
Squabble: an efficient, scalable controversy classifier

Shiri Dori-Hacohen, Elinor Brondwine, and Jeremy Gollehon
AuCoDe

{firstname}@controversies.info

Abstract

We introduce Squabble, an efficient, scalable
API for classifying controversial text such as
news articles. Squabble is designed and im-
plemented in python for commercial purposes
with industry best practices, which can be fol-
lowed by other researchers aiming to commer-
cialize their innovations. We demonstrate mul-
tiple orders of magnitude speedup compared
to prior work, while retaining effectiveness.

1 Introduction & Prior Work
The last few years have seen growing interest in com-
putational analysis of controversies (cf. [GDFMGM17,
MZDC14]). Recent work demonstrated a clear link be-
tween controversies and disinformation, demonstrating
that polarizing topics are more vulnerable to fake news,
and proposing controversy as a feature in prediction
and classification of mis- and disinformation [VQSZ19],
highlighting the importance of classifying controversy.
Others explored the connection between controversy
and sentiment, highlighting that they are related but
not interchangeable constructs [KLF18, MZDC14]. Re-
cent work generated unsupervised explanations of what
makes a topic controversial [KA19]. Social good and
commercial applications of detecting controversy in-
clude crisis management, public relations, and defense.
Consider, for example, that recent mass shootings and
terrorist attacks were preceded by activity on social
media referencing highly controversial matters1.

Copyright c© 2019 for the individual papers by the papers’ au-
thors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

In: A. Aker, D. Albakour, A. Barrón-Cedeño, S. Dori-Hacohen,
M. Martinez, J. Stray, S. Tippmann (eds.): Proceedings of the
NewsIR’19 Workshop at SIGIR, Paris, France, 25-July-2019,
published at http://ceur-ws.org

1https://www.npr.org/2019/03/15/703911997/the-role-
social-media-plays-in-mass-shootings

Controversy Language Models. Jang et al. de-
scribed a framework for detecting controversy prob-
abilistically [JFDHA16] and introduced a novel ap-
proach based on controversy language models (CLM).
CLM evaluates whether a document better matches a
controversy vs. a non-controversy (or background)
language model, relying on the following compari-
son: logP (D|C) − logP (D|NC) > α. Here, P (D|C)
and P (D|NC) represent the probabilities that a docu-
ment was generated from a controversial or a non-
controversial unigram language model, respectively.
CLM can be estimated by constructing a collection
of controversial documents; here, we refer to one
of construction approaches, the Wikipedia Contro-
versy Feature (WCF) [JFDHA16], which uses the
top K Wikipedia articles that have high controversy
scores. Once trained, the classifier no longer relies on
Wikipedia for its success; rather, the language model
trained from Wikipedia can be applied to any text,
whether or not it discusses topics covered in Wikipedia.

2 The Squabble API
As is common in research labs, the original CLM code in
Java was built with much attention paid to effectiveness,
but little paid to efficiency and organization. As an
early-stage startup, we wanted to provide our research
team the ability to iterate their models quickly on large
data sets without waiting days for answers - a situation
that slowed our team down significantly. In order to
bring CLM out of the research lab into a commercially
viable product that could handle large volumes of text
from different genres, we built a production-ready sys-
tem in Python, dubbed “Squabble”. We will describe
two main elements relevant for efficiency: the technical
infrastructure and a redesign of the CLM approach.

Technical infrastructure . We created a system
that can ingest, filter, and store raw data from a wide
variety of sources such as news and social media. As
an initial testbed and to stress-test our infrastructure,
we used a 10 year history of the Twitter Gardenhose
collection - a random 1% sample of all tweets from 2008-
2018 [OBRS10]. We created a multi-threaded Python

Figure 1: The Squabble API architecture. See Figure 2 for a zoomed in version of the “LM Generation” process.

