
Multi-objective Relevance Ranking
Michinari Momma
michi@amazon.com
Amazon.com Inc.

Seattle, WA

Alireza Bagheri Garakani
alirezg@amazon.com
Amazon.com Inc.

Seattle, WA

Yi Sun
yisun@amazon.com
Amazon.com Inc.

Seattle, WA

ABSTRACT
In this paper, we introduce an Augmented Lagrangian based method 
in a search relevance ranking algorithm to incorporate the multi-
dimensional nature of relevance and business constraints, both of 
which are the requirements for building relevance ranking mod-
els in production. The off-the-shelf solutions cannot handle such 
complex objectives and therefore, modelers are left hand-tuning 
of parameters that have only indirect impact to the objectives, at-
tempting to incorporate multiple objectives (MO) in a model. This 
process is time-consuming and tends to face sub-optimality. The 
proposed method is designed to systematically solve the MO prob-
lem in a constrained optimization framework, which is integrated 
with a popular Boosting algorithm and is, by all means, a novel 
contribution. Furthermore, we propose a procedure to specify the 
constraints to achieve business goals and the exploration scales 
linearly in the number of constraints, while existing methodology 
can scale exponentially. The experimental results show that the 
method successfully builds models that achieve MO criteria much 
more efficiently th an ex isting me thods. Th e po tential im pact in-
cludes significant reduction in model development time and allows 
for automation of model refresh even with presence of several MO 
criteria, in real world production system scale with hundreds of 
millions of records.

KEYWORDS
Learning to rank; Multi-objective ranking optimization; Product 
search; Web search
ACM Reference Format:
Michinari Momma, Alireza Bagheri Garakani, and Yi Sun. 2019. Multi-
objective Relevance Ranking. In Proceedings of the SIGIR 2019 Workshop 
on eCommerce (SIGIR 2019 eCom), 8 pages.

1 INTRODUCTION
Relevance in information retrieval (IR) has been extensively studied 
and applied to various areas such as web search, product search and 
recommendation, etc. The concept of relevance is multi-
dimensional, dynamic and evolutional [1, 15]. In product search, a 
ranking of products is modeled by customer’s historical 
behavior. Typically, signals such as purchase, add to cart or click 
are used as a target variable and models are tuned to optimize 
rankings based on such behaviors. To address the multi-
dimensional nature of relevance, various features that represent 
relevance dimensions are used as

Copyright © 2019 by the paper’s authors. Copying permitted for private and academic 
purposes.
In: J. Degenhardt, S. Kallumadi, U. Porwal, A. Trotman (eds.):
Proceedings of the SIGIR 2019 eCom workshop, July 2019, Paris, France, published at 
http://ceur-ws.org

input features to a model. For example, Amazon Search [18, 19]
has a large number of features to capture relevance with a feature
repository consisting of product features such as sales and customer
reviews, queries / context features such as query specificity or cus-
tomer status, as well as textual similarity features between query
and products.

Business constraints are additional requirements in production
modeling. Some are derived from existing relevance metrics proven
to be effective over time and are sought to retain in model refresh to
ensure avoiding churn [14]. Some are derived from relevance such
as latency to ensure quick search responses, and some are strategic
and examples includeminimum%-gain to consider experimentation
/ launch and avoiding adult items for media products. Reduction
of search defects that are the search results that do not match the
query in various aspects, can be considered for both as it gives
better customer experience and business requirement being strict
as to ensure the quality of search results. An example of search
defect is showing a cheap zirconium ring for a query “diamond
ring”, which could give customers the impression that the search is
broken, or the e-commerce site is more like a flea market, damaging
brand image of the service [19].

As discussed above, relevance ranking modeling faces challenges
of dealing with multiple metrics of relevance and / or business con-
straints, i.e., multiple-objectives (MO). Off-the-shelf machine learn-
ing solutions [5, 10, 13], cannot handle such complicated objectives
in a systematic manner. Although the effect can be limited, one may
try to employ either over-weighting (OW) [7] by exemplars and/or
by search impressions, a set of query-product pairs for a session
on a given day, to influence the objective function in a desired way.
Tuning of weight values is required in this approach and it can
suffer combinatorial exploration to search for a best combination of
weightings, which becomes prohibitive as the number of objectives
grows.

To address the issue, we propose a constrained optimization
method applied to the Gradient Boosting Tree (GBT). Specifically,
we introduce a constraint optimization in the LambdaMART algo-
rithm, the most prominent method for relevance modeling today.
LambdaMART is based on GBT [8] using CART [2] and employs
optimization on IR metrics such as the normalized cumulative dis-
counted gains (NDCG) or the mean reciprocal rank (MRR). One of
our goals is to propose a practical approach to the MO problem /
task in a production setting, which is constrained by memory and
model size, i.e., the number to trees, and efficiency of the learn-
ing algorithm to avoid regression of latency in scoring and model
development timeline.

In order to meet the requirements and limitations, adaptation
of the Augmented Lagrangian (AL) method [17] to LambdaMART
(AL-LM) is proposed. AL converts the original constrained prob-
lem into an unconstrained problem by adding penalty terms that



SIGIR 2019 eCom, July 2019, Paris, France Michinari Momma, et al.

penalize constraint violations. The Lagrange multipliers, i.e., dual
variables are estimated at each iteration. The advantage of AL for
incorporating into Boosting framework is its simplicity and smooth-
ness. With AL, we introduce dual variables in Boosting. The dual
variables are iteratively optimized and fit well within the Boosting
iterations. The Boosting objective function is replaced by the un-
constrained AL problem and the gradient is readily derived using
the LambdaMART gradients. With the gradient and updates of dual
variables, we solve the optimization problem by jointly iterating
AL and Boosting steps. To the best of our knowledge, our work is
the first to explicitly introduce constrained optimization problem
in Boosting and the first to apply it search relevance problems.
Although in this paper, the proposed method is implemented in
a Boosting algorithm and applied for relevance modeling (rank-
ing problems), it is naturally applicable to other algorithms such
as logistic regressions, SVM, and neural networks with various
applications in classification and regression domain.

