
V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 

Using high-performance deep learning platform to accelerate 
object detection 

S O Stepanenko1, P Y Yakimov1,2 

1Samara National Research University, Moskovskoe Shosse 34А, Samara, Russia, 443086 
2Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and 
Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001 

e-mail: serega.stepanenko.97@gmail.com 

Abstract. Object classification with use of neural networks is extremely current today. YOLO is 
one of the most often used frameworks for object classification. It produces high accuracy but the 
processing speed is not high enough especially in conditions of limited performance of a computer. 
This article researches use of a framework called NVIDIA TensorRT to optimize YOLO with the 
aim of increasing the image processing speed. Saving efficiency and quality of the neural network 
work TensorRT allows us to increase the processing speed using an optimization of the architecture 
and an optimization of calculations on a GPU. 

1. Introduction 
Object detection is becoming more and more popular [1]. It has become possible with the development of 
new powerful computational devices and the use of neural networks, which can find objects in an image 
having high accuracy. A system that is based on an artificial neural network is not a big problem to be 
created because there is a large number of different frameworks which simplify creating of a neural 
network reducing the network development to functions call. The object detection problem requires high 
computational power, and in real tasks, for example processing of a video stream, powerful equipment is 
required [2]. For example, FPS of YOLO work on NVIDIA GTX Titan X is about 40 [3], FPS of SSD on 
NVIDIA GTX Titan X is 19 [4], FPS of FasterR-CNN on Tesla k40 is 5 [5], FPS of Fast R-CNN is 0.5 
[3]. All those algorithms except for YOLO have FPS less than a common camera frame rate. 

Nowadays there are many solutions for object detection [6]. All of them use different algorithms to 
detect, can detect with different accuracy and can have different speed of processing [7]. The most 
existing solutions use CUDA [8] to process data in parallel. Via CUDA, we can increase the processing 
speed but there are other ways to increase the processing speed as well. An optimization of the neural 
network architecture can be used to make the processing faster and to remain the accuracy at the same 
level. But it’s not always easy to make especially if the network has a very complex architecture. There is 
a way to increase the neural network processing speed not spending much time to change the program. 



Data Science 
S O Stepanenko, P Y Yakimov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)  355 

There is a platform which is able to increase the neural network processing speed using algorithms to 
optimize an architecture and using abilities of NVIDIA GPUs to increase calculations as well. This 
platform is called TensorRT [9]. TensorRT provides an API for creating of neural networks and allows us 
to optimize models of many popular frameworks as well. It makes that convenient to use in many cases 
because it’s possible to accelerate the program not spending many resources to change the code.  

 
2. Convolutional neural networks inference technologies 
The word inference means receiving the result of work of the neural network which was trained on some 
data set. This article considers a use of the platform TensorRT to accelerate an algorithm for object 
detection that is called YOLO [9]. 

2.1. YOLO 
YOLO [10] – is an algorithm for object classification and detection using convolutional neural networks 
to do that. Pros of convolutional neural networks for tasks of this type are that convolutional neural 
networks can process images having more simple architecture than standard neural networks. There are 
many implementations of YOLO based on different frameworks and written in different programming 
languages. The standard implementation is based on the neural darknet which is written in the 
programming language C. The work of YOLO starts from changing of the input image. It becomes 
448x448x3, where 448x448 is the image size, 3 is color channels amount. At first the image is passed 
through the modified net GoogleNet. It’s the 1st 20 layers of the network. The output of this part of the 
network is 1024 feature maps with size of 14x14. Then the images are passed through a sequence of 
convolutional layers and a sequence of pooling layers. At the moment of getting into a fully connected 
layer there are 1024 feature maps with size of 7x7. After the images have been passed through 2 fully 
connected layers the network provides prediction of some class belonging and provides the position of an 
object in the image [11]. 
To define the object bounds in YOLO algorithm at first a grid with size of SxS is imposed. Then object 
prediction is done for each cell. A vector with size of 5*B+C is created for each grid element, where B is 
bound amount which are predicted by a grid element, C is class amount which the network can predict, 5 
defines object amount which can be found. 1st 5*B values of the vector show coordinates of the center of 
the bound inside the grid cell, height and width and probability that the bound has been defined correctly. 
Other C values show probability that the object center is at the center of this cell. As a result, there are 
S*S*B bounds of objects with class probabilities. Then the vector is sorted descending and the algorithm 
Non maximal suppression is used. It repeats for every class. As a result, all bounds are viewed. The max 
probability of classes is considered for every bound and if it is positive then the bound is put on the image 
[3]. 

