
Multi-Candidate Ranking Algorithm Based Spell Correction
Chao Wang

The Home Depot
Atlanta, GA

chao_wang1@homedepot.com

Rongkai Zhao
The Home Depot

Atlanta, GA
rongkai_zhao@homedepot.com

ABSTRACT
Spell correction is an important component in Natural Language 
Processing (NLP). In the context of a product search engine, an 
effective spell correction system can improve the accuracy of the 
search results and reduce the occurrence of No Results Found (NRF). 
Conversely, a sub-optimal spell correction has negative effects, e.g., 
failing to correct misspelled queries, modifying correct queries into 
wrong ones. In this paper, three novel components / algorithms 
currently used in The Home Depot (THD) spell correction service 
is presented: (1) word embedding based dictionary construction;
(2) multi-path candidates generation; (3) high dimensional cluster
analysis based ranking model. The dictionary provides data about
the inner relationships among the words for a given corpus. With
the dictionary, the candidate generation algorithm recommends
a set of correction candidates for several misspelling hypothesis,
e.g., word editing error, word breaking error, word concatenation
error, fat finger typing error, and so on. Then the ranking model
projects the candidates into a high dimensional space and sorts them
based on cluster density analysis. In the experiment, the new THD
spell correction is compared with the old version (without these
features), Lucene spell correction and Grammarly spell correction.
The evaluation results indicated the THD spell correction has higher
correction accuracy than the other widely used implementations.

KEYWORDS
Spell correction, Spell checker, Spell corrector, Word embedding, 
Dictionary Building, Multi-candidate generation, Ranking model, 
Similarity context
ACM Reference format:
Chao Wang and Rongkai Zhao. 2019. Multi-Candidate Ranking Algorithm 
Based Spell Correction. In Proceedings of the SIGIR 2019 Workshop on 
eCommerce (SIGIR 2019 eCom), 8 pages.

1 INTRODUCTION
The spell correction [1; 2] has been widely used in search engines, 
works as a "gate keeper" for query parsing [3]. Generally, spell 
correction has two components: spell checker and spell corrector. 
The spell checker is used to check the validity of the queries at 
word level as well as phrase level. If a query is valid, no action is 
needed from the spell corrector, otherwise, the query is passed onto 
spell corrector for revision. The spell corrector has a set of common

Copyright © 2019 by the paper’s authors. Copying permitted for private and academic 
purposes.
In: J. Degenhardt, S. Kallumadi, U. Porwal, A. Trotman (eds.):
Proceedings of the SIGIR 2019 eCom workshop, July 2019, Paris, France, published at 
http://ceur-ws.org

error hypothesis, these hypothesis are based on the observation of
common user mistakes. Unlike deep learning based approaches, we
found the deterministic approach has much higher accuracy in a
close domain. Common user mistakes including wrong spelling of
a word, fat finger typing error, failing to break a composite word,
unnecessarily creating a composite word, aggressive device native
word level spell corrector introduced error, phonetic error, foreign
language input, keyboard malfunction, etc. For each hypothesis,
correction candidates will be generated and ranked by the cluster
density in a high dimensional word embedding space. The final
result is the most probable set ordered by the rank.

Categorized by the correction context, most standalone spell
corrections (e.g., Jazzy spell correction [4], Aspell spell correction
[5] and Hunspell spell correction [6]) are word-level approaches,
which correct the misspelled words without considering the context
information. The other spell corrections (Lucene spell correction
[7], Grammarly spell correction [8], Microsoft Bing spell correction
[9] and Google spell correction [10]) adopt context information. In
other words, they are context based solution.