Figure 2: Procedure for generating Language Models.

program storing data in a PostgreSQL database hosted
on Amazon Web Services RDS system. We added a
component that extracts both the tweet text as well
as any externally linked article text when a link was
included in the tweet. We kept the filtering stage simple
yet flexible, accepting as input a text file with a list of
keywords or hashtags of interest. Tweets containing any
of the keywords or tags are included in the database.

CLM revisited . We reimplemented and refined
the controversy detection algorithm described in Sec-
tion 1, with system architecture is presented in Fig-
ure 1. We used established Python packages such as
NLTK [LB02] and Scikit-learn [PVG+11], and created
a research testbed in order to evaluate the Squabble
API. We describe evaluation details in Section 4.

Squabble accepts data with a text stream via SQL
queries or CSV files. In pilot efforts, prospective cus-
tomers sent data via large CSV files which we were able
to ingest and run through Squabble rapidly. Prior to
creating Squabble, such pilots would take days to run,
slowing development down. Like our data processing
code, the Squabble code can likewise scale via multi-
threading. In addition, Squabble can be applied in a
wide variety of verticals, such as finance, defense, and
public relations. We constructed Squabble explicitly to
allow for that possibility. As an early-stage startup, this
also gives us flexibility to pivot easily should the need
arise, without expensive retooling of the technology.

3 Efficiency improvements
Prior to commencing this project, we set internal suc-
cess metrics for efficiency (see Table 1) that we esti-
mated would allow us to successfully process customer
requests and internal research at scale for the fore-
seeable future. Processing a massive data set into a
structured database, on a budget, turned out to be

Table 1: Before, After & Success Metrics for Squabble.
Infrastructure speeds reported on a per core basis on a
server. Controversy scoring reported on a dual core laptop.

Infrastructure Controversy Scoring
Before 100 tweets/sec/core 7 requests/sec
Success metric 1,000 tweets/sec/core 500 requests/sec
After 100,000 tweets/sec/core 700 requests/sec
Speedup 1000x 100x

Table 2: Dataset from prior work [DHA15] with key statis-
tics

Docs (%) Terms: Mean Terms: Std
Controversial 78 (25.75%) 828.43 1159.78
Non-controversial 225 (74.25%) 367.1 564.11
All 303 (100%) 485.86 787.28

the biggest core technological hurdle in the infrastruc-
ture portion of our system. PostgreSQL’s concurrency
behaviour couldn’t handle the amount of data being
sent. Once the underlying issue was resolved, data
storage speed immediately increased by multiple or-
ders of magnitude, not only meeting our success metric
but also exceeding our most ambitious projections for
speed, as seen in Table 1. Since this code was struc-
tured for scalability, we can add multi-threading or
multi-processing with no additional effort. As seen in
Table 1, we easily met our success metrics and achieved
orders of magnitude speedup.

4 Evaluation
We leverage the dataset introduced by Dori-Hacohen
and Allan [DHA15] that consists of judgments for 303
webpages2 from the ClueWeb09 collection3, which is
presented in Table 2. The evaluation set is imbalanced,
in the sense that it contains more non-controversial
(225 documents) that controversial documents (78 doc-
uments). Therefore, we focused on balanced accuracy
as our metric of choice against several baselines such as
sentiment and Naive Bayes, and we also report other
metrics for completeness’ sake (see Table 3). Our re-
sults with the WCF approach were in-line with prior

2http://ciir.cs.umass.edu/downloads
3http://lemurproject.org/clueweb09/

Table 3: Classification scores for Squabble compared to
several baselines. Squabble outperforms in all metrics evalu-
ated (other than recall, which a trivial baseline accomplishes
by definition).

B. Acc. R Acc. P F1
Squabble score 0.876 0.955 0.835 0.600 0.737
Sentiment 0.476 0.909 0.253 0.233 0.370
Random 0.545 0.727 0.451 0.267 0.390
MultinomialNB 0.816 0.864 0.791 0.543 0.667
All controversial 0.500 1.000 0.242 0.242 0.389
None controversial 0.500 0.000 0.758 NaN NaN

work [JFDHA16], demonstrating reproducibility from
the original paper4, and also show that effectiveness
was not sacrificed for the sake of efficiency.