2.2. TensorRT 
TensorRT is a platform of deep learning by NVIDIA [12]. Nowadays there are 5 versions of TensorRT. 
Every new version is able to interact with greater number of layer types of a neural network and 
mathematical operations. TensorRT enables to use implemented parsers for many popular frameworks. It 
contains: Tensorflow, Caffe2, PyTorch, Mxnet, Microsoft Cognitive Toolkit, Chainer. Tensorflow has 
built-in TensorRT 3.0 [9]. In case when the network is created on these frameworks it is very simple to 
use TensorRT. It is enough to use aт implemented parser. The process of the network creating with use of 
a TensorRT parser is shown in figure 1. If the network is not created on these frameworks, then it’s 
possible to use the API of TensorRT to transfer the network model. 



Data Science 
S O Stepanenko, P Y Yakimov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)  356 

 
Figure 1. A flow of the network creating with use of TensorFlow on TensorRT. 

 
 The advantage of TensorRT using is that this platform is able to accelerate a neural network using an 
algorithm to simplify the network architecture not changing the network functionality and using abilities 
of NVIDIA GPUs to accelerate calculations. 
 To simplify the network architecture TensorRT analyzes a graph that represent the network model. If 
there are elements in the graph which are repeated, then TensorRT merges them. As a result the network 
size becomes less. 
 Acceleration on a GPU is possible due to an ability to use “Tensor Cores”. These cores allow to use 
half-precision data type float16 for calculations. It is not possible if CUDA is used. CUDA allows to use 
data type float32. The processing speed increases due to much more fast transfer of data and more fast 
calculations with this data type. This type of accelerating is possible only with use of a little amount of 
GPUs which can provide this technology. 
 
3. YOLO implementation 
To compare the processing speed implementations of YOLO with use TensorRT platform and without 
use, with use of one data set and same trained models, have been considered. 

3.1. Implementation of YOLO without use of TensorRT 

3.1.1. Darknet 
To compare performance one of implementations of the YOLO algorithm that is based on the neural 
network darknet has been considered. YOLO was run on a GPU. To do that CUDA 10.0 and OpenCV 
were required. YOLOv2 model was used as the model. Before running it’s required to make the project. It 
can be done via running the command make from the project folder. After installing There will be an 
executable file which must be run. To type a command with required options is enough to run. The 
command for running the program is the follow: ./darknet detect path_to_cfg_file path_to_weights_file. 
Darknet allows to process a video from a file and from a webcam. 

3.1.2. Darkflow 
Another implementation of the YOLO algorithm in the language python that uses Tensorflow. It is 
required to install CUDA 9.0, Tensorflow 1.0, Numpy, OpenCv 3.0 or above to run this program. It is 
required to have CUDA 10.0 and CUDA 9.0 to run darkflow and other implementations in one PC. To 
change the CUDA versions it is enough to update the environment variables. Darkflow has an ability to 
process a video stream. Before running it is required to run an installation script. After installatiom the 
program can be run via command: flow --model path_to_cfg_file --load path_to_weights_file --imgdir 
path_to_folder_with_images –gpu percent, where percent – a digit from 0 to 1 that shows the percent 
ofGPU usage. 0 – o% of usage. 1 – 100% of usage. The processing is on a CPU if –gpu has not been 
specified. Probably in this case the processing speed is significantly less than in case of processing on a 
GPU. 

3.2. Implementation of YOLO with use of TensorRT 
This article presents an implementation of YOLO with TensorRT 5.0 [13]. Before launching the program 
it’s required to install all dependencies. To make the program runnable CUDA 10.0, TensorRT 5.0, 



Data Science 
S O Stepanenko, P Y Yakimov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)  357 