Categorized by the correction methods, most of the spell correc-
tion algorithms [1; 4; 6; 7] use Edit Distance (e.g., insertion, dele-
tion, substitution) [11] and Phonetics Matching [12] as objective
function to find closely related words. Some other spell correc-
tions [13; 14] construct noisy channel models which recover the
intended correction c in word set C from a misspelled word w to
maximize Pr (c)Pr (w |c) where c ∈ C ; Pr (c) is a prior model of word
probabilities; Pr (w |c) is a model of the noisy channel for word
transformations from c tow due to Edit Distance. Another spell cor-
rections [15; 16] adopt Deep Neural Networks [17] based language
models. Xie et al. [15] proposed to use char-level encoder-decoder
recurrent neural network [18] to learn the character relationships
within the words and phrases, which can avoid the problem of
out-of-vocabulary words. Chollampatt and Ng [16] presented a
multi-layer convolutional encoder-decoder neural network [19] for
this char-level correction. Based on their analysis, the proposed
network can cover more grammatical errors than recurrent neural
network.

Before continuing onto further detail, here are some examples
of common spelling problems and corrections:

(1) Single word error correction, e.g. "garage dor opener" ->
"garage door opener";

(2)Multi-word errors correction, e.g. "garge dor opener" -> "garage
door opener";

(3) Word breaking issue, e.g. "kohlertoilet" -> "kohler toilet";
(4) Word breaking issue with spelling errors, e.g. "kholertiolet"

-> "kohler toilet";
(5)Word concatenation issue, e.g. "tom catmouse trap" -> "tomcat

mouse trap";



SIGIR 2019 eCom, July 2019, Paris, France Wang et al.

Figure 1: Spell Correction Architecture

(6) Word concatenation issue with spelling errors, e.g. "replace
ment light bulb" -> "replacement light bulb";

(7) Word correction containing digits and special characters, e.g.
"door ;ocks" -> "door locks";

(8) Real word errors correction, e.g. "mug knife" -> "mud knife".
Where the real word error is that the individual words ("mug",

"knife") of the query are valid but the phrase ("mug knife") does not
make sense.

2 ARCHITECTURE
In this paper, three main components / algorithms are presented:
(1) word embedding based dictionary construction; (2) multi-path
candidates generation; (3) high dimensional cluster analysis based
ranking model.

As shown in the architecture (see Figure 1), the input query is
first passed into Language Identifier to check which language the
query belongs to, e.g., Spanish or English (English spell correction is
mainly focused in this paper). After that, the query is put into Spell
Checker to verify the validity. If valid, directly return the original
query as final result; if not, pass the query into Spell Corrector. In
Spell Corrector, the invalid query will be corrected by all of means
synchronously, e.g., word correction, word breaking, word con-
catenation, fat finger typing error, and so on. This procedure may
generate multiple candidates based on different correction compo-
nents. Then these candidates are ranked based on the closeness of
their word vectors clustering. Finally, the best candidate is returned
as the correction result. In addition, the proposed dictionary works
through the whole architecture.

3 WORD EMBEDDING BASED DICTIONARY
CONSTRUCTION

3.1 Traditional Dictionary Structure
Most of the spell correction dictionaries [6; 7] are just composed of
unique English words. However, it lacks of the word relationship
information for the context-based spell correction algorithms [8–
10; 13–16]. In order to extract the context information, the following
methods can be adopted: Given a specific corpus, e.g., user query
log, calculate the occurrence of every unique valid bigram words to
construct a bigram co-occurrence model; feed the corpus into some
char-level network models [15; 16] to learn the inner relationships
among the characters. However, these methods still have some
drawbacks. The co-occurrence model is only limited to bigram
coverage, which is hard to be extended to n-gram (n > 2) words due
to the limited memory space. In addition, the construction rules of
n-gram (n > 2) words model are much restricted, which can easily
lead to an overfitting issue. Conversely, the char-level model is
much flexible to generate some unreasonable correction results.

3.2 Multi-Source Dictionary Construction
Using Word Embedding

For our spell correction, in addition to bigram co-occurrence model,
word embedding model based dictionary construction is proposed
to extract the context information from the corpuses. We use user
query log, product catalog and selected Wikipedia documents for
context extraction. Wikipedia documents that are not related to
our product catalog are pruned.

In order to better capture and utilize the word relationships in
the context sensitive environment for our spell correction purpose,
Word2Vec [20] is chosen as our word embedding model [21], it
converts words into vectors and project them into a n-dimensional
vector space, which could reveal word relationships in terms of
geometric orientations.

