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Abstract. One of the important tasks related to the implementation of the Digi-
tal Economy program is to improve cybersecurity when creating digital plat-

forms, as distributed information and communication systems of the subjects of 
a single digital market. When building distributed information security subsys-
tems of digital platforms, an urgent task is to increase the cryptographic 

strength of the cryptographic mechanisms used to encrypt short texts. The paper 
deals with the problem of encrypting short texts with ciphers with a large num-

ber of keys, from which the equivalent keys appear in the cipher, which leads to 
a significant reduction in the cryptographic strength of ciphers. The concept of 
weak key equivalence in the C. Shannon cipher model is introduced. Methods 

for determining the key from the open and encrypted texts with the calculation 
of the parameters of their complexity are proposed. The methods are applicable 

to both symmetric ciphers and asymmetric ciphers. The following situations are 
considered: 1) representatives of classes of equivalent keys are known; 2) the 
capacities of the classes of equivalent keys and representatives of these classes 

are known; 3) only the capacities of the classes of equivalent keys are known; 
4) the number of classes of equivalent keys is known. A part of encryption de-

vices (encoders) is built using a serial connection of the control unit with an en-
cryption unit, where the actual control unit performs the role of a pseudo-
random number generator. The keys of such an encoder are the keys of the 

pseudo-random number generator. The output sequence of the pseudo-random 
number generator is the control sequence of the encryption unit. Often the en-

cryption unit uses the gamming cipher. In this case, the equivalence of the keys 
of such an encoder is equivalent to the equivalence of the keys of the pseudo-
random number generator. The results obtained below allow us to apply the 

method of equivalent keys developed in the article to ciphers that have equiva-
lent keys in a pseudo-random number generator.  
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1 Introduction 

For many ciphers, decoding methods other than the “brute force” technique, some-

times called the Monte Carlo method, or the total method, the key testing method [1-

3], have not yet been found. At the same time, for many of them, the absence of 



 

equivalent keys has not been proven [4–11]. Moreover, when encrypting short texts 

with ciphers with a large number of keys, the presence of equivalent keys in the ci-

pher follows from quantitative considerations. The concept is introduced in the paper 

- weak equivalence of keys relative to a given plaintext. The presence of equivalent 

keys in the cipher or weak equivalent keys leads to the possibility of grouping keys 

into classes of keys with subsequent testing of representatives of such classes. Such  a 

situation, as a rule, significantly reduces the cryptographic strength of ciphers. This 

idea lies in the cipher key identification methods developed below. Finally, the solu-

tions of two problems of interest for decoding of cipher are given: 

1) what is the largest k, at which the probability that all the keys χ1, χ2, ..., χk pairwise 

are not equivalent is less than the given probability P;  

2) what is the minimum k for the average number of equivalent key pairs from the set 

χ1, χ2, ..., χk greater than 1.  

The decoding methods described in the paper are given with estimation of their com-

plexity parameters. 

2 Basic Concepts and Notation 

Let’s denote the cipher encoding algebra by A = (X, K, Y, f). Here: X –  a set of 

plaintexts; K – a number of keys; Y –  a set of ciphertexts (cryptograms);  f - encoding 

function f(х,)=y,  xX, K, yY. 

Definition 1. Keys ,` are called equivalent if  f(х,)=f(х,`)for any хХ. 

Definition 2. The keys ,`К are called equivalent with respect to the subset 

X`X if f(х,)=f(х,`) for any xX. 

The binary relation  (X `) introduced in this definition for a set of keys K is a binary 
equivalence relation (the properties of reflexivity, symmetry and transitivity are ful-

filled). Therefore, the entire set of keys K is divided into equivalence classes  of the 

binary relation (Х`). We denote this partition by R((Х`))= . 

It is obvious that the equivalence of  keys ,`Кwith respect to Х`implies also their 

equivalence with respect to any X` ` subset of a X` set. It results that any equivalence 

class is contained entirely in a certain equivalence class with respect to a 

subset X `` of the set X`.  Each class consists of the combination of some classes 

. In particular, L(Х``) L(Х`), and classes are “smaller” than classes . 