5 Conclusion
We presented Squabble, a robust, commercially-viable
API for controversy classification, which is efficient and
scalable. Squabble can be applied in a vertical-agnostic
manner. By reimplementing the controversy language
model [JFDHA16] in python using industry best prac-
tices, we increased its efficiency by orders of magnitude,
without sacrificing effectiveness. Efficiency and scal-
ability position Squabble to be used in commercial
settings for a wide variety of applications. Its modu-
larity and research testbed allow for extensibility and
improvement in the future, as more effective methods
of classifying controversy are discovered.

Limitations & Future Work . The dataset from
prior work is somewhat limited [DHA15]; length be-
tween controversial and non-controversial documents
is inconsistent (see Table 2). It is possible that
CLM’s effectiveness improves by biasing longer docu-
ments. Foley showed that AUC on this dataset has
been maximized compared to its inter-annotator agree-
ment [Fol18]. In future work, we hope to create new
ground truth data sets for controversy, and encourage
other researchers to do the same. Future work will
scale our architecture to run concurrently on multiple
servers and speed up controversy scoring further. More
work is needed to understand the connection between
controversy, mis- and dis- information.

Acknowledgements. This material is based upon work
supported by the National Science Foundation under Grant
No. 1819477. Any opinions, findings and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References
[DHA15] Shiri Dori-Hacohen and James Allan. Auto-

mated controversy detection on the web. In
European Conference on Information Re-
trieval, pages 423–434. Springer, 2015.

4Details omitted for space considerations.

[Fol18] John Foley. Explainable agreement through
simulation for tasks with subjective labels.
arXiv preprint arXiv:1806.05004, 2018.

[GDFMGM17] Kiran Garimella, Gianmarco De Fran-
cisci Morales, Aristides Gionis, and Michael
Mathioudakis. Reducing controversy by
connecting opposing views. In Proceedings
of the Tenth ACM International Conference
on Web Search and Data Mining, pages 81–
90. ACM, 2017.

[JFDHA16] Myungha Jang, John Foley, Shiri Dori-
Hacohen, and James Allan. Probabilistic
approaches to controversy detection. In
Proceedings of the 25th ACM international
on conference on information and knowl-
edge management, pages 2069–2072. ACM,
2016.

[KA19] Youngwoo Kim and James Allan. Unsu-
pervised explainable controversy detection
from online news. In European Conference
on Information Retrieval, pages 836–843.
Springer, 2019.

[KLF18] Kateryna Kaplun, Christopher
Leberknight, and Anna Feldman. Con-
troversy and sentiment: An exploratory
study. In Proceedings of the 10th Hellenic
Conference on Artificial Intelligence,
page 37. ACM, 2018.

[LB02] Edward Loper and Steven Bird. NLTK: the
natural language toolkit. arXiv preprint
cs/0205028, 2002.

[MZDC14] Yelena Mejova, Amy X Zhang, Nicholas
Diakopoulos, and Carlos Castillo. Contro-
versy and sentiment in online news. arXiv
preprint arXiv:1409.8152, 2014.

[OBRS10] Brendan O’Connor, Ramnath Balasubra-
manyan, Bryan R Routledge, and Noah A
Smith. From tweets to polls: Linking text
sentiment to public opinion time series. In
Fourth International AAAI Conference on
Weblogs and Social Media, 2010.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexan-
dre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learn-
ing in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

[VQSZ19] Michela Del Vicario, Walter Quattrocioc-
chi, Antonio Scala, and Fabiana Zollo. Po-
larization and fake news: Early warning
of potential misinformation targets. ACM
Trans. Web, 13(2):10:1–10:22, March 2019.

