities refer to the same underly-
ing entity. In the e-commerce domain, the problem tends to arise
when the same product is advertised on multiple platforms, but
with slightly (or even very) different descriptions, prices and other
attributes. While ER has been well-explored for domains like biblio-
graphic citations, biomedicine, patient records and even restaurants,
work on product ER is not as prominent. In this paper, we report
preliminary results on an unsupervised product ER system that
is simple and extremely lightweight. The system is able to reduce
mean rank reductions on some challenging product ER benchmarks
by 50-70% compared to a text-only benchmark by leveraging a com-
bination of text and neural graph embeddings.
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1 INTRODUCTION

With the proliferation of datasets on the Web, it is not uncom-
mon to find the same entity in multiple datasets, all referred to in
slightly different ways [15]. Entity Resolution (ER) is the algorith-
mic problem of determining when two or more entities refer to
the same underlying entity [9], [6]. ER is a difficult problem that
has been studied for more than 50 years, in fields as wide-ranging
as biomedicine, movies, bibliographic citations and census records
[28], [3]. Although human level performance has not been achieved,
considerable progress has been made, across research areas as di-
verse as Semantic and World Wide Web, knowledge discovery and
databases.

A particular domain-specific kind of ER that is extremely rele-
vant to e-commerce is product ER. In the e-commerce domain, the
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ER problem tends to arise when the same product is advertised on
multiple platforms, but with slightly (or even very) different descrip-
tions, prices and other attributes. Product ER can be difficult both
because of the wide variety of available products and e-commerce
platforms, but also because of artifacts like missing and noisy data,
especially when the data has been acquired in the first place by
crawling and scraping webpages, followed by semi-automatic in-
formation extraction techniques like wrapper induction. The need
is for an unsupervised, lightweight solution that, given a query
entity, can rank candidate entities in other datasets and platforms
in descending order of match probability. For an unsupervised ER
to be truly viable, a matching entity, if one exists, generally needs
to be in the top 5, on average. Text-based methods like tf-idf are not
currently able to achieve this, however, on popular benchmarks, as
we illustrate subsequently.

The core contribution in this paper is a Product Entity Resolution
system that is unsupervised, lightweight and that uses a combina-
tion of text and graph-theoretic techniques to leverage not just a
description of the product, but also the context of the dataset in
which it occurs, to make an intelligent matching decision. The core
intuition is to model each product entity as a node in a graph, with
other nodes (e.g., prices, manufacturer) representing the informa-
tion set of the entity. Since more than one entity can have the same
price, manufacturer etc., these entities end up sharing context. Next,
once the entities and their information sets have been represented
in an appropriate graph-theoretic way, we embed the nodes in the
graph using a well-known neural embedding algorithm like Deep-
Walk [22]. An embedding in this context is a dense, real-valued,
low-dimensional vector. The goal is to embed the product entity
nodes in such a way, without using any training data, as to ensure
that nodes with similar embeddings (in a cosine similarity space)
will have high likelihood of being matches.

Our guiding hypothesis in this paper is that neither a pure-
text approach nor graph embedding, by itself, will yield optimal
performance on the product ER problem. Rather, they will have to
be combined in some way to yield a low mean rank. We conduct a
set of experiments to show that this is indeed the case. By using two
well-known and challenging benchmarks against various baselines,
we demonstrate that both text and graph-theoretic approaches can
together contribute to an average mean rank of less than 5, making
such a system closer to viable deployment.

The rest of this paper is structured as follows. Section 2 covers
some relevant related work, while Section 3 outlines our approach.
We describe empirical results in Section 4, with Section 5 concluding
the paper.
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2 RELATED WORK

This paper draws on work in two broad areas of research, namely
entity resolution and graph embeddings. Below, we individually
cover pertinent aspects of these fields.