3 Formulation of the Problem 

Find solutions of the equation f(х,)=у with respect to К, i.e. the problem of de-

termining the key   by agiven plaintext x and a cipher text y. In the terminology 

adopted above, this task consists in finding the key up to equivalence with respect to a  

set consisting of a single element x. 
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Let’s denote byК1,К2,…,КLequivalence classes with respect to the element 

хХ.Further, for brevity, we will call these classes simply the equivalence classes of 

keys, although their more meaningful name, in our opinion, would be "weak equiva-

lence classes of keys." 

4 Problem Solutions with Various Additional Assumptions 

1. The representatives 
1
,
2
,…,

𝐿
 of classes К1, К2,…, КL of equivalent keys are 

known. 

In this case, testing is carried out without the return of representatives until the first 

success (until receiving a representative of the equivalence class in which the key is 

located). That is, f(х,)=y is estimated for each test key  , and y is compared with 

the given у. The testing process ends when the equality y=у is obtained.The perfor-

mance of Т in testing such a method coincides with the performance of the total 

method with r=|К|=L and zero errors of the statistical criterion:  

Т= 
1

2

L 
 

The reliability method is =1. 
2.Capacities of classes of equivalent keys and representatives of these classes are 

known. 

Let’s arrange i(1),i(2),…,i(L)the representatives known to us in accordance with the 

capacities of the classes of equivalent keys:  

|Кi(1)||Кi(2)| …|Кi(L)| 

and try them out according to this order i(1),i(2),…,i(L),r L . The algorithm stops its 

operation if the key sought is found (up to equivalence) or r tests are performed. 

If the cipher key was chosen randomly and equiprobably from K, then the probability 

of choosing a key from the class Kj is equal to 
| |

| |

jК

К
. Therefore, the average number 

Tr tested in the implementation of the key algorithm is  

Тr=

r-1
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and the reliability of the method is  

=

r
j

1

|К |
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 . 

When r = L we have  

ТL=

L
j

1

|К |
j
| |j К

 ,=1. 

3. Only the capacities |К1|, |К2|,…,|КL| of the equivalent key classes are known.  

Let’s conduct testing without returning the K keys until a true key is obtained, up 

to equivalence. 



 

If the cipher key was chosen randomly and equiprobably from K, then the probability 

of choosing the key  from the class Kjis equal to 
| |

| |

jК

К
. Let’s denote by T (j) the 

average number of tests of the algorithm, provided that the key sought is Кj. Then   

Т(j)=
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and the total average number of algorithm tests is  

Т=
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The reliability method is =1. 

Let’s note that if in this method testing is carried out with return, then the average 
number of tests of the algorithm will be equal to 

L
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Consequently, under the conditions of the third problem, always T <L.  

Obviously,  

1
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in this case, the lower bound is attained at L = 1, | Kj | = | K |, and the upper one at L 

= | K |, | Kj | = 1.  

If the estimated capacities ratings of equivalent key classes are  

cj|Кj|Cj ,  j1,L , 

then  
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4. The number L of classes of equivalent keys is known. Carrying out the method of 

paragraph 3, for the complexity of the method, we obtain the estimate T <L.  

5 Discussion 

Let’s draw attention to the fact that the methods outlined were based on the equiva-

lence of keys with respect to a given xX (“weak equivalence of keys”). Usually, the 

exact estimation of capacities of such equivalence classes is difficult, and therefore, 

the equivalence of keys with respect to the whole set X is used. In this case, it is easy 

to obtain lower bounds for the capacities of the classes of weak equivalences we used. 

The direct use of the capacities of the classes of equivalent keys with respect to the 

whole set X in methods 1–4 allows to estimate upper bounds of performances of the 

above methods of “weak equivalences”. 



 

The second circumstance to which attention should be paid is that in a number of 

cases other key equivalences can be used in a similar way. For example, using the 

mode of generating one-time keys with the help of a markant (special cipher mode for 

obtaining one-time keys from a long-term key). 

6 Methods of using equivalent keys and the birthday paradox 

Let the number L of classes of equivalent keys of the used cipher be known, all the 
classes having equally capacities and the number k of ciphered texts being used ran-

domly and equally probably selected keys χ1, χ2, ..., χk. 
In various tasks of cryptographic practice, the solution of the following problems is of 

interest.  

1. what is the largest k, at which the probability that all the keys χ1, χ2, ..., χk pairs are 

not equivalent is less than the given probability P. 

2. what is the minimum k  for the average number of equivalent key pairs from the set 

χ1, χ2, ..., χk greater than 1.  

