
Proceedings of the XXII International Conference “Enterprise Engineering and Knowledge 

Management” April 25-26, 2019, Moscow, Russia 

Virtual Employee Implementation Using Temporal  

Case-based Reasoning  

Ivan Kurilenko1[0000-0003-1520-640X]
 and Igor Nikonov2[0000-0001-8413-5049]  

1 National Research University “Moscow Power Engeneering Institute”, Moscow,  

Krasnokazarmennaya st., 14, 111250, Russia 

ivan@appmat.ru 
2 National Research University “Moscow Power Engeneering Institute”, Moscow,  

Krasnokazarmennaya st., 14, 111250, Russia 

nikonovie@gmail.com  

Abstract. This paper discusses the implementation of the virtual employee that 

implements the function of automatic processing of issues submitted to the soft-

ware maintenance department. This task is currently relevant and a variety of 

virtual employees are being introduced in the different  areas, since their use al-

lows to automate typical operations, reduce response time and free up human 

resources for more complex tasks. For the implementation of this system, modi-

fied case-based reasoning method based on temporal constraint satisfaction prob-

lem (TCSP) was proposed. This method allows to take into account temporal 

dependencies and model the history of the events occurring, which allows to de-

scribe the dynamics of the system behavior that led to the system failures or in-

correct behavior. For comparison of numerical parameters, classic Euclidean 

metric was used. For estimating the measure of proximity of text parameters of 

cases, modification of TF-IDF measure was developed. The proposed modifica-

tion allows to improve the quality of the classification, because it allows to take 

into account information on the contribution of the words not only in a separate 

case but in the entire case base. The paper describes a prototype of developed 

virtual employee that is used in the process of maintaining the automatic payment 

terminal software. At the same time, it allows not only to work on the principle 

of request-response, but also to integrate with various systems, interact with peo-

ple and line up in business processes. 

Keywords: virtual employee, case based reasoning, temporal constraint satis-

faction problem. 

1 Introduction 

This paper discusses the implementation of the virtual employee (VE) [1-3]. VE is like 

an automated robot who completes a full day work. VE can “work” on positions with 

simple or typical duties (for example, technical support engineers, controllers, etc.). In 

these areas, VE can be integrated into the real business processes and perform interac-

tion with people, imitating a real employee. 

mailto:ivan@appmat.ru


According to literature, such VE is the example of actively investigated in nowadays 

robotic process automation (RPA) tool [4]. Work [5] indicates that using of the RPA 

has become a necessity in day to day business activities. The term RPA means automa-

tion of service tasks that were previously performed by humans. The simplest technics 

that VE can use is transferring data from multiple input text sources (like email, notes, 

spreadsheets) to Enterprise Resource Planning (ERP) or Customer Relationship Man-

agement (CRM) systems [6]. Some works concern rule-based RPA methods [7, 8]. 

Rule-based approach allows automation of repeatable tasks by the use of software tools, 

which can mimic actions performed by human users on computers to complete various 

business processes [9]. Another works consider using more complicated artificial intel-

ligence technics for RPA [10-12]. In particular, neural networks and natural language 

processing (NLP) can be harnessed to infuse RPA solutions with supervised, unsuper-

vised and enhanced learning capabilities [10, 11]. The work [12] describes construction 

of self-improving helpdesk service system using case-based reasoning techniques. This 

paper discusses an example of building VE for technical support department. 

Many software development companies in their daily activities provide technical 

support for the released software products. Users are provided with support that trou-

bleshooting most problems that they experienced. If the error message is received, the 

support staff needs to know the parameters and conditions under which the problem 

situation occurs. An in-depth analysis of the error and clarification of its cause requires 

an understanding of the full picture of the events that occurred. Usually modern soft-

ware recording these events automatically into the log files. 

In this paper, we will consider as an example of a supported product automatic pay-

ment terminals. Installing and configuring payment terminals, as well as subsequent 

maintenance, is a complex process that can be conducted incorrectly, especially in the 

case of insufficient staff qualifications. At the same time, unskilled specialists are often 

inclined to give out any questions about the work of the terminal (including those that 

they should solve on their own), as errors of the installed software. As a result, the large 

part of the technical support requests , for obvious reasons, have a template decision. 