Our code is currently incorporated in GBM in R. We plan to
implement the algorithm into XGBoost and / or LightGBM and
make them publicly available.

Section 2 introduces existing work in multi-objective optimiza-
tion in relevance ranking. Section 3 gives formulations and algo-
rithm of our proposed method. Section 4 illustrates experimental
results and Section 5 concludes this paper.

2 RELATEDWORK
The MO problem in search relevance literature has been a popular
research topic and there have been twomajor directions: combining
multiple objectives in a single model and aggregate multiple models
tuned for each objective. As for the single model approach, Dong et
al. [7] proposes an over-weighting model, based on GBrank [22], to
adjust importance weighing of examples coming from different data
sources, for incorporating recency into the web search relevance
ranking. Svore et al. [20] optimizes both human-labeled relevance
and click, with the former being prioritized. Their objectives are
based on NDCG that are modeled by the LambdaMART-loss. The
combined objective function is a weighted linear combination of
the two, which is in fact popular in literature [16, 21].

Another popular approach is to use aggregation of multiple
rankers. Dai et al. [6] proposes a hybrid approach of label aggrega-
tion and mixture of experts for achieving recency and general rank-
ing objectives. Kang et al. [12] relies on editorial grading for each
metric and relative preference to optimize both label aggregation
and model aggregation in a supervised manner. Each component
model is trained for each objective. They apply the method for
optimizing three objectives that are general ranking (i.e. matching),
distance and reputation. These methods require separate models for
each objective and are not directly applicable in our setting where
we deploy a single model in production.

Most of the existing algorithms rely on heuristics, such as weight-
ing or linear combination of objectives / models, and require man-
ual tuning of hyper-parameters, which becomes prohibitive as the
number of objectives becomes large. Our approach, in contrast, au-
tomatically yields a model that satisfies minimal requirements over
MO’s, alleviating the effort of hand-tuning of hyper-parameters,
which makes a clear distinction from the existing methods.

In terms of application of constrained optimization to more
generic problems, Bayesian Optimization (BO) with constraints
[9, 11] could be applicable. However, in our problem, objective func-
tions and gradients are available, even if it is a surrogate function,
and exploiting gradients in optimization should be more efficient.
Incorporation of BO on top of our approach to fine tune metrics or
hyper parameters in Boosting component could be an interesting
direction in the future.

3 FORMULATION AND ALGORITHM
In this section, we provide formulation and an algorithm of the
proposed method in details. As a method for production modeling,
there are some requirements in design: latency in scoring and the
computational cost in training. For the former, we should avoid
constructing large number of trees and complex structure of each
individual tree as it translates into latency degradation. For the lat-
ter, we should avoid large number of iterations, or nested iterations,
as the objective function evaluation can be expensive in search
application.

3.1 LambdaMART objective and gradient
First, let us review the LambdaMART formulation. Suppose we have
a set of queriesQ = {q} and an index set of documents (products in
product search) associated with each query Iq . A document is de-
noted by di with an index i ∈ Iq . A set of pairs of document indices
by Pq = {(i, j)} with the relation Ri ▷q Rj : di is more relevant than
dj for a given query q. Suppose also we have a single cost function
to optimize, referred to as primary cost. Given a relevance model f ,
for a query and a document, a score of the document is computed
as a function of its input features that could be query dependent:
s
q
i = f (x

q
i ). A probability of the relevance relationship is modeled

by a sigmoid function:

Prob(Ri ▷
q Rj ) = Prob

(
(i, j) ∈ Pq

)
=

(
1 + e−σ

(
sqi −s

q
j

) )−1 (1)

where σ is a parameter to determine the shape of the sigmoid
function. LambdaMART [3, 16] is based on the pairwise cost that
is the cross-entropy with a rank-dependent weight to incorporate
importance of high ranks. For a pair (i, j) ∈ Pq , the cross entropy
is given by

cpm
(
s
q
i , s

q
j

)
=

���∆Zpm,q
i, j

��� log (
1 + e−σ

(
sqi −s

q
j

) )
(2)

where ∆Zpm,q
i, j is the difference of a metric such as NDCG between

the (i, j) pair in one order and one that is flipped. For a metric like
NDCG, relevant documents in higher ranked position gets a high
value and that in lower a low value. Therefore, the weight ∆Zpm,q

i, j
tends to be large when a high ranked position is involved in the pair.
For a query, the total cost c(sq ) with sq being a vector containing
all documents for the query, i.e., sq = [s1, .., sIq ], is given by

cpm
(
sq

)
=

∑
(i, j)∈Pq

cpm
(
s
q
i , s

q
j

)
(3)



Multi-objective Relevance Ranking SIGIR 2019 eCom, July 2019, Paris, France

The primary objective function of LambdaMART is a sum over all
queries:

Cpm (s) =
∑
q∈Q

∑
(i, j)∈Pq

cpm (s
q
i , s

q
j ) =

∑
q∈Q

cpm (sq ) (4)

where s is a concatenated vector containing scores for all queries:
{sq |q ∈ Q}.