The birthday paradox [11] is connected with the answer to the question: how many 

people should be in the room so that with high probability there are two born on the 
same day? The paradox is that the answer is significantly less than the number of days 

in a year, which seems implausible. So, we consider that keys are people, and the 

number L of classes of equivalent keys is the number of possible dates of birth. We 

believe that in the year 365 = L days and that the birthdays of k  people are chosen 

randomly and independently from each other.  

We first estimate the probability that all the birthdays of the selected k people (k  L) 

will be different. Let the birthday of the first is already chosen. Then the birthday of 

the second coincides with it with a probability of 1/L. With selected (and different) 
birthdays of the first and second person, the probability that the third birthd ay will 

coincide with one of the existing ones will have 2/L, and so on. As a result, the prob-

ability Pk that k  people will have different birthdays has Рk=(1-1/L)(1-2/L)…(1-(k-

1/L)). 

The factors Pk can be increased using a known inequality 1+х≤ех:    

Рk≤е-1/Lе-2/L… е-(k-1)/L=e-(1+2+3+…+(k-1))/L=e-k(k-1)/2L. 

With increasing k, the probability Pkdecreases. For which k  is this probability 

strictly less than a given P? Let’s solve inequality  

e-k(k-1)/2L<P. 
We have 

-k(k-1)/2L<lnP, -k2+k< 2LlnP, k 2-k>2Lln(1/P), 

k2-k+1/4>2Lln(1/P)+ 1/4, 

(k-(1/2))2>2Lln(1/P)+ 1/4. 

 

Find k0 in which (k0-(1/2))2=2Lln(1/P)+ 1/4.  We have  

k0-(1/2)= (2Lln(1/P)+ 1/4)(1/2). 

Whence, 
k0=(1/2) (1+(1+8Lln(1/P))1/2 . 

In this connection, when k is smaller than k0, the probability Pk is less than the given 

P. Therefore, when k  is not less than k0, the probability Pk is not less than the given P. 

Assuming, for example, L = 365 (669) is the number of different birthdays, P = 0,5, 



 

we find that for k  23 (k  31) the probability that among k  people there will be two 

born on one day no less than P = 0.5. In other words, if the cipher has 365 (669) clas-

ses of equivalent keys and there is a set of k  23 (k  31) cipher telegrams, then 

among them with a probability of at least 0.5 there will be a pair of cipher telegrams 

encrypted on equivalent keys.   

Let us turn to the solution of the second task. At what minimum k  the average number 
of equivalent key pairs of χ1, χ2, …, χkis greater than 1. For each key pair (i, j) from 

the set {χ1, χ2, ..., χk}, let’s consider the random variable Xij  

Xij=1, if χi and χjare equivalent, otherwise Xij=0.  

Since the classes of equivalent keys of the used cipher have equal capacities and the 

keys χ1, χ2, …, χkare chosen randomly and equiprobably, the probability of equiva-

lence of any key pair is 1/L. Therefore, the mathematical expectation М(Xij)of the 

random value Xij (i≠j) is calculated by the formula  

М(Xij)=1∙1/L+0∙(1-1/L)= 1/L 

The random value Y equal to the sum of all Xij (in all 2 ( 1)

2


k

k k
C ) has a mathemat-

ical expectation equal to the sum of all М(Xij) 

М(Y)= 
1 ( 1)

2



k k

L
. 

Let’s find the value k0 from equality  

0( 1)1

2


 ok k

L
=1. 

This value is 
1 1 8

2
2

 


L
L . Consequently, when k ≥k0, the average value of 

pairs of equivalent keys will be no less than 1. So if L=365, (669), then with k≥28 
(k≥38) the expected number of pairs of equivalent keys is not less than 

(28∙27)/2∙365=1.0356. 

7 Conclusion 

1. The concept of weak key equivalence in the C. Shannon cipher model is intro-

duced. A method is proposed for decrypting both symmetric and asymmetric ciphers  

using the weak key equivalence parameters and calculating performances  and relia-

bilities. 

2. The proposed method can be used to determine the initial states of pseudo -random 

generators from known input and output sequences.  

3. Due to the lack of proof of the absence of weakly equivalent keys, many ciphers 

have a successful chance of practical application of the above described method of 

decoding. 
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