2.1 Entity Resolution

Entity Resolution (ER) is a problem that has been around for more
than 50 years in the Al literature [7], with the earliest versions of the
problem concerning the linking of patient records. More recently,
both link prediction and entity resolution (ER) were both recognized
as important steps in the overall link mining community about a
decade ago [8]. In the Semantic Web community, instance matching
[15], link discovery [20], [27] and class matching [25] are specific
examples of such sparse edge-discovery tasks. Other applications
include protein structure prediction (bioinformatics) [14], click-
through rate prediction (advertising) [10], social media and network
science [17], [24]. Good overviews of ER were provided both by
Getoor and Machanavajjhala [9], and in the book by Christen [6].

A variety of recent papers have started to consider product
datasets in the suite of benchmarks that they evaluate. For ex-
ample, [16] considers both Amazon-Google Products and Abt-Buy,
the two publicly available benchmarks that we also consider in
this paper, in their evaluation. Performance on these datasets is
considerably lower, even for supervised systems, compared to bib-
liographic datasets like DBLP and ACM, demonstrating that the
problem deserves to be looked at in a domain-specific way for
higher performance. Recently, Zhu et al. [30] was able to achieve
better performance using a high-complexity k-partite graph clus-
tering algorithm that was also unsupervised. However, they did
not consider the problem from the purview of ranking or IR and
their method had considerable runtime and modeling complexity.
In contrast, our method is lightweight and directly uses IR metrics
to evaluate.

Broadly speaking, a typical ER pipeline consists of two phases:
blocking and matching [13]. Blocking is motivated by the fact that,
in the worst case, one would have to do a pairwise comparison
between every pair of entities to determine the matching pairs.
In this vein, blocking refers to a set of ‘divide-and-conquer’-style
techniques for approximately grouping a set of entities so that pair-
wise comparisons (matching), which are more expensive, are only
conducted on pairs of entities that share a block. Using an indexing
function known as a blocking scheme, a blocking algorithm clusters
approximately similarly entities into (possibly overlapping) clus-
ters known as blocks. Only entities sharing a block are candidates
for further analysis in the second similarity step. State-of-the-art
similarity algorithms in various communities are now framed in
terms of machine learning, typically as binary classification [1], [8].

An alternative to a batch blocking-matching workflow is to adopt
an IR-centric workflow whereby a list of candidate entities needs
to be ranked when given a query entity. We adopt this IR-centric
workflow, since we recognize that, for an enterprise-grade system,
manual perusal and tuning will be necessary unless the accuracy of
the approach is very high. Hence, blocking does not apply. However,
as we show in the experimental section, a bag-of-words model can
be used for blocking-like pruning of entities that are not likely
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to be matches, leading to significantly higher performance when
combined with the graph-theoretic approach.

2.2 Graph Embeddings

With the advent of neural networks, representation learning has
emerged as an influential area of research in modern times. As input,
neural networks need distributed representations of raw input that
are able to capture the similarity between different data points.

For instance, in the Natural Language Processing (NLP) com-
munity, the use of word representations goes back to as early as
1986, as detailed in [12] and [23]. More recently, the benefits of
using distributed representations for words to statistical language
modeling, a fundamental task in NLP, was shown in [2]. The need
for these representations have inspired and given rise to different
word embeddings, such as word2vec [19], GloVe [21], and FastText
[4], without which many current NLP systems would not have been
able to perform as well.

Other forms of inputs, besides textual inputs, are no exception
when it comes to the need for rich distributed vector space rep-
resentations. Hence in the graph community, similar ideas have
been adopted to embed graph nodes and edges. In this work, we
use Deep Walk [22]. Like with word embeddings, numerous other
graph embedding algorithms have been proposed including, but not
limited to node2vec [11], GraphEmbed [29], and LINE [26]. Con-
ceptually, these could be substituted for DeepWalk in this paper, an
option we are exploring in future research.

3 APPROACH

Graphs are an important representation and modeling tool in many
domains and for many problems, ranging from social media and
networks applications to information science. With the advent of
machine learning approaches and their conformity to vector inputs,
we need to transform graphs into vector spaces to be able to have
the best of both worlds: the richness of graph representations and
effectiveness of machine learning approaches.

