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Abstract. The potential of correlation-based feature selection has been explored in selecting an 

optimal subset from a set of highly correlated predictors. This problem occurs, for example, in 

time series forecasting of economic indicators using regression models on multiple lags of a 

large number of candidate leading indicators. Greedy algorithms (forward selection and 

backward elimination) in such cases fail. To obtain the globally optimal solution, the feature 

selection problem is formulated as a mixed integer programming problem. To solve it, we use 

the binary cut-and-branch method. The results of simulation studies demonstrate the advantage 

of using the binary cut-and-branch method in comparison with heuristic search algorithms. The 

real example of the selection of leading indicators of consumer price index growth shows the 

acceptability of using the correlation-based feature selection method. 

1. Introduction 

Big data analytics includes the feature selection task [1, 2] for predictive modelling [3]. In many 

practical applications, candidate predictors correlate strongly. An example is the task of time series 

forecasting using leading indicators [4]. 

Lagged predictors are highly correlated. Fast and scalable univariate feature selection methods are 

not suitable under a given situation. They evaluate features individually, so the final subset includes 

many redundant strongly correlated features. 

Multivariate methods take into account feature dependencies and try to discard not only irrelevant 

variables (which do not affect the response), but also redundant ones. Most often, the predictors are 

selected simultaneously with the construction of predictive models using embedded methods such as 

LASSO regression [4, 5]. It provides a sparse solution that includes only relevant features, which, 

however, is very sensitive to the regularization parameter. 

In addition, stepwise regression is often used in time series forecasting [6]. It refers to the so-called 

“wrapper” methods. They select the optimal subset of features from all possible candidates 

simultaneously with the model estimation. Generally, this problem has exponential complexity in the 

number of features. In practice, to solve it, search approaches use greedy algorithms [7]. However, 

they do not usually produce an optimal solution, but approximate a globally optimal solution in a 

reasonable amount of time. 

Finally, filter methods select variables regardless of the model. A Correlation-based Feature 

Selection is a well-known multivariate filter algorithm [8]. This approach is proposed for solving 
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classification problems. Its applicability for predictor selection with a highly correlation of candidate 

predictors, in particular when selecting leading indicators, is poorly studied. This is the gap that we 

will attempt to address in our article. For this purpose, we first transform a correlation-based heuristic 

evaluation function optimization problem into a mixed integer programming problem. But in this 

problem the number of variables and constraints depends on the square of the number of features. 

With a branch and bound algorithm, the amount of computation becomes large. Therefore it is 

proposed to use the previously developed binary cut-and-branch method. 

2. Correlation-based Feature Selection 

Correlation-based Feature Selection (CFS) ranks feature subsets according to a correlation-based 

heuristic evaluation function [8]. The best subset contains predictors highly correlated with the 

response, yet uncorrelated to each other. Thus, the problem of feature selection is formulated as the 

following optimization problem: 
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where 
iR  is an absolute value of correlation coefficient between the response and the i-th feature, 

ijr  is 

an absolute value of correlation coefficient between the i-th and the j-th features, 
kS  is a subset of k 

features. 

As for the time series of economic indicators, both the response and the predictors are usually 

quantitative. Therefore the Pearson product-moment correlation coefficient is applicable. 

We reformulate the problem (1) as a problem of nonlinear integer programming: 
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where  0,1 , 1,...,ix i n  , n is the number of features. If 1ix   then the optimal subset contains the i-

th variable, and 0ix  , otherwise. 

The problem (2) is a polynomial fractional programming problem. Based on the transformation of 

feature selection problem proposed in [9], we replace the denominator in (2) by a positive continuous 

variable u. It leads to the equivalent polynomial problem. In addition, we convert a maximization 

problem into a minimization one. Thus, the problem is represented as follows: 
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Based on a linearization technique proposed in [10] to transform the terms 
ix u , 

i jx x u , we 

introduce variables 
iz , 1,...,i n , 

ijv , 1,...,i n , 1,...,j n , i j . Then we obtain the following 

mixed integer linear programming problem: 
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   1 1 ,i i i i iM x u z M x u z Mx       , 

   2 2 , ,i j ij i j ij i ij jM x x u v M x x u v Mx v Mx          , 

where M is a large positive value. 

Finally, the initial nonlinear problem (1) is reduced to a high-dimensional linear programming (LP) 

problem. The number of the new continuous variables is (n
2
+n+2)/2. They are added to the initial n 

binary variables. The number of constraints also depends on n
2
 and is (2n

2
+n+2). 