These template decisions can be submitted in the form of decision rules . For example: 

“If the user reported that the system was not responding to an attempt to pay with a 

contactless card, then it is necessary to check the log records from the contactless card 

reader driver. If it contains message “Port “COM#” does not exist”, then recommend 

to check this option”. Since the number of installed terminals amount to several thou-

sands, the number of calls to the support service is quite large and grows as the new 

terminals installs. In order to accompany the terminals, low-skilled specialists who able 

to correct only typical errors according to decision patterns are usually hired. In case of 

atypical situations, an expert is involved to eliminate the error. If the problem is related 

to the equipment and its setting, it is eliminated and this typical decision is added to the 

knowledge base of the maintenance specialists. If the problem is related to a defect in 

the software, then a new version is released with a fix. 

To account for user requests and the accumulation of typical decisions, currently 

specialized software systems are often used – Service (Help) Desk, hereinafter referred  

to as issue tracking systems (ITS) [13]. The core of the ITS is the database, which stores 

user requests. Requests are usually filled in via the ITS user interface and have a number 



of attributes, such as number (identifier), short description of the user, date and time of 

access, version of software, severity (criticality), decision priority, description of steps 

to reproduce the problem, the expected result and the actual result, who is responsible 

for deciding the request, the current status (status), the decision. Also, ITS usually pro-

vide a software interface (API, application programming interface) that allows to ma-

nipulate requests for the development of automation tools. This  API allows to get a list 

of issues assigned to a specific executor, create new issues, reassign issues, manage 

issue fields, status, make comments to the issue, etc. 

A typical issue life cycle is determined by its status  (see Fig. 1): 

 “open” - issue is registered; 

 “in progress” - the person responsible for the decision is appointed; 

 “resolved” - decision was developed. 

 

Fig. 1. Issue workflow. 

Information about solved issues in the ITS can be used as a knowledge base (KB) in 

the technical support process. 

VE considered in the work can be used as a superstructure above the ITS to reduce 

the amount of routine work. Through the program interface of interaction with the ITS, 

VE will process incoming issues to the system, conduct a search through the KB of 

typical decisions, change the issue status and attributes. 

Methods for finding decisions based on case-based reasoning (CBR) [14] are well 

suited to implement such VE. Consider further the proposed design of VE and the 

scheme of its operation. 



2 Virtual Employee Implementation 

2.1 General Architecture 

The architecture of VE includes the following components (see Fig. 2): 

 interface with the ITS; 

 case base; 

 issue analyzer; 

 product log analyzer; 

 decision-making unit; 

 learning unit. 

 

Fig. 2. A Virtual employee architecture. 

The interface with the ITS provides receiving issues from the ITS and converting 

them into a form convenient for the implementation of the reasoning process. 

The issue is described as Z = <A, H>, where A = (a1, … ak), where ai is the issue 

attribute, H = {hi} is the history of work on the issue (the list of events - actions of 

people and VE). 

Searching for issues that are ready for processing carried out using the following  

rules: 

1. If the issue did not have the attribute "responsible for the decision", then VE 

assigns this issue to itself and sends the issue to the analyzer. 

2. Other issues are processed by VE only if it is indicated as responsible for the 

decision and the time specified in the attribute “time of issue change” is longer 



than that specified in the attribute “decision time of the virtual employee”. Such 

issues are send to the decision search block. 

In the issue analyzer unit, checks for the correctness and completeness of the infor-

mation that filling out the issue fields are making. This component is implemented  

based on production rules. An example of such a rule: if the “Software” attribute is set 

to “Access Controller Software” and the “Product log” attribute is not filled, then re-

quest the controller work log. The issue is considered suitable for transfer to the deci-

sion search unit if none of the rules has triggered. 