Boosting in LambdaMART is based on the GBT, which gener-
ates a linear combination of base functions that are the decision
trees, which are learned to fit the gradient. Typically, in GBT, once
a tree is constructed, the function value of each leaf is computed
by an estimate of the Newton step for the node. More formally,
at an nth iteration, leaf nodes {Rnl }

L
l=1, where L is the number

of leaves of a tree, are generated by CART for given input fea-
tures of a query and documents, and the gradient as a target:
{(x

q
i ,дn (f (x

q
i )))}q∈Q, i ∈Iq , withдn being the gradient with respect

to a score. The function value for each node is given as: γnl =

−

(∑
xqi ∈Rnl

∂2Cpm/∂s
q
i

) (∑
xqi ∈Rnl

∂Cpm/∂
(
s
q
i

)2)−1
. Therefore,

the score, or the prediction function is given as follows:

s
q
i = f (x

q
i ) = f0(x

q
i ) +

N∑
n=1

L∑
l=1

γnlδ (x
q
i ∈ Rnl ) (5)

where f0(x
q
i ) is an initial base function that could be provided

by prior knowledge and δ is the Kronecker delta. To derive the
gradient, it is handy to rewrite the query cost as follows:

cpm (sq ) =
∑
i ∈Iq

cpm (s
q
i )

=
∑
i ∈Iq

©«
∑

j :(i, j)∈Pq
cpm (s

q
i , s

q
j ) +

∑
j :(j,i)∈Pq

cpm (s
q
j , s

q
i )

ª®¬
(6)

with cpm (s
q
i ) ≡

∑
j :(i, j)∈Pq c

pm (s
q
i , s

q
j ) +

∑
j :(j,i)∈Pq c

pm (s
q
j , s

q
i ).

The first term computes the pairwise cost between di and oth-
ers that are less relevant than di . The second term computes that
between di and others that are more relevant than di . The gra-
dient used in LambdaMART [3, 4] is readily computed by taking
derivative with respect to the current score. By defining λpm,q

i ≡

∂c
pm
q /∂si and λ

pm,q
i j ≡ −σ

���∆Zpm,q
i, j

��� (1 + eσ (
sqi −s

q
j

) )−1
, we have

the gradient formula in terms of λ’s.

λ
pm,q
i =

∑
j :(i, j)∈Pq

λ
pm,q
i j −

∑
j :(j,i)∈Pq

λ
pm,q
ji (7)

Similarly, the second order derivative, defined as ρpm,q
i ≡ ∂2cpm/∂

(
s
q
i

)2
is given as follows:

ρ
pm,q
i = σ 2

∑
j :(i, j)∈Pq

���∆Zpm,q
i, j

��� ρpm,q
i j

(
1 − ρ

pm,q
i j

)
− σ 2

∑
j :(j,i)∈Pq

���∆Zpm,q
i, j

��� ρpm,q
ji

(
1 − ρ

pm,q
ji

) (8)

where we define ρpm,q
i j ≡

(
1 + eσ

(
sqi −s

q
j

) )−1
.

3.2 Incorporating Augmented Lagrangian
method in Boosting

Suppose all objectives are given in terms of cost functions. Just like
the primary objective function reviewed in 3.1, we use surrogated
cost functions to optimize the metrics we desire. For example, sup-
pose we want to set minimum criteria in NDCG. In this case, we
use LambdaMART costs for NDCG and set the cost no greater than
the given upper-bound (UB) b, i.e., Ct (s) ≤ bt , t = 1, . . . ,T . Given
the constraints represented in terms of cost functions, we have the
following constraint optimization problem:

min
s

Cpm (s) s .t . Ct (s) ≤ bt , t = 1, ...,T . (9)

The Lagrangian is written by

L (s,α ) = Cpm (s) +
T∑
t
α t

(
Ct (s) − bt

)
(10)

whereα =
[
α1, ...,αT

]
is a vector of dual variables. The Lagrangian

is solved by minimizing with respect to the primal variables s
and maximizing with respect to the dual variables α . AL itera-
tively solves the constraint optimization while alleviating non-
smoothness inα arising in the dual. In our problem, the Lagrangian
at iteration k is written as follows:

Lk (s,α ) = Cpm (s) +
T∑
t
α t

(
Ct (s) − bt

)
−

T∑
t

1
2µk

(
α t − α tk−1

)2 (11)

where α tk−1 is a solution in the previous iteration and a constant in
the current iteration k . µtk is a sufficiently large constant associated
with each dual variable α t . Note that the last term is newly added
as compared with Eq. (10) and it gives proximal minimization with
iterates α tk−1, to make the optimization smooth.

Wemaximize the Lagrangianwith respect toα ≥ 0 andminimize
with respect to s .

max
α ≥0

min
s

Lk (s,α ) (12)

From the stationary condition ∂Lk/∂α
t = 0, we obtain the update

formula for α :

α tk = max
(
0, µtk

(
Ct (s) − bt

)
+ α tk−1

)
. (13)

At an iteration k , if the constraint t is not satisfied, i.e., Ct (s) >
bt , we have α tk > α tk−1, which means the Lagrange multiplier
α t increases unless the constraint is already satisfied. Intuitively,
we can consider it as weighting that is adjusted each iteration to
overweight an unsatisfied constraint that is associated the cost we
want to improve. Note if a constraint should be strictly satisfied at
optimality, α t should take value 0 to maximize the Lagrangian. If
a constraint should be satisfied with equality, α t can take a finite
value. By restricting the solution to the former case, we can push
the dual variable to 0 whenever the constraint is satisfied:

α tk =

{
0, if Ct (s) − bt < 0
µtk

(
Ct (s) − bt

)
+ α tk−1, otherwise

(14)

Intuitively, we can avoid unnecessary iterations to find out α = 0
by simply pushing α to zero whenever the constraint is met. Our



SIGIR 2019 eCom, July 2019, Paris, France Michinari Momma, et al.

preliminary study shows the update Eq. (14) works better than that
in Eq. (13) in both primary and sub-objectives. Throughout this
paper, we adopt Eq. (14) as the update scheme for dual variables.