The three datasets (product catalog dataset, user query log dataset
and related Wikipedia dataset [22]) are integrated based on word
embedding model as the following diagram (see Figure 2). Initially,
the dictionary model is built with product catalog dataset as the
kernel part. The catalog dataset has stronger correlations than the
query log dataset and Wikipedia dataset. In addition, it is much
more accurate (containing few misspellings) than the query log
dataset. Therefore, it can be used to build the initial model and be
helpful for the fast and accurate training convergence. However, it
also has some drawbacks, e.g., limited contents (small coverage) and
finite semantic expressions (low flexibility), because they are mainly
provided by the product vendors. The query log dataset can com-
plement these missed contents. Therefore, the query log dataset is
incrementally feed into the initial model so that the model can cap-
turemore information. Alongwith the increase of embeddingmodel
coverage, additional noise (misspelled words) is also introduced.
The two datasets, especially the user query log, contain sizable
misspelling errors. The occurrences of some error bigram words
are very high (very popular), which is hard to be removed based on
threshold mechanisms. Wikipedia dataset based embedding model
is adopted to trim the incorrect contents from the already trained
model due to its higher coverage and diluted percentage of those



Multi-Candidate Ranking Algorithm Based Spell Correction SIGIR 2019 eCom, July 2019, Paris, France

Figure 2: Integration Diagram of Different Datasets Based
Embedding Models

errors. In addition, theWikipedia model can also be used to validate
whether a given bigram is a proper phrase or not in the bigram
co-occurrence model.

Based on the constructed model, all of feature vectors of the
existing words can be generated by it. So the similarity score of the
bigram words can be calculated via Equation (1).

S(wa ,wb ) = cosθ =
®va · ®vb
vavb

(1)

where S(wa ,wb ) represents the similarity score of the bigram
words wa and wb ; θ represents the angle between the words wa
andwb ; va represents the feature vector of wordwa ; vb represents
the feature vector of wordwb .

4 MULTI-CANDIDATE GENERATION
4.1 Introduction of Different Spell Corrector

Components
In the proposed spell correction, multiple correction candidates can
be generated by means of different correction components listed as
follows:

1. Word Corrector: It is mainly referred to single misspelled
word correction. Given a misspelled word, all of the pronunciation
similar words are retrieved based on phonetics matching. Among
the retrievedwords, the onewith the smallest edit distance is chosen
as the best correction result. For example, "garadge" -> "garage".

2. Word Breaking: It is to break a misspelled word into multiple
valid words. In addition, the combination of the words should make
sense. For example, "cordlessdrill" -> "cordless drill".

3. Word Concatenation: It is to concatenate multiple valid or
invalid words into one valid word. Maybe the original words are
all valid, but their combination does not make sense. The invalid
combination is called real word error. For example, "dish washer"
-> "dishwasher".

4. Fat Finger Typing Error: Similar to Word Corrector, it adopts
keyboard layout to retrieve all of the possible correction words
rather than using phonetics matching. For example, "gloor" ->
"floor" where "g" is near to "f" on the keyboard.

5. Digit & Special Character Error Corrector: Similar to alphabetic
characters word corrector, it is to identify if the digits or special
characters of the query are useless or not. Then go for different
correction methods based on the identification. For example, "drill1"
-> "drill".

6. UnitWord Corrector: It is used to correctmisspelled unit words,
most of the unit words in the query are followed by a numeric token.
For example, "18 voult drill" -> "18 volt drill".

4.2 Structures of Different Spell Corrector
Components

Generally, these spell corrector components can be organized as
two kinds of structures: Cascade Structure and Parallel Structure.