In the decision search unit of VE the issue is matching with the existing ones in the 

case base. As a result, a typical decision is determined. If it have found, the correspond-

ing recommendation is recording to the issue. Otherwise, VE reassigns the issue to the 

engineer. 

Decision search unit uses the logs analyzer to compare software logs and will be 

discussed later. 

The learning unit is used to form new cases in the case base from the solved issues 

that are available in the ITS. 

2.2 Decision Search Unit 

The decision search unit constructed using a modified CBR method. We will represent 

cases in the form of CASE = (x1, x2, …, xn, T, R), where x1,…, xn are issue parameters; 

x1 X1, x2 X2,…, xn Xn, where n is the number of parameters for case describing, X1, 

… , Xn − areas of allowable values of relevant parameters, T – function, that matches 

the comparison metric for the corresponding parameter,  R − recommendation. 

To evaluate the similarity of numeric parameters, the usual Euclidean metric is suit-

able. For the parameters presented in the form of text in natural language (NL), we 

propose the approach described below. To determine the similarity of two text param-

eters, we will represent each text T as an N-dimensional vector, where N is the number 

of all possible words in the target language. For each word w, which appears in the text  

of the parameter f of some case c, the value of the coefficient along the corresponding 

axis calculates by the following formula: 

Weightw(f, c) = 
w

restfw

cf

w

cf
IDF

IDF

p
,

,

,
 , 

where
w

cfp ,  – is the probability that if w is present in the text of some parameter f of 

case с, that it belongs to case c described by this parameter and calculates by the fol-

lowing formula: 

w

f

w

cfw

cf
k

k
p

,

,  , 

where 
w

cfk ,  – is the number of occurrences of the word w in the text of parameter f  

of case c, and 
w

fk  – is total occurrences of word w in the text of parameter f  in all cases, 

i.e. 



n

i

w

if

w

f kk
1

, , where n – is the total number of cases . 

  



w

cfIDF ,
– IDF (inverse document frequency) value for word w within parameter f of 

case с, representing the inverse of the frequency with which the word occurs in the text 

[15]. w

restfIDF ,
– IDF value for word w of parameter f for the remaining part of cases rest. 

In addition, if the word does not occur in any case in remaining part , then the value
w

restfIDF ,  sets to a maximum value and equals |rest| - the number of cases in rest. 

Thus, the similarity metric between the text parameters of the analyzing issue Z and 

some case C from case base is determined as follows: 

),(),( , CfWeightkCZSim w

w

w

fzff  , 

where 
w

fzk ,  is the number of occurrences of the word w in the text of parameter f  

describing input issue Z. If the word is not found in the current case, the value of prox-

imity is taken to be zero. 

To speed up the calculations, the values of frequencies are pre-calculated and stored 

in a special database.  

Important information for comparison is contained in the supported system logs. 

Their comparison is a difficult task. To solve it, the architecture of VE has a separate 

component – log analyzer. 

For the considered software on the example of an automatic payment terminal sys-

tem, the work process can be represented as a sequence of execution of typical opera-

tions. Each operation is described as a set of events. Abnormal situations that occur 

during software work can be identified by detecting non-standard or unknown events 

in the sequence of operations. Case can include both need for a specific event in the log 

— for example, errors of a particular type, or a more complex condition involving the 

control of previously occurred events (since the same error can have different causes). 

The first case does not present any difficulty for implementation, so we will not con-

sider it in details. The second case allows for a more qualitative analysis of what is 

happening, since the situation will be considered “in dynamics”, and the decision will 

be made taking into account the history of the process [16]. 

Formally, log is represented as a set of records Rec = (t, s, k , m), where t  D is the 

event observation time, s is the event anxiety, s  {error, warning, normal, debug}, k 

is the type of event (for example, the start of a transaction, the end of a transac tion, 

activation of a bank card searching, etc.), m is additional information (a string constant), 

D is a set of real numbers. 