As for the primal variables, the first order derivatives are given
as follows:

∂Lk

∂s
q
i
=

∑
q∈Q,i ∈Iq

(
λ
pm,q
i +

∑
t
α tλ

t,q
t

)
=

∑
q∈Q,i ∈Iq

λ
q
i (15)

where we define λqi ≡ λ
pm,q
i +

∑
t α

tλ
t,q
i . Similarly, by defining

ρ
q
t ≡ ρ

pm,q
i +

∑
t α

t ρ
t,q
i , the second order derivative with respect

to a score is simply given as follows:

∂2Lk

∂
(
s
q
i

)2 = ∑
q∈Q,i ∈Iq

(
ρ
pm,q
i +

∑
t
α t ρ

t,q
i

)
=

∑
q∈Q,i ∈Iq

ρ
q
i (16)

One interpretation of the AL method is a penalty method on
constraint violations. To see it clearly, we can plug the stationary
condition Eq. (13) into Eq. (11), yielding

Lk (s,α ) = Cpm (s) +
∑

t ∈{α t >0}
α t

(
Ct (s) − bt

)
+

∑
t ∈{α t >0}

µtk
2

(
Ct (s) − bt

)2
+ const.

(17)

It is evident that it penalizes constraint violations associated with
α t > 0 with quadratic function. Therefore, setting a high value
of µtk imposes the constraint more strictly but on the other hand,
setting a too high value may introduce a non-smoothness behavior
which AL tries to avoid.

3.3 An approach to Augmented Lagrangian
with LambdaMART

Both AL and LambdaMART algorithms run by iterations. We pro-
pose a simple approach to integrate the two; Conduct an AL step
calculation to update α at each Boosting iteration, which means
the AL iteration index k is set equal to the Boosting iteration index
n. As for the AL parameter µtk , we take a fixed policy on itera-
tion: µtk = µt . A variant of algorithm would increase the value as
iterations proceeds. Algorithm 1 shows the steps of the algorithm.

Most notably, the additional component to the original Lamb-
daMART at the n-th iteration step is the gradient computation:
λ
q
i ,ρ

q
i and the update of α tn . The modification to existing solvers

such as GBM in R [10], XGBoost [5] , and LightGBM [13] should
be a minimal effort.

4 EXPERIMENTS
In this section, we analyze the algorithm by a numerical study. The
dataset we use is a product search data collected and generated
in an e-commerce service. We first study how to set the optimiza-
tion parameter µ and the cost upper-bounds to ultimately achieve
modeling goals using smaller sampled dataset. Then we apply the
settings to the full dataset for building a production-ready model.
Our prototyping code for AL-LM is currently incorporated in GBM
in R and used throughout of this section.

Input: Number of trees N , number of leaves per tree L,
learning rate η, AL parameter µt . Initial Lagrange
multiplier estimate α t0 = 0, t = 1, ..,T . Given initial
BaseModel

foreach q ∈ Q do
f0(x

q
i ) = BaseModel(x

q
i ), i ∈ Iq

/* If BaseModel is empty, set f0(x
q
i ) = 0 */

end
for n=1 to N do

foreach q ∈ Q , i ∈ Iq do
λ
q
i = λ

pm,q
i +

∑T
t=1 α

t
n−1λ

t,q
i ,

ρ
q
i = ρ

pm,q
i +

∑T
t=1 α

t
n−1ρ

t,q
i

end
{Rnl }

L
l=1

/* Create an L leaf tree on {(x
q
i , λ

q
i )}q∈Q,i ∈Iq

*/

γnl = −

∑
q∈Q,xqi ∈Rnl

λqi∑
q∈Q,xqi ∈Rnl

ρqi

/* Assign leaf values on Newton step estimate
*/
foreach q ∈ Q , i ∈ Iq do

fn (x
q
i ) = fn−1(x

q
i ) + η

∑
l γnlδ

(
x
q
i ∈ Rnl

)
/* Take

step with learning rate η */

for t=1 to T do
Compute cost Ct (s) with
{s
q
i = fn

(
x
q
i

)
}q∈Q,i ∈Iq

Update α tn via Eq. (13) or Eq. (14)
end

end
end

Algorithm 1: AL-LambdaMART (AL-LM)

4.1 Dataset and objectives
The dataset consists of search queries, input features (e.g., query,
product, and query-product dependent features such as product
sales, customer review, textual matches between a query and prod-
ucts), as well as customer’s purchase decision. We follow the basic
modeling practice described in [18, 19]. We collect training data for
a month worth of the data followed by a week worth of the data
for evaluation. For this study, we focus on purchase as a primary
objective.

As for sub-objectives, we identify four. The first one (t1) is to
surface set of products that have relatively good quality and popu-
lar to a certain customer segment (e.g., customers with subscrip-
tions or customers who are more interested in trending products.);
the insight being promoting popular products of high quality for
such a segment while others still have the impressions on such
products. The 2nd – 4th ones are products that contain additional
benefit/service to such a customer segment; 2nd (t2) offers some
lowest benefit to the customer of the three and 3rd (t3) and 4th (t4)
offer superior benefits in an increasing order. Generally, benefits
are hierarchical and coverage is inversely proportional to it.



Multi-objective Relevance Ranking SIGIR 2019 eCom, July 2019, Paris, France

Table 1: Baseline unconstrained results.

purchase t1 t2
cost NDCG cost NDCG cost NDCG

train 0.106 0.826 0.038 0.932 0.047 0.842
valid 0.133 0.809 0.038 0.930 0.045 0.845

Table 2: Upper bounds (bt1, bt2) set by cost reduction rate
from baseline.