Graph embeddings are low-dimensional vector representations
of graphs that try to represent the structure of the graph to guide
analytical problem solving but without sacrificing efficiency [5]. As
outlined and discussed in detail in [5], there exist different graph
embedding methods and techniques depending on the information
set of a node that needs to be preserved. For the product ER prob-
lem, we hypothesize that the second-order proximity of the nodes
(which is the similarity between nodes’ neighborhoods) is an im-
portant information set, considering that the nodes themselves (the
product names) only contain limited information and are inherently
ambiguous. In this paper, we adopt a random walk-based approach,
where the goal is to encode a node’s information set by collecting
a set of random walks starting from that node.

More specifically, we use DeepWalk for this purpose [22], which
has been made available on GitHub!. DeepWalk is heavily inspired
by sequence embedding architectures like word2vec in the NLP
community. In DeepWalk, each node of the graph roughly corre-
sponds to a ‘word’, and hence, each random walk can be considered
as a sentence in a language. Then, a neural model from the NLP
field (in this case Skip-gram [18]) is used to capture second-order

!https://github.com/phanein/deepwalk
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proximity information by ensuring that nodes that share a sim-
ilar context (in this case, neighborhoods) would achieve vector
embeddings that are close together in a cosine similarity space.

Before DeepWalk (or any graph embedding for that matter) can
be employed, a product dataset, generally represented as key-value
or semi-structured table with missing values, must be represented
as a graph. To come up with a graph representation for a given
dataset, we investigate two different strategies:

o Simple Nodes: In this method, we assign a node to each
product entity (‘row’ in the table) as well as to each attribute
(a ‘cell’ of that row e.g., the price of the product). Entity nodes
are then linked to their corresponding to attribute nodes. So
for instance, if ‘Apple iPhone 6’ is $600, the entity node
corresponding to Apple iPhone 6 is linked to the attribute
node representing the price value of $600. Note that if some
other product similarly has a price of $600, it would also be
linked to that node. For text attributes (such as description),
we model a separate node for each unique token in the text
value and link the entity node to all tokens occurring in its
text attribute value (modeled as a bag of words). In essence,
this setting can be seen as a collection of star graphs where
entity nodes are the centers of local star graphs.

o Aggregated Nodes: This method is very similar to the pre-
vious one except that we treat prices specially by combining
similar prices together and representing them with a single
node. Specifically, in our experiments, we divide prices into
bins of width $5 to achieve such a grouping. This is an ex-
ample of domain-specific graph representation, since prices
are clearly important when deciding whether to link entities.
Although we have only considered one such grouping in this
paper, other such groupings are also possible (and not just
for prices), a possibility we are exploring in future research.

By way of example, consider the two product entities in Table 1. We
now consider the graph representations for these sample records
using the two strategies above. Figure 1 shows the Simple Nodes
representation, and Figure 2 the Aggregated Nodes representation?.
In both figures, entity nodes have dashed borders and attribute
nodes have solid borders.

Note that, because we are only considering unsupervised Entity
Resolution in this paper, there are no direct edges linking entities
together (only second-order edges, where entities are linked via a
token or price node etc.).

Once the product datasets have been modeled in this way, they
are embedded using DeepWalk. The result is an embedding (a con-
tinuous, real-valued vector) for each node in the graph i.e. we get
a vector for attributes, tokens and entities. Rather than directly
compute matches, we take an IR-centric approach whereby, for
each entity in the test set for which a match exists, we generate a
ranking between that source entity and all other entities (candidates)
by computing the cosine similarities between the vectors of the
source entity and each candidate entity, followed by the ranking
of the candidate entities by using the scores in descending order.
Using the withheld gold standard, we know the rank of the ‘true’
entity matching the source entity, which is used to compute metrics

?In the figure, we assume a bin width of $10 for illustration purposes compared to the
actual experimental bin width of $5.
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Figure 1: Graph representation of the product dataset in Ta-
ble 1 using the Simple Nodes model.
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Figure 2: Graph representation of the product dataset in Ta-
ble 1 using Aggregated Nodes model.
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like mean rank. In the next section, more details are provided on
our experiments.