3. Binary cut-and-branch method 

The binary cut and branch method (BCBM) was originally developed to solve LP problems with 

Boolean variables [11] and then extended to the case of the General linear programming problem with 

mixed variables (milp) [12]. Any such problem, the special case of which is (3), can be represented as: 

 1 2( ) maxT Tx c x c y const     , (4) 

 1 2A x A y b  , 0 1x  , 0y  , (5) 

 
1

2
nx I , (6) 

which is a milp problem with Boolean variables x  and continuous variables y . Conditions (3) specify 

that the solution components x  belong to one of the vertices of the unit hypercube of dimension 1n ; 
1, , 0,1c x  are vectors of the same dimension; 0  is a zero vector; 1  is a vector of ones; const  is a 

constant; and 
1 0c  . The vectors 2c , ,0y  have dimension 2n . Condition n

kx I  indicates that x  

belongs to the set of vectors of dimension n , the elements of which take integer values from the range 

[0 1]k  . Conformity of statements (4-6) and (3): Boolean variables 
1

2
nx I  have the same meaning 

in both statements, continuous variables 0y   have the meaning of variables 0, 0, 0i ijz v u    in 

statement (3). Matrices 
1 2 and  A A  in the constraints (4) are formed from the coefficients of the 

constraints in the problem (3). 

In fact, any milp problem and a considerable part of mip problems can be compactly reduced to 

(1)–(3); see, e.g., [11]. 

Suppose 0 0,x y  is the solution of the relaxed problem (4)–(5);    is the integer part of number; 

and 0  0T x , where j   0,   1 , 1,j n . Then any inequality of the form 

 0
T x  , j   0,   1 , 1,j n , 0   0 , 0  0T x , (7) 

is called a binary cut (BC) for problem (4)–(5). 

If 
0x  is part of the solution 0 0,x y  of the relaxed problem (4)–(5), then 

 0
T x  , 0  0T x . (8) 

Relation (8) can be a generating inequality if 
B

j i ij

i I

a 



  , 0i  , where , B
ija i I  are the 

coefficients of the basis part 1A  and i  are the weights of the basis constraints. Specifically, if i  are 

dual estimates for constraints (5), then j jc  , 1,j n . A complementary system of BCs to 

constraints (5) is defined as 

 1Dx   , (9) 

where 
1

1
D

D i
j

m n



  , { 0,  1 }, 1,i

j j n    is the coefficient matrix of the complementary system 

and the vector   composed of the right-hand part of the constraints is defined from (7). 
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There are several ways to find out whether the BCs are valid [9,10]. Specifically, the binary cut and 

branch algorithm (BCBA) uses the following feature. We now define 

 0( ) 1T x x   , (10) 

where 
0 0( ) Tx x  

 
 and 0x  is part of the optimal solution 0 0,x y  of problem (4), (5), and (9). 

If problem (4), (5), and (10) has a solution, then the cut 0( )T x x   is invalid. Contrary wise, if 

problem (4), (5), and (10) has no solution due to the conflicting conditions (5) and (10), then 
0( )T x x   is a valid BC. This is the underlying feature of the BC synthesis procedure called 

selection in a set of the nearest cuts (SSNC) [11, 12]. We now describe this procedure.  

We define an inequality ensuing from the basis system (5) and (9) through a permutation by 

arranging   in a descending order (denoted by  ). We consider a totality of 1n  vectors, of dimension 

1n : 

1 (1,0,...,0)  , ..., (1,1,...,1,0,0,...,0)j   ( j  original ones), ..., 
1

(1,1,...,1)n  . 

Each 
j  is set in correspondence with the value 
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1
1,j n . 

The discrete function ( )jcs   has a strict maximum and uniquely defines the priority of each of the 

alternative cuts with the coefficients 
j . Adding the entire totality of these BCs to (9) and solving (4), 

(5), and (10), we can find out conflicting conditions (if there are any) to identify valid cuts. Then, if 

there are valid BCs, we select a single cut with the maximum value of ( )jcs  . If there are no valid 

cuts, we select a BC that corresponds to the maximum of ( )jcs  , 
1

1,j n .  

Another important feature of BCs is their radicality measure, which characterizes the depth of a cut 

of a given type. For a BC 0
T x  , j  0,1 , 1,j n , 0   0 , 0 

0T x , we define the 

radicality r  as the number of vertices of the unit hypercube cut off by the BC (BC system), assuming 

that the cut is valid.  