%-cost reduction
5% 10% 20% 30% 40% 50%

t1 0.036 0.034 0.030 0.026 0.023 0.019
t2 0.045 0.043 0.038 0.033 0.028 0.024

4.2 Multi-objective ranking illustration
First, we show how the algorithm progresses by iterations. In this
study, we use two constraints for simplicity. We randomly sample
20K search impressions from the dataset and split into 50% for train-
ing and validation sets. We run the algorithm up to 100 iterations for
illustration purpose. The UB bt are set based on the unconstrained
baseline; we run the unconstraint problem first, which is exactly
the same as the original LambdaMART algorithm. Table 1 shows
cost and NDCG for the purchase, t1 and t2. Then the UB values are
set based on a cost reduction rate, such as 5, 10, . . . , 50%, from the
unconstrained baselines. Table 2 shows actual values of UB’s used
in the experiments.

4.2.1 Cost curve illustration. Figure 1 (a) illustrates curves of costs
that are the objectives in the problem. The value of α tn is also shown
in Figure 1 (b). We set UB for 20% cost reduction against the uncon-
strained baseline and set µ = 10K , which is a setting that is found to
be large enough as studied in next subsection. In cost curves, solid
curves correspond to the cost values on the training data and dotted
curves those on the validation data. Note solid lines represent the
UB’s. As seen in the Figure 1 (a), the initial few iterations try to
satisfy constraints aggressively. Then spend a number of iterations
in the over-satisfied region, gradually challenging the UB’s. The
behavior of α can be seen in (b). α is pushed to zero when the
constraint is met during the iterations. Then when a constraint
violation occurs, a finite value of α kicks in again. At iteration 80,
α t2 actually gets 0.79, as seen in Figure 1 (b). Validation results are
also shown as dotted curves in Figure 1 (a). Constraint satisfaction
in training tend to be generalizable to that in validation set.

4.2.2 Optimization parameter µ. In AL, the optimization parameter
µtk can be any sufficiently large value. In our experiments, we set
µtn to be a constant across all iterations and constraint. We vary
the value from (10, 100, 1K , 10K) and see how the constraints are
satisfied, over different cost UB reduction rates that ranges from 5%
through 50%, see Table 1 for the values used for each objective. As a
metric to measure constrained satisfaction, we use relative margin
that is defined as (bt − Ct )/bt . Negative value means constraint
violation. In Table 4 and 3, obviously, the more UB values are set
aggressively, the less chance the constraints can be satisfied. For
both constraints, when UB’s are set 5%, all constraints are met even
for µ is as small as 10. However, as UB is set up to 30%, only larger

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 11 21 31 41 51 61 71 81 91

Pr
im

ar
y 

Co
st

Co
ns

tra
in

t C
os

ts

Iteration

(a) Costs w.r.t. #iterations
C_t1 C_t2 b_t1 b_t2 C_t1 C_t2 C_pr C_pr

0
0.5

1
1.5

2
2.5

3
3.5

1 11 21 31 41 51 61 71 81 91

lo
g(
𝛼

+1
)

Iteration

(b) AL update: 𝛼
alpha_t1 alpha_t2

Figure 1: (a) Cost curves inAL-LM. µ is set to 10K . Solid curves
represent training results and dotted validation. Solid lines
represent UB’s. (b) how α changes over iterations shown in
log-scale.

Table 3: Relative margin by UB reduction rates and µ, for t1

µ data UB reduction rate (%)
5% 10% 20% 30% 40% 50%

10000 tr 19.28 13.87 6.40 3.72 2.45 -0.28
val 21.13 15.30 7.33 4.20 3.24 0.31

1000 tr 17.81 13.22 6.62 0.02 0.70 -0.09
val 19.05 13.84 6.87 1.00 1.03 0.80

100 tr 18.31 14.02 5.80 -0.06 -0.65 -1.66
val 18.82 13.90 5.98 0.94 -0.05 -1.17

10 tr 13.08 12.15 6.97 -0.39 -1.56 -3.28
ts 14.25 13.17 7.08 -0.55 -1.28 -2.98

value of µ, i.e., µ = 1K or 10K can satisfy the constraints. For above
40% reduction, even µ = 10K suffers from infeasibility. As µ = 10K
satisfies most constraints for the cost reduction rate for the training
data, a sensible choice for the value of µ would be at least 10K .

4.2.3 Cost reduction and NDCG gain. Now, we look at the cost
reduction rates and NDCG gains over the unconstrained cases as
baseline. Table 5 shows for each objective, how the attained cost
reduction rates and NDCG gains vary with different UB settings.
Note for the constraints, the cost values are consistent with Table 4
and 3, as they are computed based on values in Table 5.

As we have tighter UB values, cost associated with the constraint
is reduced, which improves the NDCG gain. For the primary ob-
jective, purchase, the behavior is opposite, which is all expected
as we are tightening constraints. An important observation is the



SIGIR 2019 eCom, July 2019, Paris, France Michinari Momma, et al.

Table 4: Relative margin by UB reduction rates and µ, for t2

µ data UB reduction rate (%)
5% 10% 20% 30% 40% 50%

10000 tr 3.09 2.01 0.65 6.19 -0.98 -0.18
val 3.34 2.11 1.50 7.22 0.39 0.29

1000 tr 2.16 1.31 0.10 0.07 -0.45 -1.15
val 1.97 1.51 0.63 0.92 0.61 -0.90

100 tr 2.61 -0.09 0.46 -1.14 -0.97 -2.10
val 2.57 -0.51 0.96 -0.59 0.00 -1.54

10 tr 0.70 -0.46 -1.57 -1.64 -3.20 -5.26
ral 0.47 -0.04 -1.55 -1.50 -2.64 -5.24

Table 5: Cost reduction (%) and NDCG-gain for each objec-
tive, by different UB’s, with µ=10K