OpenCV 3.4.0 are required. Files which contain trained model weights and the network configuration are 
required to run the program. They can be found on the official web site of the YOLO developers. A 
trained model YOLOv2 is used for research. This model is able to detect 80 classes of objects. At first it’s 
required to install the project using make. Then it’s required to set up the project typing paths to all 
dependencies and to weights and configuration files. Then the data type that will be used must be chosen. 
It’s possible to choose Float32, Float16 and Int8. In case when the GPU doesn’t support tensor cores the 
program can be run with use Float32 only. There is a possibility to process not only single images and 
batches of images. Video processing is possible when Deepstream SDK is used in addition. Deepstream 
SDK is developed by NVIDIA to process data in streams. It uses TensorRT, CUDA, Video Codec SDK. 
Today the last version of Deepstream SDK is 3.0. It’s possible to process video without use of Deepstream 
SDK when the source code is changed to make it possible to extract frames from video streams. Such 
capability is provided by OpenCV. To run the program, it’s required to type the following command: 

trt-yolo-app 
The following options are available for this command: 
• Batch_size – Images amount which are processed at the moment 
• Decode – Input is either True or False. It is for decoding of images. True by default. 
• Seed – A parameter for the random digit generator. 

After the program work has been finished files which contain processed images are saved to a folder. 
To process a video, it’s possible to use OpenCV which extracts frames from the video stream. There is 
another way to process a video to use deepstream a library by NVIDIA to process streams. Deepstream 
uses libraries for accelerating stream processing and uses TensorRT and CUDA as well.  

Also Darkflow was modified in order to be run on TensorRT. 
 

4. Experiment researches 
2 implementations of the YOLO algorithm were used with use of the one trained model YOLOv2 for 
experimental research. 2416 images were used as input. Output images which objects were found on were 
saved to a folder. Processing time of every image were written to a file for the implementation without 
TensorRT. Processing time of every image wasn’t calculated and the average time was calculated. All 
experiments were done on a PC with characteristics which are presented in table 1.  

 
Table 1. Main characteristics of the PC. 

GPU CPU Memory 
NVIDIA GeForce GT 710 AMD FX-4300 4 GB 
NVIDIA GeForce GTX 950 Intel Core i5-6500 8 GB 

Average FPS of the image set processing by Darkflow implementation is presented in table 2. 
 

Table 2. FPS of Darkflow work. 
GPU FPS 

NVIDIA GeForce GT 710 1.31 
NVIDIA GeForce GTX 950 
Tesla p100 
NVIDIA GeForce GTX 2080 TI 

10.53 
120 
170 

Average FPS of the image set processing by Darknet is presented in table 3. 
 

Table 3. FPS of Darknet work. 
GPU FPS 
NVIDIA GeForce GT 710 1.2 
NVIDIA GeForce GTX 950 6.25 



Data Science 
S O Stepanenko, P Y Yakimov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)  358 

 
 Darknet processes the images slower than Darkflow. Average FPS of the image set processing by an 
implementation of YOLO in TensorRT API is presented in table 4. 
 

Table 4. FPS of an implementation of YOLO in TensorRT. 
GPU FPS 
NVIDIA GeForce GT 710 5 
NVIDIA GeForce GTX 950 50 

  
 YOLO in TensorRT works faster than Darkflow and darknet. The implementation is written in C++ 
with use of API of TensorRT. 
 The time of work with different size of a batch was compared for the implementation with use of 
TensorRT. Batch size was from 1 to 16. It was not possible to allocate the GPU memory if the batch size 
was more than 16. Time of work with use of different batch size is presented in figures 2 and 3 for 2 
different GPUs.   

 
Figure 2. Time of the algorithm work with use of different batch size for NVIDIA GeForce GT 710. 

 
Figure 3. Time of the algorithm work with use of different batch size for NVIDIA GeForce GTX 950. 



Data Science 
S O Stepanenko, P Y Yakimov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)  359 

Difference between work time on 2 GPUs is not significant. The difference between the worst and the 
best results was about 1.27 times. This could be related to different causes and it's difficult to define the 
optimal size in advance. It should be done experimental. 

Average FPS of Darkflow with TensorRT is presented in table 5. 
 

Table 5. FPS of Darkflow with TensorRT. 
GPU FPS 
NVIDIA GeForce GT 710 1.78 
NVIDIA GeForce GTX 950 14.41 
NVIDIA GeForce GTX 2080 

TI 200 

Darkflow with TensorRT works faster than Darkflow about in 1.36 times on NVIDIA GeForce GT 
710, 1.37 times on NVIDIA GeForce GTX 950, 1.18 times on NVIDIA GeForce GTX 2080 TI. FPS of all 
used implementation is presented in figure 4. 