4.2.1 Cascade Structure. As shown in Figure 3, all of the correc-
tor components are cascaded one by one. Every component has a
user determined threshold (passing occurrence). For any specific
component, if the occurrence of the correction result is higher than
the threshold, it will be returned as the final result; if not, go to
the next corrector component. The cascade structure has lower
CPU runtime complexity. However, it may be stuck with some sub-
optimal correction result. For example, suppose the best correction
result of a query should be gotten from Word Concatenation (Com-
ponent NO. 3). But the occurrence of the correction result from
Word Corrector (Component NO. 1) has been higher than the given
threshold. Then the final result is not the best one. So it depends on
the cascade order of the correction components and the threshold
of every component. However, it is hard to change or tune them to
get the best performance, which varies for different queries.

4.2.2 Parallel Structure. As shown in Figure 4, all of the cor-
rection components can also be organized in a parallel structure.
Different from the cascade structure, all of the possible correction
results of the corrector components can be obtained. Then these
candidates can be put into a ranking system (Described in Section
5) to get the best one. The advantage of the parallel structure is
the global optimal feature of the correction results. In addition, the
defined thresholds are not required. However, it needs more CPU
power than the cascade structure. In the proposed spell correction,
the parallel structure is adopted to get the best correction result.

5 RANKING MODEL
In this paper, the ranking model of spell correction acts as a sorter
and selector of the generated correction candidates. In this section,
two kinds of ranking models are presented: unigramword & bigram



SIGIR 2019 eCom, July 2019, Paris, France Wang et al.

Figure 3: Cascade Structure

Figure 4: Parallel Structure

words occurrence based ranking model, and word embedding based
ranking model.

5.1 UnigramWord & BigramWords Occurrence
Based Ranking Model and The Problems

For a given corpus, the occurrence of every existing unigram word
& bigram words can be gotten through occurrence accumulation.
The occurrence can reflect the popularity of the unigram word
and the bigram words. For single word candidate, its ranking score
can be defined as the occurrence of the unigram word. Similarly,
for two-word candidate, its ranking score can be defined as the
occurrence of the bigram words. However, not all of the candidates
are only composed of single word or two words. As the number of
words increasing from 2 to more, it is impossible to record every n-
gram occurrence for computation. As for the candidates containing
more than three words, the following equation is used to calculate
the occurrence of the candidate.

Oq =

n−1∑
i=0

O(wi ,wi+1) (2)

where Oq represents the occurrence of the candidate; n rep-
resents the number of the words in the candidate; wi represents
the ith word; O(wi ,wi+1) represents the occurrence of the bigram
wordswi andwi+1.

Based on the above method, all of the candidates have the occur-
rence value. Therefore, for multiple correction candidates of a given
query, these candidates can be ranked based on their occurrences.

However, the method also has three drawbacks:
1. The occurrence depends on the quality of the source data. If

the source data contains much noises, the occurrences of some
wrong bigram words are also very big.

2. Suppose there are more than one kind of data sources (e.g.,
user query log and product catalog), for a given candidate, every
data source may have an occurrence. However, it is hard to combine
the occurrences together for the same candidate because different
data sources have different noise level and different signal coverage.

3. In Equation (2), the occurrence of the candidate is defined as
the mean value of the bigram words occurrences. But the variance
of the bigram words occurrences is not considered. Suppose there
are two candidates, one of them has big mean and big variance; the
other one has small mean and small variance. It is hard to conclude
which one is better.

Therefore, a novel ranking model is proposed to solve the above
problems.

5.2 Word Embedding Based Ranking Model
As described in Section 3, a novel word embedding based dictionary
is generated. The dictionary is combined with the product catalog
dataset, the query log dataset and the related Wikipedia dataset
based onword embeddingmechanism. Theyworks as different roles
in the integration. The product catalog dataset acts as an initial
model builder; the user query log dataset acts as an incremental data
feeder; the relatedWikipedia dataset acts as a data validator. In other
words, the first two datasets are used to build a Core Embedding
Model(CEM) and theWikipedia dataset is used to build an Auxiliary
Embedding Model(AEM), where all of the noises and incorrectly
paired words in CEM are removed by cross validation with the
information contained in the AEM. This integration mechanism



Multi-Candidate Ranking Algorithm Based Spell Correction SIGIR 2019 eCom, July 2019, Paris, France

Figure 5: The Generation of The Centroid Vector

solves Problem 1 and Problem 2 in Section 5.1. In order to solve
Problem 3, different ranking metrics are proposed.