5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50%
Cost red. 24.28 23.87 26.40 33.72 42.45 49.72 26.13 25.30 27.33 34.20 43.24 50.31
NDCG 1.62 1.57 1.74 2.32 3.06 3.74 1.76 1.66 1.81 2.34 3.16 3.74
Cost red. 8.09 12.01 20.65 36.19 39.02 49.82 8.34 12.11 21.50 37.22 40.39 50.29
NDCG 0.92 1.68 3.49 6.58 7.09 9.30 1.06 1.87 3.46 6.76 7.21 9.34
Cost red. 0.02 -0.22 -0.02 -1.25 -2.54 -5.18 0.21 0.18 0.29 -0.82 -1.88 -3.60
NDCG -0.23 -0.01 -0.21 -0.63 -1.03 -1.58 0.18 0.18 0.11 -0.20 -0.23 -0.96

training / upper-bound reduction% validation / upper-bound reduction%

t1

t2
pur-
chase

y = 0.071x

y = 0.181x

0%

2%

4%

6%

8%

10%

0% 10% 20% 30% 40% 50% 60%

Cost reduction rate vs. NDCG gain (train)

t1 t2 Linear (t1) Linear (t2)

y = 0.071x

y = 0.180x

0%

2%

4%

6%

8%

10%

0% 10% 20% 30% 40% 50% 60%

Cost reduction rate vs. NDCG gain (valid.)

t1 t2 Linear (t1) Linear (t2)

Figure 2: Relationship between cost reduction and NDCG
gain

validation results are consistentwith those of training, which means
the constraint satisfaction in training generalizes well at least for
the dataset examined. Note constraint t2 is over-satisfied with large
margin in cost. This is due to the correlation between the target
values associated with t1 and t2, as that of t1 is available only if
the target value of t2 is positive, which partially explains t1 is a
tighter constraint to be satisfied than t2.

The relationship between the cost reduction and the NDCG gains
is illustrated in Figure 2. The two metrics are quite consistent and
fit well by linear lines. This means, we can estimate cost reduction
value for a given NDCG gain requirement, by using the approx-
imately liner relationship. Once we have the cost reduction rate,
we can set it as the UB. This observation is quite useful in practice
where NDCG gain values would likely be the criteria for offline
modeling.

Table 6: Production scale modeling results in %-gain. For
over-weighting (OW), 7models achieve +1% gain criteria out
of 144 trials in grid search. Min, max and avg performances
of the 7 models are shown. For AL-LM, one denotes use of
estimated UB’s (one-shotmodel) and adjust applying adjust-
ment over the one-shotmodel. The bold letter shows statisti-
cally significance in comparing OW (max) and AL-ML (one).

pur- t1 t2 t3 t4
chase @5 @22 @5 @22 @5 @22 @5 @22

OW (min) -0.10 2.59 1.98 1.15 1.00 1.66 1.19 2.01 1.54
OW (max) -0.03 3.52 2.67 1.66 1.41 2.33 1.67 2.74 2.08
OW (avg) -0.05 2.90 2.20 1.27 1.10 1.79 1.30 2.26 1.68

AL-LM (one) -0.07 3.21 1.83 4.28 3.08 3.38 2.29 4.19 2.77
AL-LM (adj.) -0.03 2.12 1.26 3.13 2.16 2.73 1.97 3.36 2.64

4.3 Production-scale modeling
4.3.1 Applying AL-ML in the full dataset. In this subsection, we
show results on a larger sampled data to simulate a production
modeling with more sub-objectives. To this end, we increase the
samples to ∼1MM search impressions for the training and ∼500K
search impressions for the hold-out evaluation data sets and use the
full four sub-objectives. Each sub-objective is computed by a binary
target value, just like the purchase target. The goal of the modeling
is to achieve at least 1% gain in the number of products with the
positive sub-objective value, i.e., presence of products eligible for
some customer benefit in top-5 and 22 ranks, while minimizing the
impact on the purchase NDCG. We use relationship between the
metrics (top-K) and cost as illustrated in Figure 2 to estimate the
values of UB’s by using smaller number of samples. In other words,
as long as we know the relationship between the metric value and
cost value, we can achieve the goal of +1% gain by just setting the
UB’s. Namely, we choose 14% reduction for bt1 and 1/0.181 = 5.5%
reduction for bt2 and adjust if the constraint is too tight to satisfy,
or over-satisfied. Note as we find t3 and t4 follows very similar
pattern as t2, we use the same setting as t2 to them.

4.3.2 OW method as a baseline. As a baseline method to com-
pare against, we tune models by over-weighting (OW) over the
sub-objectives. Basically, in the OW method, we identify search
impressions that contain products with the positive sub-objective
value for applying over-weightings. We introduce weights on the
pairwise cost computation so that we can influence the cost func-
tion depending on products that matches a query. For example,
if a product has a value one in the target t1, i.e., the product is
eligible for some benefit, and we want to optimize t1 over other
sub-objectives, we put high weight on the cost associated with t1 so
the ranking is more likely to optimized for the search impressions
containing products with t1 as a feature. When there are multiple
sub-objectives, we need to combinatorially tune multiple weighting
schemes to concurrently achieve multiple objectives.

The weight values are tuned first by manually finding a reason-
ably good weighting parameter ranges and run grid search to fine
tune. As there are four dimensional space to explore and too time
consuming for the problem size, we only search weighting parame-
ters for t1 and t2; we rely on correlation between t2 and t3 or t4 to



Multi-objective Relevance Ranking SIGIR 2019 eCom, July 2019, Paris, France

optimize overall metrics. Despite the search space reduction, we
end up building 144+ models.

4.3.3 Results. Table 6 shows the results on the evaluation set from
OW and AL-LM, which are measured by %-gain with respect to
the unconstrained baseline. For OW, only 7 out of 144 trials over
the grid are found as feasible solutions. We reportmin,max and
avд among the solutions. For AL-LM, we already have estimates of
each constraint from Figure 2. A similar preliminary experiment
gives estimate of other cost UB’s.