In the general case, 
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Relation (11) considers the unit hypercube vertices lying above the level 
Ta x b , i.e., belonging 

to the hyperplanes 
Ta x l  with the right-hand parts ( 1, 2,...,b b k  ). The 

Ta x b  hyperplane itself 

contains 
1

2n k b
kC  vertices. The maximum radical BC is derived from (11) and 

1
1, 1,j j n    with 

the possible exclusion of the minimum order relative to   if the sum of the coefficients in the left-

hand part of the BC 
Ta x b  without this exclusion is an integer number.  

Regardless of which measure—closeness to the generating inequality or radicality is considered as 

a priority, the BCBA is as follows.  
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3.1. Binary Cut-and-Branch Algorithm  

1. Suppose that we have obtained the solution of the original relaxed problem (4), (5), and (7): 
0 0,x y  and 0 0( , )x y . If 0x  are integers, the algorithm stops. Otherwise, it goes to step 2. 

2. At step (1,2,...)t , we select a probing vertex with the maximum estimate ( , )q qx y , 

(1,2,..., 1)q t  . If the list of vertices is empty, the problem has no integer solution. The algorithm 

stops. If the vertex with the maximum estimate ( , )q qx y  contains integer qx , the solution ( , )q qx y  

is the optimal one. The algorithm stops. Otherwise: 

3. We create two new candidates for each of which we supplement the current matrix 1D  for 

the step q with BCs (7) and (10) by the cut selection procedures (by the value of ( )jcs   or by 

radicality (11)): ( 1)( ) ( )t T qx x    и ( 1)( ) ( ) 1t T qx x    , respectively. 

4. We solve a pair of alternative subproblems with the cuts ( 1)( ) ( )t T qx x    and 

( 1)( ) ( ) 1t T qx x    . 

5. We save their solution components 1t
x
  and 

1t
x


 and the estimates 1 1
( , )

t t
x y    and 

1 1
( , )

t t
x y
 

 by adding them to a list of the tree vertices. If any of the candidates has no solution, it is 

withdrawn from the list of the vertices. 

6. We increase the step number ( : 1t t  ) and go to step 2. 

4. Simulation study results 

The applicability of the CFS method to variable selection with a highly correlation of candidate 

predictors was investigated using the following model example. 

The relevant features 
(m) (m) (m) (m) (m)

1 2 3 5 6, , , ,x x x x x  were modeled as independent random variables with a 

standard normal distribution. The relevant features 
(m) (m)

4 7,x x  were computed as follows: 
(m) (m) (m) (m) (m)

4 3 1 7 5 6 2,x x e x x x e     , 

where e1, e2 are independently standard normally distributed. 

The response was defined as 
7

(m)

3

1

i

i

y x e


   

where e3 is a normally distributed random variable independent of e1, e2 and of 
(m)

ix  with zero 

expectation and standard deviation equal to 0.1. 

The redundant variables were modeled correlated with the main predictors: 
(r) (m)

i i ix x   , 1,...,7i  , 
(r) (m)

7i i ix x   , 8,...,14i  , 

where 
1 14,...,   are independently standard normally distributed. The irrelevant features 

1 5,...,   were 

also modeled as random noise. In addition, the noise candidates include 
1 4,...,  . 

For each random variable, samples of size 1,000 were drawn. As a result, the set of features for 

selection included 

 the relevant predictors, on the basis of which the response was calculated, 
(m) (m)

1 7,...,x x ; 

 the redundant variables correlated with the relevant one, 
(r) (r)

1 14,...,x x ; 

 the irrelevant features 
1 5,...,  , 

1 4,...,  . 

A total number of variables was thirty. Simulation studies were repeated 1,000 times. The mixed 

integer linear programming problem contained 496 variables and 1,832 constraints. In order to solve 

the problem, greedy algorithms were used as an alternative: forward selection and backward 

elimination [13]. Their implementation in the R environment was used: the forward.search and 
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backward.search functions provided by the FSelector package. The variable subset was evaluated by 

the objective function from (1). 

Table 1 presents the results of simulation studies, the proportion of cases in which each variable is 

included in the subset. The irrelevant features were not included in the subset in any experiment. The 

following notation is used: forward — the forward selection, backward — the backward elimination, 

BCBM — the binary cut-and-branch method. 

 

Table 1. Predictor selection results. 