In order to best describe the validity of a given phrase contain-
ing multiple words, a good ranking metric should be robust to the
number of words and represent the closeness of the word vectors.
Based on the Word2Vec models, the valid n-grams words tends to
cluster closely in the embedding space. Therefore, for any given
multi-word candidate, the spreadness of the set of embedded vec-
tors corresponding to those words could be a good indicator of how
likely this candidate is valid. The less spread the word vectors, the
more likely the candidate is valid. Then, by calculating the average
distance of all the vectors to their centroid vector, a ranking score
can be generated to define the validity of the candidate. Mathemat-
ically, it is a Least Squares optimization problem in n-dimensional
vector space. As shown in Figure 5, the centroid vector C needs to
be fitted by a set of word vectors A1, A2 and A3 in a given phrase.

Goal and Metric:
1. For a given phrase, the centroid vector should satisfy that its

distances to all the word vectors could be calculated and aggregated
to describe the spreadness/closeness of word vectors.

2. The metric need to capture the outliers such that if any words
are more distant to the center than the others, then all the words in
the phrase as a whole should not be considered coherent enough
than the case where all the word vectors have similar distances to
the center. Squared distance is a good choice here.

Objective Function Choices:
Based on the above requirements, an objective function is pro-

posed, which is in terms of the Euclidean distances of the center to
all the tips of the polytope formed by the word vectors (d dimen-
sional space):

f (v,C) = ArдminC ∈Rd

n∑
i=1

®vi − ®C
2, (3)

where the center C should have the property such that the sum
of the squared distances from all the words in a candidate should
be minimized. Since this is a quadratic equation, by taking the first
order derivative and setting it to 0, the solution can be obtained:

Figure 6: The Centroid Vector Based On The Perpendicular
Distance

®̂C =

∑n
i=1 ®vi

n
. (4)

This centroid vector is pointing to the center of the polygon or
polytope formed by the given set of word vector projections on the
surface of the unit n-sphere centered at the origin. Furthermore,
the distances from all the word vectors for the given phrase to it
could describe the spreadness of the words. Intuitively, less spread
means better. The solution vector C usually lies in the interior of
the polygon or polytope as shown in Figure 5, which is not a unit
vector, thus not on the surface of the n-sphere. The solution is
unique.

Another choice could be the centroid obtained from the spherical
K-means method, where K = 1 in this case. The centroid vector
C needs to minimize the sum of squared perpendicular distances
from all other vectors to itself, as shown in Figure 6. The objective
function is

f (v,C) = ArдminC ∈Rd

n∑
i=1

[sin(®vi ,C) ∗ ∥ ®vi ∥]
2. (5)

vi is an unit vector, it can be transformed as

f v,C) = ArдminC ∈Rd

n∑
i=1

[1 − cos2(®vi ,C)]

= ArдminC ∈Rd

n∑
i=1

[1− < ®vi , ®C >
2].

(6)

The solution to the equation is not unique and the iterative ap-
proximation method is not guaranteed to converge. This method is
more closely related to the plane fitting method in high dimensional
spaces. One other method closely related to the spherical K-means
has the following objective function:



SIGIR 2019 eCom, July 2019, Paris, France Wang et al.

f (v,C) = ArдminC ∈Rd

n∑
i=1

[1 − cos(®vi ,C)], (7)

which seeks to minimize the loss of the similarities and their
maximum value 1. This method has the same drawbacks as the
previous one does. Therefore, Equation (3) is chosen as the objective
function of the ranking metric in this paper.

After comparisons, the ranking metric is proposed as the mean
squared distance of all the tips of the polytope formed by word
vectors to the center C :

D̂ =

∑n
i=1 ∥ ®vi −

®̂C ∥2

n
, (8)

where D̂ is the spreadness score of the ranking metric; the center
vector C is obtained from the Euclidean distance based objective
functions as shown in Equation (3). It could correctly capture the
spreadness of the word vectors and has the range [0,n]. Smaller
value D̂ indicates better result (more closeness of the word vectors
in the phrase).