Both methods achieve the 1% gain criteria for all metrics. While
AL-LM achieves higher gains for t2 – t4 and purchase NDCG is
flat, the model shows slight over satisfaction and we apply some
adjustment (relax UB’s by 20%: 14% reduction for bt1 to 11% and
4%), yielding slight improvement on purchase (insignificant) with
less margin on t1. In terms of efficiency, AL-LM is a clear win
as it requires only two model builds, one for getting the baseline
cost value and the other by applying cost reduction UB’s estimated
by smaller sample. We could put efforts on adjustment if the one-
shot model has issues, which can be resolved slight tightening or
relaxing constraints. OW, on the other hand, requires exploration
of the weighting schemes and the success rate is 7/144 = 4.8%,
which requires 21 trials on average and 61 trials at 95% confidence.

Addition of further sub-objectives, such as search defect and
adult products tend to be much less correlated with the constraints
we studied in this paper, which means more combinatorial explo-
ration (exponential in T ) is needed for existing methodologies. AL-
LM is the choice for MO modeling, as it only requires setting UB’s
and some adjustment around the one-shot model: (linear in T ).

5 CONCLUSION AND FURTHERWORK
In this paper, we introduced an Augmented Lagrangian based
method to address challenges with the multi-objective optimization
in relevance modeling. Specifically, we incorporated a constraint
optimization method into Boosting so that modelers can use it very
easily as an extension to the LambdaMART, one of the most pop-
ular Boosting methods in this domain. The explicit introduction
of constrained optimization is a novel contribution of this paper
and thus its application to relevance ranking is novel. Experimental
results showed the proposed AL-LM can indeed efficiently resolve
the MO problem. The impact of the outcome would be not limited
to reducing the model development lead time; modelers can make
more effort in developing new features by using the time saved
and an automated model refresh can be realizable by incorporating
various constraints automatically. In fact, we have been quite suc-
cessful in apply the multiple objective models built with AL-LM to
modeling projects in production.

Our code is currently incorporated in GBM in R. We plan to
implement the algorithm into XGBoost and / or LightGBM and
make it publicly available.

Although we applied the method on relevance modeling, it is
applicable to wider problem domains, i.e., classification and regres-
sions, and other machine learningmethods such as neural networks,
etc. Extension to wider application and methodology is a future
work as well.

REFERENCES
[1] Pia Borlund. 2003. The Concept of Relevance in IR. J. Am. Soc. Inf. Sci. Technol.

54, 10 (Aug. 2003), 913–925. https://doi.org/10.1002/asi.10286
[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and

Regression Trees. Wadsworth and Brooks, Monterey, CA.
[3] Chris J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An

Overview. Technical Report. https://www.microsoft.com/en-us/research/
publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/

[4] Christopher J. Burges, Robert Ragno, and Quoc V. Le. 2007. Learning to Rank
with Nonsmooth Cost Functions. In Advances in Neural Information Processing
Systems 19, B. Schölkopf, J. C. Platt, and T. Hoffman (Eds.). MIT Press, 193–
200. http://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-
functions.pdf

[5] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785–794. https://doi.org/10.1145/2939672.2939785

[6] Na Dai, Milad Shokouhi, and Brian D. Davison. 2011. Learning to Rank for
Freshness and Relevance. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’11).
ACM, New York, NY, USA, 95–104. https://doi.org/10.1145/2009916.2009933

[7] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang Zhang,
Karolina Buchner, Ciya Liao, and Fernando Diaz. 2010. Towards Recency Ranking
in Web Search. In Proceedings of the Third ACM International Conference on
Web Search and Data Mining (WSDM ’10). ACM, New York, NY, USA, 11–20.
https://doi.org/10.1145/1718487.1718490

[8] Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting
machine. Ann. Statist. 29, 5 (10 2001), 1189–1232. https://doi.org/10.1214/aos/
1013203451

[9] Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and
John P. Cunningham. 2014. Bayesian Optimization with Inequality Constraints.
In Proceedings of the 31st International Conference on International Conference
on Machine Learning - Volume 32 (ICML’14). JMLR.org, II–937–II–945. http:
//dl.acm.org/citation.cfm?id=3044805.3044997

[10] Ridgeway Greg. 2013. gbm: Generalized Boosted Regression Models. https://cran.r-
project.org/web/packages/gbm/index.html

[11] José Miguel Hernández-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W.
Hoffman, and Zoubin Ghahramani. 2016. A General Framework for Constrained
Bayesian Optimization Using Information-based Search. J. Mach. Learn. Res. 17,
1 (Jan. 2016), 5549–5601. http://dl.acm.org/citation.cfm?id=2946645.3053442

[12] Changsung Kang, Xuanhui Wang, Yi Chang, and Belle Tseng. 2012. Learning to
Rank with Multi-aspect Relevance for Vertical Search. In Proceedings of the Fifth
ACM International Conference on Web Search and Data Mining (WSDM ’12). ACM,
New York, NY, USA, 453–462. https://doi.org/10.1145/2124295.2124350

[13] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 3146–3154. http://papers.nips.cc/paper/6907-
lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

[14] Mahdi Milani Fard, Quentin Cormier, Kevin Canini, and Maya Gupta. 2016.
Launch and Iterate: Reducing Prediction Churn. InAdvances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 3179–3187. http://papers.nips.cc/
paper/6053-launch-and-iterate-reducing-prediction-churn.pdf

[15] S. Mizzaro. 1998. How many Relevances in Information Retrieval? Interacting
With Computers 10, 3 (1998), 305–322.