Variable 

Method 

Variable 

Method 

forward backward BCBM forward backward BCBM 
(m)

1x  0.219 0.955 0.927 
(r)

4x  0.049 0.938 0.613 
(m)

2x  0.216 0.945 0.929 
(r)

5x  0.006 0.716 0.024 
(m)

3x  0.258 0.991 0.962 
(r)

6x  0.013 0.742 0.036 
(m)

4x  0.954 0.996 0.98 
(r)

7x  0.217 0.997 0.915 
(m)

5x  0.208 0.993 0.977 
(r)

8x  0 0.046 0.006 
(m)

6x  0.204 0.995 0.969 
(r)

9x  0 0.061 0.003 
(m)

7x  1 1 0.999 
(r)

10x  0 0.069 0.005 
(r)

1x  0.011 0.462 0.057 
(r)

11x  0.012 0.37 0.053 
(r)

2x  0.013 0.504 0.066 
(r)

12x  0.001 0.065 0.002 
(r)

3x  0.012 0.642 0.053 
(r)

13x  0 0.048 0.001 

 

From table 1 it can be seen that the forward selection often does not include the redundant 

predictors. However, the final subset almost does not get a significant part of the relevant features. 

Only 
(m) (m)

4 7,x x  correlated with the other significant predictors are constantly included in the subset. 

This has a negative effect on the objective function values, which are far from optimal. The evaluation 

function values are displayed as a boxplot in figure 1. From figure 1, it can be concluded that the 

variation of the objective function values in the simulations is very large, and the average value is 

much smaller than that achieved by the backward elimination and the binary cut-and-branch method. 

Both the backward elimination and the binary cut-and-branch method include all relevant features 

in the subset of predictors. But the backward elimination often leaves too many redundant predictors 

in the subset. Compared to this, for the BCBM results, such cases are relatively rare. Only a few 

redundant attributes 
(r) (r)

4 7,x x  are often included in the subset. This is because they are related to the 

relevant predictors 
(m) (m)

4 7,x x  which are correlated with the other significant predictors. Nevertheless, 

despite this problem, the binary binary cut-and-branch method provides the best values of the 

objective function compared to the backward elimination (figure 1). 

The multicollinearity problem described is evidently difficult for the CFS method. It is a problem 

of the method itself, rather than optimization algorithms. This may have a negative effect on its 

applicability in practice. 

5. Selection of leading indicators of consumer price index growth 

Let us verify the applicability of the Correlation-based Feature Selection method using a real example. 

For this purpose, the task of forecasting the consumer price index was chosen. From economic 

research [14] it is known that one of the leading indicators of price changes during a business cycle is 

the industrial materials price index. The data provided by the unified interdepartmental informational-

statistical system [15] include the monthly time series of the price index for the acquisition of 

machines and equipment for investment purposes. Indices are grouped by type of economic activity 

and regions of the Russian Federation. Further, the territory of the Russian Federation as a whole is 

selected. 
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The period from June to November 2010 was chosen as the test time interval. During that period, 

there was a sharp increase in the base price index in percent compared to the corresponding period of 

the previous year. The training dataset was taken from January 2006 to May 2010. It was used to fit 

the ARIMA model. But it naturally predicts the continuing fall in prices, as shown in figure 2. Let us 

verify whether this forecast can be improved by using leading indicators. 

 

 

 

 
 Figure 1. Boxplot for the values of the 

objective function obtained in simulation 

studies. 

 Figure 2. Real and forecast values of the 

base consumer price index, in percent 

compared to the corresponding period of the 

previous year. 

 

For the time period used to train the model, there are the data on price indices for the acquisition of 

machines and equipment for investment purposes for 92 types of economic activity, including 16 

sections of Classification and a total index for all types of activity. The values of indices are in percent 

compared to the corresponding period of the previous year. 

First, a naive approach was used, suggesting that the best predictor is the total index for all 

activities. The CFS method was used for optimal lags selection only. Lags from 0 to -6 were 

considered as candidates. As a result, lags -4 and -6 are chosen. This approach led to a rather low 

value of the objective function F
*
 (table 2). 

Next, the price indices for the acquisition of machines and equipment for investment purposes by 

economic activity, taken with lags from 0 to -6, were considered as candidate predictors for the 

application of greedy algorithms. Thus, the total number of predictors n was 644. The obtained 

optimal number n
*
 is presented in table 2. 

 

Table 2. The results of solving the optimization problem. 