Log usually contains a large amount of events. Some of these events may be insig-

nificant in the context of the case and can be filtered out. Filtering allows on the one 

hand to reduce the amount of the information that needs to be stored as part of a cases, 

and on the other hand reduces the matching time. Further, in the filtered log, boundary 

events are highlighted - such events that start a particular operation. Each received op-

eration normalizes - the time of the very first event is subtracted from the time of all 

events included in it. Then, among the resulting set of operations, search is performed  

for the operation described in case. If a similar or identical operation is found (depend-

ing on the stiffness of the metric), then the similarity in this parameter is considered to 

be established. 



In the framework described in this work, the algorithm of comparison of operations 

is implemented on the basis of the transition to the metric point constraint satisfaction 

problem.  

In this paper, we consider the models, based on the presentation of information about 

time as constraints (dependences) between time primitives. In temporal logics using the 

concept of constraint satisfaction, information about time is presented as dependences 

between temporal primitives (moments, intervals or their combinations). Dependences 

between primitives are interpreted as constraints to real time of their appearance. Usu-

ally sets of temporal primitives and relations among them are presented as the Tem-

poral Constraint Satisfaction Problem (TCSP), which is detailing of a more general 

Constraint Satisfaction Problem (CSP), what permits to use CSP methods to solve the 

TCSP. Lets see how temporal case based reasoning can be build on the base of the 

metric TCSP. 

Metric TCSP defined as Z = (V, D, C), where V - a finite set of temporal variables, 

corresponding to the time points; D - range of values of the temporal variables (the set 

of integers); C - a finite number of binary temporal constraints Cij={[a1,b1],…,[ak,bk]}, 

where the intervals are disjoint. Constraint Cij interpreted as (aij≤Vj-Vi≤bij). 

Each constraint Cij defines for the temporal variables Vi and Vj allowable distance 

between them. Intervals in the constraint Cij are interpreted as a disjunctive [6]. 

We will represent the operation as O = (V, C), where V = {V1, V2, …, Vm} is a finite 

set of temporal variables corresponding to time points; C is a finite number of binary 

temporal  constraints. Each Vi is assigned a record Reci = (ti, si, k i, mi). 

Such a presentation allows to record both the fact of the occurrence of certain events, 

their order, and the time of their occurrence (metric). The numbering of events in the 

operations depends on the time of occurrence of these events and their type. Due to this, 

the process of determining the similarity of operations is greatly facilitated due to the 

simplification of the analysis of the similarity of time constraints and the assessment of 

the "overlap" of operations against each other [17]. 

As a result, to determine the conformity of the two operations O1 and O2, we will 

use the following condition: 

 the set of time variables O1 and O2 coincides; 

 for all Cij
1  O1 and Cij

2  O2 the condition is satisfied: |lo(Cij
1)-lo(Cij

2)|<  

|hi(Cij
1)-hi(C*

ij
2)|<, where  is the threshold value, lo(Cij) = ak is a function that 

yields the lower bound of the constraint, hi(Cij) = bk is a function that yields the upper 

bound of the constraint. 

As a result, the reasoning unit extracts from the case base all cases that exceed a 

certain threshold similarity value. At the same time, if several alternative decisions have 

found, VE can operate in two custom modes: either choose a case with a maximu m 

measure of similarity, or transmit a decision on choosing a more suitable case to an 

expert. 



3 Conclusions and Future Work 

The paper considers an example of using methods of CBR for constructing virtual em-

ployee for a software maintenance department. The prototype of VE was developed in 

C# in the Microsoft Visual Studio 2017 development environment using the Point Time 

library and is cross-platform. VE prototype is  used in the process of maintaining the 

automatic payment terminal software. The case base of that prototype currently con-

tains 80 precedents. The prototype of VE made it possible to evaluate the practical ben-

efits of the proposed approach. Currently, work is underway to improve the fullness of 

the prototype BP. The implementation of VE allows getting an increase in the speed of 

the initial processing of the issues for maintenance, as well as the economic effect due 

to the reduction of the burden on specialists. 

References 

1. van Diggelen, J., Muller, T., van den Bosh, K. Intelligent virtual agents // Proc. 10th Inter-

national Conf., IVA 2010, Philadelphia, PA, USA. p 28-34. 