6 EXPERIMENT
In this experiment, different kinds of evaluations are implemented
on a collected testing dataset. It involves the comparisons between
THD spell correction with the presented algorithms (word em-
bedding based dictionary generation, multi-candidate generation,
word embedding based ranking model) and that without them.
In addition, the proposed THD spell correction is also compared
with Lucene spell correction [7]. All of the testing are specified in
different correction types.

6.1 Evaluation Dataset
The testing dataset contains correct queries and 9 error types of
queries, collecting from THD query log. It has 2,095,028 terms
totally.

(1) Correct queries (1,559,534 terms), occupies about 74.44% of
total queries.

(2) Brand name related errors (4,678 terms), e.g., "ryoby drill" for
correct spelling "ryobi drill", occupies about 0.22% of total queries.

(3) Non-word errors (10,083 terms), e.g., "garage door openr" for
correct spelling "garage door opener", occupies about 0.48% of total
queries.

(4) Real word errors (1,528 terms), e.g., "mug knife" for correct
one "mud knife", occupies about 0.07% of total queries.

(5) Word breaking errors (10,594 terms), e.g., "firepit" for correct
one "fire pit", occupies about 0.51% of total queries.

(6) Word concatenation errors (89,762 terms), e.g., "night light
replace ment bulbs" for correct one "night light replacement bulbs",
occupies about 4.28% of total queries.

(7) Phonetics related errors (345,323 terms), e.g., "foto frame" for
correct one "photo frame", occupies about 16.48% of total queries.

(8) Product types related errors (9,490 terms), e.g., "hamer drill"
for correct one "hammer drill", occupies about 0.45% of total queries.

(9) Unit word related errors (50,538 terms), e.g., "12 vot cordless
drill" for correct one "12 volt cordless drill", occupies about 2.41%
of total queries.

(10) Dimension word related queries (13,498 terms), e.g., "4in.x
4in. wall tile" for correct one "4in. x 4in. wall tile", occupies about
0.64% of total queries.

All of the queries are labelled by Microsoft Bing spell correction
API [23] as ground truth. Since Google does not provide with API
service for spell correction, it cannot be used for the evaluation.

6.2 Evaluation Method
The testing dataset is divided into correct queries and different
error types. The correction accuracy (see Equation (9)) can be used
to describe the evaluation performance.

Paccuracy =
Ncorrect ion

Ntotal
(9)

where Paccuracy represents the correction accuracy;Ncorrect ion
represents the number of algorithm-modified (e.g., THD spell cor-
rection) results which are the same with ground truth; Ntotal rep-
resents the number of correct queries or the number of queries in
some specific error type.

For the correct queries, the correction accuracy can also be called
true positive rate or recall. For different error types, true negative
rate can be derived from the correction accuracy.

6.3 Result

The 2 million Bing-labelled queries dataset has totally 10 differ-
ent correction types. As shown in Table 1, (1) correct queries are
represented by "Correct"; (2) brand name errors are represented by
"Brand"; (3) non-word errors are represented by "NWE"; (4) real
word errors are represented by "RWE"; (5) word breaking errors
are represented by "Break"; (6) word concatenation errors are rep-
resented by "Concatenate"; (7) phonetics errors are represented by
"Phonetic"; (8) product type errors are represented by "Product"; (9)
unit word errors are represented by "Unit"; (10) dimension errors
are represented by "Dim".

In addition, the following correction algorithms are compared
based on the dataset:

(1) THD spell correction with bigram co-occurrence model (de-
scribed in Section 3.1), and cascade structure of corrector compo-
nents (described in Section 4.2.1), is the first version of THD spell
correction and is represented as "THD SC v1".

(2) THD spell correction with word embedding based context
dictionary (described in Section 3), parallel structure based multi-
candidate generation (4), and word embedding based ranking model
(described in Section 5), is the second version of THD spell correc-
tion and is represented as "THD SC v2".