[16] Phong Nguyen, John Dines, and Jan Krasnodebski. 2017. A Multi-Objective
Learning to re-Rank Approach to Optimize Online Marketplaces for Multiple
Stakeholders. CoRR abs/1708.00651 (2017). arXiv:1708.00651 http://arxiv.org/
abs/1708.00651

[17] J. Nocedal and S. Wright. 2006. Numerical Optimization (2 ed.).
Springer. http://books.google.com.tr/books?id=VbHYoSyelFcC,/bib/
nocedal/nocedal2006numerical/%28Springer%20series%20in%20operations%
20research%29%20Jorge%20Nocedal%2C%20Stephen%20Wright-Numerical%
20Optimization-Springer%20%282006%29.pdf,http://www.bioinfo.org.cn/
~wangchao/maa/Numerical_Optimization.pdf

[18] Daria Sorokina. 2016. Amazon Search: The Joy of Ranking Products.
https://mlconf.com/mlconf-2016-sf/.

[19] Daria Sorokina and Erick Cantu-Paz. 2016. Amazon Search: The Joy of Ranking
Products. In Proceedings of the 39th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY,
USA, 459–460. https://doi.org/10.1145/2911451.2926725

[20] Krysta M. Svore, Maksims N. Volkovs, and Chris J.C. Burges. 2011. Learn-
ing to Rank with Multiple Objective Functions, In Proceedings of WWW
2011. https://www.microsoft.com/en-us/research/publication/learning-to-rank-
with-multiple-objective-functions/

https://doi.org/10.1002/asi.10286
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
http://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
http://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2009916.2009933
https://doi.org/10.1145/1718487.1718490
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
http://dl.acm.org/citation.cfm?id=3044805.3044997
http://dl.acm.org/citation.cfm?id=3044805.3044997
https://cran.r-project.org/web/packages/gbm/index.html
https://cran.r-project.org/web/packages/gbm/index.html
http://dl.acm.org/citation.cfm?id=2946645.3053442
https://doi.org/10.1145/2124295.2124350
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6053-launch-and-iterate-reducing-prediction-churn.pdf
http://papers.nips.cc/paper/6053-launch-and-iterate-reducing-prediction-churn.pdf
http://arxiv.org/abs/1708.00651
http://arxiv.org/abs/1708.00651
http://arxiv.org/abs/1708.00651
http://books.google.com.tr/books?id=VbHYoSyelFcC,/bib/nocedal/nocedal2006numerical/%28Springer%20series%20in%20operations%20research%29%20Jorge%20Nocedal%2C%20Stephen%20Wright-Numerical%20Optimization-Springer%20%282006%29.pdf,http://www.bioinfo.org.cn/~wangchao/maa/Numerical_Optimization.pdf
http://books.google.com.tr/books?id=VbHYoSyelFcC,/bib/nocedal/nocedal2006numerical/%28Springer%20series%20in%20operations%20research%29%20Jorge%20Nocedal%2C%20Stephen%20Wright-Numerical%20Optimization-Springer%20%282006%29.pdf,http://www.bioinfo.org.cn/~wangchao/maa/Numerical_Optimization.pdf
http://books.google.com.tr/books?id=VbHYoSyelFcC,/bib/nocedal/nocedal2006numerical/%28Springer%20series%20in%20operations%20research%29%20Jorge%20Nocedal%2C%20Stephen%20Wright-Numerical%20Optimization-Springer%20%282006%29.pdf,http://www.bioinfo.org.cn/~wangchao/maa/Numerical_Optimization.pdf
http://books.google.com.tr/books?id=VbHYoSyelFcC,/bib/nocedal/nocedal2006numerical/%28Springer%20series%20in%20operations%20research%29%20Jorge%20Nocedal%2C%20Stephen%20Wright-Numerical%20Optimization-Springer%20%282006%29.pdf,http://www.bioinfo.org.cn/~wangchao/maa/Numerical_Optimization.pdf
http://books.google.com.tr/books?id=VbHYoSyelFcC,/bib/nocedal/nocedal2006numerical/%28Springer%20series%20in%20operations%20research%29%20Jorge%20Nocedal%2C%20Stephen%20Wright-Numerical%20Optimization-Springer%20%282006%29.pdf,http://www.bioinfo.org.cn/~wangchao/maa/Numerical_Optimization.pdf
https://doi.org/10.1145/2911451.2926725
https://www.microsoft.com/en-us/research/publication/learning-to-rank-with-multiple-objective-functions/
https://www.microsoft.com/en-us/research/publication/learning-to-rank-with-multiple-objective-functions/


SIGIR 2019 eCom, July 2019, Paris, France Michinari Momma, et al.

[21] Lidan Wang, Paul N. Bennett, and Kevyn Collins-Thompson. 2012. Robust Rank-
ingModels via Risk-sensitive Optimization. In Proceedings of the 35th International
ACM SIGIR Conference on Research and Development in Information Retrieval (SI-
GIR ’12). ACM, New York, NY, USA, 761–770. https://doi.org/10.1145/2348283.
2348385

[22] Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke
Chen, and Gordon Sun. 2008. A General Boosting Method and its

Application to Learning Ranking Functions for Web Search. In Ad-
vances in Neural Information Processing Systems 20, J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis (Eds.). Curran Associates, Inc., 1697–1704.
http://papers.nips.cc/paper/3305-a-general-boosting-method-and-its-
application-to-learning-ranking-functions-for-web-search.pdf

https://doi.org/10.1145/2348283.2348385
https://doi.org/10.1145/2348283.2348385
http://papers.nips.cc/paper/3305-a-general-boosting-method-and-its-application-to-learning-ranking-functions-for-web-search.pdf
http://papers.nips.cc/paper/3305-a-general-boosting-method-and-its-application-to-learning-ranking-functions-for-web-search.pdf

	Abstract
	1 Introduction
	2 Related work
	3 Formulation and algorithm
	3.1 LambdaMART objective and gradient
	3.2 Incorporating Augmented Lagrangian method in Boosting
	3.3 An approach to Augmented Lagrangian with LambdaMART

	4 Experiments
	4.1 Dataset and objectives
	4.2 Multi-objective ranking illustration
	4.3 Production-scale modeling

	5 Conclusion and further work
	References