4 EXPERIMENTS

We conducted a preliminary set of experiments to explore answers
to two research questions:

First, How well does the graph embedding (whether on the
simple or aggregated nodes representation) do on the product ER
problem compared to traditional text-based baselines? Is the graph
embedding adequate by itself?

Second, Does the aggregated nodes representation help com-
pared to the simple nodes representation?

We conduct a preliminary set of experiments to examine our ap-
proach on two benchmark datasets from the e-commerce domain:
Amazon-Google Products and Abt-Buy Products [16]. Amazon-
Google Products, as the name suggests, contains product entities
from the online retailers Amazon and Google; similarly, Abt-Buy
features products from two different sources. Besides the record
‘ID’, each record in both datasets has ‘title’, ‘description’, ‘manu-
facturer’, and ‘price’ fields. In the Amazon-Google dataset 1,363
Amazon records need to compared against 3,226 Google records,
with the ground truth containing 1,300 matching pairs. In the Abt-
Buy dataset, 1,081 Abt records need to be compared against 1,092
Buy records with the ground truth containing 1,097 matching pairs.
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Dataset Title Description Manufacturer Price
AmznP dinosaurs - topics entertainment | $19.99
GgIP | topics presents:dinosaurs | the most engaging ... - $12.9

Table 1: One sample record each from the product collection in the Amazon-Google Products dataset (two separate tables but
with the same schema). The description of the product from Google products have been trimmed due to space considerations.
Empty fields, one of the reasons that makes Amazon-Google Products a challenging dataset, are marked with —. The discrep-
ancy between the two records, which represent the same entity, is quite frequently observed across the dataset and is another
factor that contributes to the difficulty of the task on this dataset.

4.1 Methods

tf-idf+Cosine Similarity. In countless prior empirical studies
across IR, tf-idf has continued to work well as a baseline. We use it
as a feature-engineered, word-centric baseline that we can compare
our graph embedding based method to. Specifically, we tokenize the
values of the ‘description’ fields, since the product descriptions are
highly indicative features. Next, for each record, we obtain a tf-idf
representation based on the tokens we obtained from the product
descriptions. For each record in Dataset 1 (which could be Amazon
or Google in Amazon-Google Products, and similarly, Abt or Buy in
Abt-Buy), we rank all the records in Dataset 2 by using the cosine
similarity between the records’ tf-idf representations.

Graph Embedding+Cosine Similarity. This method is similar
to the above, except that we use the cosine similarity between the
graph embeddings of the entity nodes.

tf-idf Re-ranking. For the previous two baselines, we got the
ranks from tf-idf and graph embedding methods separately. How-
ever, we consider a ‘two-level” approach also, whereby we re-rank
the top 100 entries in the original ranked list obtained by the tf-idf
method using the graph embedding+cosine similarity scores. In
this setting, the tf-idf serves as a ‘pruning’ mechanism (weeding
out everything except the top 100 entries), similar to blocking al-
gorithms in the ER literature, with graph embeddings having the
final say.

4.2 Metrics

We use mean rank to evaluate our methods. For a given query record
(an ‘entity’), we consider the penalty to be the rank of the match to
that query based on the gold truth in the ranking of the similarity-
based method (whether based on graph embeddings, tf-idf or their
combination). For the Abt-Buy benchmark, query records can be
from either Abt or Buy (conversely, candidate entities that are
ranked for the query would be from Buy or Abt), while for Amazon-
Google Products we only tested using Google records as queries for
the Simple Node Representation. For a given dataset, we average
this penalty for all records to get the mean rank. For example, if A
perfect entity resolver would therefore achieve a mean rank of 1.