(3) Lucene spell correction [7], is represented as "Lucene SC".
As shown in Table 1, THD spell correction v1 performs better

than Lucene spell correction on overall correction accuracy. For
different types of queries, THD spell correction v1 also has higher
accuracy than Lucene spell correction except real word error type.
The biggest difference between THD spell correction v1 and Lucene
spell correction is that the first method adopts bigram co-occurrence
model to get the context information among the words of a given
phrase. The experiment results prove that adopting the context



Multi-Candidate Ranking Algorithm Based Spell Correction SIGIR 2019 eCom, July 2019, Paris, France

Table 1: Spell Correction Comparison on 2 Million Bing-Labelled Queries Dataset

Correct Brand NWE RWE Break Concatenate Phonetic Product Unit Dim Overall
Count 1,559,534 4678 10,083 1,528 10,594 89,762 345,323 9,490 50,538 13,498 2,095,028

THD SC v1 91.57% 64.71% 42.94% 15.05% 22.71% 25.25% 40.96% 62.17% 33.19% 23.76% 77.71%
THD SC v2 95.36% 67.36% 43.18% 17.24% 23.07% 24.29% 40.03% 64.98% 32.25% 23.37% 80.32%
Lucene SC 81.24% 43.50% 26.10% 21.92% 4.18% 13.97% 20.72% 48.23% 10.76% 5.72% 65.26%

information is a huge benefit to increase correction accuracy. How-
ever, due to some noises issues existing in the bigram co-occurrence
model, some wrong bigram words also have high occurrences, e.g.,
popular error "dish washer". It results in a low performance on the
correction of the real word errors.

The highest accuracy values of different correction types are
marked with Bold in the tables. As shown in Table 1, the proposed
THD spell correction v2 has the highest overall accuracy among
the three algorithms. For the comparisons on most of the correction
types ("Correct", "Brand", "NWE", "Break" and "Product"), THD spell
correction v2 is also the best one. It proves that word embedding
based dictionary, multi-candidate based ranking model and their
integration can improve spell correction. The correction accuracy
of real word errors is still lower than that of Lucene spell correction.
But it is much better than that of THD spell correction v1. As for
the correction types "Concatenate", "Phonetic", "Unit" and "Dim",
THD spell correction v1 still gets the highest accuracy but has very
minimal differences compared with THD spell correction v2.

7 CONCLUSION
In summary, the proposed algorithms of word embedding based
multi-source (product catalog, query log and Wikipedia) dictionary
construction and multi-candidate ranking model can improve spell
correction much more than the other context based algorithms, e.g.,
just using bigram co-occurrence model, especially which performs
much better than that only considering edit distance and phonetics
matching. Adopting word embedding, multiple data sources can be
integrated together without considering the weight mechanism to
balance them. In addition, the merits of these data sources are also
effectively exerted, e.g., using Wikipedia data to trim the invalid
terms due to the low noises performance. With parallel structure
based multi-candidate generation, all of the possible candidates
can be gotten synchronously. Then the proposed word embedding
based ranking model can be used to select the best one.

8 FUTUREWORK
Through all of the comparisons, real word error is regarded as the
weakest point for the proposed THD spell correction algorithms.
Most of the real word errors are blocked by spell checker compo-
nent of spell correction, especially for some popular errors, e.g.,
"coffee mud" for correct one "coffee mug". Even searching with
Google and Microsoft Bing, they cannot do anything with them
as well. Observed from some search engines behaviors, when en-
countering these search queries, they would present some results
only searching "coffee" or only searching "mud". Among them, the
users should click the really correct ones they want. The clicked
content can be used as a user feedback to help identify the error
"coffee mud" and correct it into "coffee mug". The user behavior

data can be feed into a deep neural network for the real word errors
checking and correcting.

REFERENCES
[1] James L Peterson. Computer programs for detecting and correcting spelling

errors. Communications of the ACM, 23(12):676–687, 1980.
[2] Neha Gupta and Pratistha Mathur. Spell checking techniques in nlp: a survey.