Method n n
* 

F
* 

naive 7 2 0.857957 

forward selection 644 4 0.954952 

backward elimination 644 39 0.963451 

forward selection 119 4 0.942901 

backward elimination 119 18 0.950590 

binary cut-and-branch 119 7 0.954994 

 

Finally, the number of predictors was reduced to indices by sections and the total index, that is, 17 

indices. The total number of variables was 119 taking into account the possible lags. Table 2 shows 

the optimal values of the objective functions F
*
 and the number of predictors n

*
 obtained using the 

methods of forward selection, backward elimination, and binary cut-and-branch. 
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0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

y
y

2006 2007 2008 2009 2010 2011

1
0

2
1

0
4

1
0

6
1

0
8

1
1

0
1

1
2

1
1

4

real

ARIMA

naive



Data Science 

A Yu Timofeeva and Yu A Mezentsev 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)              17 

In both cases, the forward selection method leaves very few predictors. The values of the objective 

function are the lowest. The method of backward elimination selects a lot of variables, which, of 

course, are redundant. The binary cut-and-branch method provides the best value of the objective 

function. 

In order to compare the forecasting performance on test data, regression models were estimated on 

the training set with the inclusion of selected variables with selected lags. For this, the dynlm package 

of the statistical environment R was used. 

The future predictor values should be available in order to build a forecast for six months ahead. It 

was assumed that their real values are available only until May 2010. If later values were needed, then 

the predictor values were forecasted based on the ARIMA model. For the automatic selection of the 

structure of the ARIMA model, the auto.arima function of the forecast package was used. It is 

implemented in the R environment. For forecasting, the forecast function from the same package was 

used. Forecasting based on the results of the predictor selection by the backward elimination method 

was not performed, since the number of variables (39 and 18) is clearly redundant for estimating a 

model of 47 months (taking into account the earliest lag -6). 

Table 3 presents the deviations of the real values of the consumer price index from its forecasts. 

The smallest absolute differences are in bold. It is revealed that the naive approach gives a good result. 

Graphically, it is shown in figure 2. 

 

Table 3. Consumer price index forecast results. 

Method June July August September October November 

ARIMA 0.22 0.68 1.39 2.31 2.98 3.73 

naive -0,07 0.28 0.30 0.27 0.36 -0.18 

forward selection,  

92 indices 

-1,6 -0.9 -0.67 0.18 0.71 0.6 

forward selection, 

17 indices 

-0.08 0.53 0.37 0.84 1.06 0.69 

binary cut-and-branch,  

17 indices 

-0.86 0.13 0.29 0.93 1.22 1.13 

 

This means that the Correlation-based Feature Selection approach can be recommended for 

choosing the optimal lags of predictor variables in a time series model. The simultaneous selection of 

price indices for the acquisition of machines and equipment for investment purposes by economic 

activity and their lags is more complicated. The time series of indices are very similar (some are even 

almost identical). Hence there is a very high correlation between the variables. At the same time, the 

lagged values of the indices are also highly correlated. This is similar to the case of multicollinearity 

from the model example considered in the previous section. As it was revealed above, in such a model, 

the achievement of optimum in problem (1) does not guarantee that only relevant features will be 

selected. In the structure of the solution, a certain proportion of redundant predictors is allowed. 

Evidently, this problem also occurs in the selection of indices as leading indicators. As a result, the 

optimal solution obtained using the binary cut-and-branch method provides the best forecast 

performance for the medium term (2-3 months) only. In the long term, 5-6 months ahead, forecasts are 

worse than when selecting optimal lags for the total index only. 

This effect is clearly visible when compared the results of selection by forward selection and binary 

cut-and-branch method for 17 indices. The results of forward selection give a smaller number of 

predictors and better predict for the long term. This can be explained by the overfitting effect, since 

using the binary cut-and-branch method, a greater number of predictors have been selected, some of 

which may be redundant. 

6. Conclusions and recommendations 

Thus, the Correlation-based Feature Selection method is applicable for selecting leading indicators in 

the time series forecasting. The candidate predictors are highly correlated. From simulation studies, it 

is revealed that greedy heuristics optimization algorithms in such cases do not give satisfactory results. 
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The forward selection does not include many relevant features; the backward elimination leaves many 

redundant predictors in the subset. The binary cut-and-branch method gives the best result. However, 

the CFS method is not perfect: the optimal value of the heuristics does not guarantee that only all 

relevant predictors will be selected, and the inclusion of redundant variables is possible. This happens 

when the relevant features correlate with each other and with redundant variables. To avoid this, it is 

recommended by forming the initial set of candidate predictors to pre-exclude duplicate indicators and 

indicators with very similar dynamics. 
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