 
Figure 4. FPS of all used implementations. 

 
Figure 5. A processed frame. 

0 

50 

100 

150 

200 

250 

NVIDIA GT 710 NVIDIA GTX 950 NVIDIA GTX 2080 
TI 

NVIDIA Tesla 
p100 

Darknet Darkflow TensorRT c++ darkflow + TensorRT 



Data Science 
S O Stepanenko, P Y Yakimov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)  360 

YOLO in TensorRT API has the best acceleration. The acceleration is about 10 times. Darkflow with 
TensorRT has an acceleration but it is much more less. 

After using of TensorRT accuracy of YOLO work has not been reduced. An example of an image that 
is processed by YOLO is presented in figure 5. 

 
5. Conclusion 
The article considered 3 implementations of the YOLO algorithm to compare performance. One of these 
implementations uses the TensorRT platform. Another implementation was modified in order to work 
with TensorRT. The platform is able to accelerate the algorithm producing the same accuracy. This ability 
can be used on practice in video stream processing where processing speed is an important value. Using 
TensorRT the processing time reduced about by 4 times on NVIDIA GT 710 and about by 8 times on 
NVIDIA GTX 950 in comparison with the standard implementation of the algorithm if an ability of GPUs 
to do calculations with use of tensor cores was not used because the GPU could not do such calculations. 
Darkflow that was modified worked faster in 1.36 times on NVIDIA GT 710, 1.37 times on NVIDIA 
GeForce GT 950, 1.18 times on NVIDIA GTX 2080 TI. 

 
6. References  
[1] Bibikov S A, Kazanskiy N L and Fursov V A 2018 Vegetation type recognition in hyperspectral 

images using a conjugacy indicator Computer Optics 42(5) 846-854 DOI: 10.18287/2412- 6179-
2018-42-5-846-854 

[2] Shatalin R A, Fidelman V R and Ovchinnikov P E 2017 Abnormal behavior detection method for 
video surveillance applications Computer Optics 41(1) 37-45 DOI: 10.18287/2412- 6179-2017-41-
1-37-45 

[3] Redmon J, Farhadi A 2017 YOLO9000: Better, Faster, Stronger (University of Washington, Allen 
Institute for AI) p 9 

[4] Wei L 2016 SSD: Single Shot MultiBox Detector ECCV: Computer Vision 21-37 
[5] Ren Sh, He K, Girshick R and Sun J 2017 Faster R-CNN: Towards Real-Time Object Detection 

with Region Proposal Networks IEEE Transactions on Pattern Analysis and Machine Intelligence 
39(6) 1137-1149 DOI: 10.1109/TPAMI.2016.2577031 

[6] Amosov O S, Ivanov Y S and Zhiganov S V 2017 Human localiztion in video frames using a 
growing neural gas algorithm and fuzzy inference Computer Optics 41(1) 46-58 DOI: 
10.18287/2412-6179-2017-41-1-46-58 

[7] Shustanov A, Yakimov P 2017 CNN Design for Real-Time Traffic Sign Recognition Procedia 
Engineering 201 718-725 DOI: 10.1016/j.proeng.2017.09.594 

[8] CUDA URL: https://developer.nvidia.com/cuda-gpus (01.11.2018) 
[9] Official site of TensorRT URL: https://developer.nvidia.com/tensorrt (01.11.2018) 
[10] YOLO: Real-Time Object Detection URL: https://pjreddie.com/darknet/yolo/ (01.11.2018) 
[11] Redmon J, Divvala S, Girshick R, Farhadi A 2015 You Only Look Once: Unified, Real-Time 

Object Detection You Look Only Once p 10 
[12] TensorRT integration speeds up tensorflow inference URL: https://devblogs.nvidia.com/tensorrt-

integration-speeds-tensorflow-inference/ (01.11.2018) 
[13] Implementation of YOLO with TensorRT URL: https://github.com/vat-nvidia/deepstream-plugins/ 

(01.11.2018) 
 

Acknowledgements 
This work was partly funded by the Russian Foundation for Basic Research – Project # 17-29-
03112 ofi_m and the Russian Federation Ministry of Science and Higher Education within a state contract 
with the "Crystallography and Photonics" Research Center of the RAS under agreement 007-
ГЗ/Ч3363/26. 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34