International Journal of Advanced Research in Computer Science and Software
Engineering, 2(12), 2012.

[3] James F Allen. Natural language processing. 2003.
[4] Fei Liu, Fuliang Weng, Bingqing Wang, and Yang Liu. Insertion, deletion, or sub-

stitution?: normalizing text messages without pre-categorization nor supervision.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short papers-Volume 2, pages 71–76.
Association for Computational Linguistics, 2011.

[5] Daniel Naber et al. A rule-based style and grammar checker. Citeseer, 2003.
[6] Tommi Pirinen and Krister Lindén. Creating and weighting hunspell dictionar-

iesas finite-state automata. Investigationes Linguisticae, 21:1–16, 2010.
[7] Manu Konchady. Building Search Applications: Lucene, LingPipe, and Gate. Lulu.

com, 2008.
[8] Genaro V Japos. Effectiveness of coaching interventions using grammarly soft-

ware and plagiarism detection software in reducing grammatical errors and
plagiarism of undergraduate researches. JPAIR Institutional Research, 1(1):97–109,
2013.

[9] Youssef Bassil and Mohammad Alwani. Post-editing error correction algo-
rithm for speech recognition using bing spelling suggestion. arXiv preprint
arXiv:1203.5255, 2012.

[10] Youssef Bassil and Mohammad Alwani. Ocr post-processing error correction
algorithm using google online spelling suggestion. arXiv preprint arXiv:1204.0191,
2012.

[11] Eric Sven Ristad and Peter N Yianilos. Learning string-edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998.

[12] Justin Zobel and Philip Dart. Phonetic string matching: Lessons from information
retrieval. In Proceedings of the 19th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 166–172. ACM, 1996.

[13] Eric Brill and Robert C Moore. An improved error model for noisy channel
spelling correction. In Proceedings of the 38th Annual Meeting on Association
for Computational Linguistics, pages 286–293. Association for Computational
Linguistics, 2000.

[14] Mark D Kernighan, Kenneth W Church, and William A Gale. A spelling cor-
rection program based on a noisy channel model. In Proceedings of the 13th
conference on Computational linguistics-Volume 2, pages 205–210. Association for
Computational Linguistics, 1990.

[15] Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y
Ng. Neural language correction with character-based attention. arXiv preprint
arXiv:1603.09727, 2016.

[16] Shamil Chollampatt and Hwee Tou Ng. A multilayer convolutional encoder-
decoder neural network for grammatical error correction. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[17] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167. ACM, 2008.

[18] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Eleventh annual
conference of the international speech communication association, 2010.

[19] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[20] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722,
2014.

[21] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 302–308, 2014.



SIGIR 2019 eCom, July 2019, Paris, France Wang et al.

[22] David Milne and Ian H Witten. Learning to link with wikipedia. In Proceedings
of the 17th ACM conference on Information and knowledge management, pages
509–518. ACM, 2008.

[23] Srikanth Machiraju and Ritesh Modi. Azure cognitive services. In Developing
Bots with Microsoft Bots Framework, pages 233–260. Springer, 2018.

ACKNOWLEDGMENTS
We thank our colleagues, Yuemeng Li, Mingzi Cao, Felipe Castrillon,
Nagaraj Palanichamy for assistance with the software development
and experiments, and Surya Kallumadi for comments that greatly
improved this paper.


	Abstract
	1 Introduction
	2 Architecture
	3 Word Embedding Based Dictionary Construction
	3.1 Traditional Dictionary Structure
	3.2 Multi-Source Dictionary Construction Using Word Embedding

	4 Multi-Candidate Generation
	4.1 Introduction of Different Spell Corrector Components
	4.2 Structures of Different Spell Corrector Components

	5 Ranking Model
	5.1 Unigram Word & Bigram Words Occurrence Based Ranking Model and The Problems
	5.2 Word Embedding Based Ranking Model

	6 Experiment
	6.1 Evaluation Dataset
	6.2 Evaluation Method
	6.3 Result

	7 Conclusion
	8 Future Work
	References
	Acknowledgments