2. Kurilenko I.E. Case-based reasoning application to maintenance department virtual em-

ployee implementation // XVI Int. AI conference RCAI 2018, vol. 2, pp. 238 – 244. RBC. 

3. Jungsun (Sunny) Kim, Anthony Gatling, (2018) "The impact of using a virtual employee 

engagement platform (VEEP) on employee engagement and intention to stay", International 

Journal of Contemporary Hospitality Management, Vol. 30 Issue: 1, pp.242-259. 

4. Sutherland, C. (2013). Framing a Constitution for Robotistan. Hfs Research, ottobre. 

5. Madakam, Somayya, Holmukhe, Rajesh M., & Jaiswal, Durgesh Kumar. The Future Digital 

Work Force: Robotic Process Automation (RPA). JISTEM - Journal of Information Systems 

and Technology Management, 16, e201916001. Epub January 10, 2019. 

6. Lacity, M., Willcocks, L. P., & Craig, A. (2015). Robotic process automation at Telefonica 

O2. 15. http://eprints.lse.ac.uk/64516/1/OUWRPS_15_02_published.pdf 

7. Clint Boulton (2018). What is RPA? A revolution in business process automa-

tion, https://www.cio.com/article/3236451/business-process-management/what-is-rpa-

robotic-process-automation-explained.html 

8. J. Geyer-Klingeberg, J. Nakladal, F. Baldauf, and F. Veit, “Process mining and robotic pro-

cess automation: A perfect match,” in Proc. of the Dissertation Award, Demonstration, and 

Industrial Track at BPM 2018 co-located with 16th International Conference on Business 

Process Management (BPM 2018), Sydney, Australia, September 9-14, 2018., ser. CEUR 

Workshop Proceedings, vol. 2196. CEUR-WS.org, 2018, pp. 124–131. 

9. Rajesh, K.V.N. Ramesh and Hanumantha Rao (2018). Robotic Process Automation: A 

Death knell to dead-end jobs. CSI Communications-Knowledge Digest for IT Community, 

Volume No.42, Issue No.3, 10-14. 

10. Del Fiol G, Michelson M, Iorio A, Cotoi C, Haynes RB. A Deep Learning Method to Auto-

matically Identify Reports of Scientifically Rigorous Clinical Research from the Biomedical 

Literature: Comparative Analytic Study . J Med Internet Res 2018;20(6):e10281 

11. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Printice Hall (2000) 

12. Kai H. Chang, Pradeep Raman, W. Homer Carlisle, and James H. Cross. 1996. A self-im-

proving helpdesk service system using case-based reasoning techniques. Comput. Ind. 30, 2 

(September 1996), pp. 113-125. 

13. ITIL Foundation Handbook (3rd ed.). The Stationery Office, Norwich. 

https://www.emeraldinsight.com/author/Kim%2C+Jungsun+Sunny
https://www.emeraldinsight.com/author/Gatling%2C+Anthony
https://www.cio.com/article/3236451/business-process-management/what-is-rpa-robotic-process-automation-explained.html
https://www.cio.com/article/3236451/business-process-management/what-is-rpa-robotic-process-automation-explained.html


14. Kolodner, Janet. An introduction to case-based reasoning. Artificial Intelligence Review. 6. 

1992. 3-34.  10.1007/BF00155578. 

15. J. Ramos, Using TF-IDF to determine word relevance in document queries”, In First Inter-

national Conference on Machine Learning, New Brunswick: NJ, USA, 2003. 

16. Eremeev A.P., Kurilenko I.E., Varshavskiy P.R. Temporal Case-Based Reasoning System 

for Automatic Parking Complex // International Journal of Computer, Electrical, Automa-

tion, Control and Information Engineering, Vol 2., 2015, № 5, p. 1274-1280. 

17. Eremeev A.P., Kurilenko I.E Methods for modeling temporal dependencies in intelligent  

systems using temporal case-based reasoning // Information Models and Analyses Vol. 2, 

2013, № 4, p. 324-335. 