4.3 Results and Discussion

In response to the first question, we conducted a preliminary ex-
periment whereby on the Amazon-Google Products dataset, using
Amazon entities as queries (and the simple nodes representation),
we computed the mean rank for all three methods mentioned earlier.
The tf-idf baseline was found to achieve average mean rank of 11.01,
while the graph embedding achieved mean rank of 1719.49. Thus,

by itself, the graph embedding was not a lot better than random,
and clearly a lot less viable than the tf-idf based method. Next, we
computed the mean rank for the re-ranking method, and found the
average mean rank to be 3.51, a significant reduction from both of
the other two methods. Hence, when used for re-ranking, the graph
embeddings significantly improve the tf-idf ranking. Although sim-
ple, we believe that this is the first time a purely text-based method
and a graph embedding have been used in conjunction for the
product ER problem, and outperformed both individually.

Second, Table 2 tabulates the results for all four benchmark set-
tings (both datasets, using queries from Abt/Buy and Google/Amazon
respectively) with graph embeddings using the simple nodes repre-
sentation. These results show that DeepWalk, although very poor by
itself, can significantly improve results when applied over TFIDF to
rerank its ranking. This improvement is consistent across datasets
as Table 2 shows.

As mentioned earlier, we study two graph construction methods
(simple nodes and aggregated nodes). Our second research question
specifically asked whether the aggregated nodes representation
can help improve performance compared to the simple nodes rep-
resentation. As there are many empty price fields in the Abt-Buy
dataset, and we focus on the price field for node aggregation, we
only use the Amazon-Google dataset in this part. The results of re-
ranking TFIDF when we use aggregated nodes graph representation
is shown in Table 3.

Our results show that, compared to simple node representation,
there is no significant or consistent gain when we aggregate price
nodes. While results do improve (by 0.04) compared to the sim-
ple nodes representation (when using Google product entities as
queries), there is a reversal when using Amazon product entities as
queries. One reason for this may be due to how we build the graph
with respect to text attributes. Recall that we tokenize the text in
the description field and create a node for each token in the graph.
An entity node is then linked to a token node if and only if that
token appears in one of its text attributes. With this setting, for
an entity node at the center of a star, most outgoing edges will be
focused on text-based features and the price attribute only accounts
for one outgoing edge.

One option that we’re exploring in future work is to upsample
the price nodes so that they have a stronger presence (via more
occurrences) in the random walks. Another option that we’re con-
sidering is using other aggregation strategies.

5 CONCLUSION

Product Entity Resolution is a difficult problem with the potential
for high commercial impact, even with modest increases in metrics
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Simple Nodes Representation
Dataset Query tf-idf Mean | tf-idf Re-ranked
Record | Rank Mean Rank
Amazon-Google | Google 8.27 4.18
Amazon-Google | Amazon | 11.01 3.51
Abt-Buy Abt 9.39 2.66
Abt-Buy Buy 11.88 2.76

Table 2: Experiment results across datasets.

Aggregated Nodes Representation
Dataset Query tf-idf Mean | tf-idf Re-ranked
Record Rank Mean Rank
Amazon-Google | Amazon | 11.01 3.69
Amazon-Google | Google 8.27 4.14

Table 3: Experiment results with aggregated node graph rep-
resentation.

like Mean Rank. In this paper, we illustrated a simple ‘two-level’
scheme that leverages both text and graph information to reduce
the mean rank on some competitive benchmarks from more than
11 to less than 5. Although the aggregated nodes representation
was found not to have an impact, this is likely due to the prelimi-
nary nature of our experiments, since we did not try many such
aggregated representations. In the future, we will explore more
options for aggregation, and will explore variants of the re-ranking
scheme, along with exploring more options for graph embeddings
(e.g., LINE, node2vec). We believe that the best approach will be a
graph embedding specifically optimized for products rather than a
generic approach like LINE or DeepWalk.
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