
V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)

Using the cluster "Sergey Korolev" for modelling computer

networks

D Y Polukarov
1
, A P Bogdan

1

1
Samara National Research University, Moskovskoe Shosse, 34А, Samara, Russia, 443086

e-mail: plkw@mail.ru

Abstract. Modelling large-scale networks requires significant computational resources on a

computer that produces a simulation. Moreover, the complexity of the calculations increases

nonlinearly with increasing volume of the simulated network. On the other hand, cluster

computing has gained considerable popularity recently. The idea of using cluster computing

structures for modelling computer networks arises naturally. This paper describes the creation

of software which combines an interactive mode of operation, including a graphical user

interface for the OMNeT++ environment, with a batch mode of operation more natural to the

high-performance cluster, "Sergey Korolev". The architecture of such a solution is developed.

An example of using this approach is also given.

1. Introduction

Modeling large-scale networks requires significant computational resources on a computer that

produces a simulation. Many universities have at their disposal computational cluster architectures of

various sizes. The aim of this current work is to improve the quality of network simulation by using

cluster "Sergey Korolev" of Samara National Research University. OMNeT++ is used in this work to

model computer networks. OMNeT++ is a discrete event simulation environment [1]. The primary

application area of OMNeT++ is the simulation of communication networks. OMNeT++ has a number

of examples in its composition. This simplifies the process of deploying and verifying the system on a

cluster.

The use of the high performance cluster "Sergey Korolev" often dictates a batch (and not

interactive) mode of operation [2], without no graphical interface being available. And although there

are nevertheless some opportunities for interactive work using the cluster, and some graphical

output [2] can be made available in relation to this, these possibilities are severely limited.

For simulation of computer networks, it is more convenient to use an interactive mode of operation

alongside a graphical user interface. For these purposes, software should be created which is capable

of interacting with the user via graphical tools. In such a case, the OMNeT++ system [1] can serve as a

convenient shell. The user can use the OMNeT++ system models but make the necessary calculations

using the cluster in batch mode. Subsequently, the results of the calculations are transmitted to the

user's local computer.

Data Science

D Y Polukarov, A P Bogdan

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 425

2. Related works

In [3], the authors analyzed a set of INET models [4], in terms of the ability of such model networks,

in OMNeT++, to run in parallel. The authors found several issues which prevented the parallel

execution of INET models. They analyzed these problems and developed solutions to them – to allow

parallel launching of INET models. A situational analysis (using the case-study method) showed the

feasibility of this approach. Although there are some elements of the model range that have not yet

been investigated, and the performance attained still leaves some room for improvement, the results

show an acceleration due to parallelization across most configurations.

A number of papers are devoted to the use of clusters in scientific applications.

In [5], the authors implemented a fast installation of a virtual cluster in heterogeneous

environments. To do this, they created a performance model that predicted the installation time of a

virtual cluster. They proposed a resource selection policy based on the model made as well. They

divided the entire installation of the virtual cluster into five logical steps and created a model for each

step. Each step is represented as a linear combination of software and hardware parameters, including

processor speed, disk I/O performance, and installation package size. An advanced virtual cluster

installer was also made. Experiments using the advanced installer have shown the effectiveness of the

selection policy based on the models created.

The work [6] is the result of efforts to support a data analysis cluster (DAC) with minimal effort

from the local system administrator. The authors tried to enable the scientist to focus on analyzing the

data and not on managing the cluster. They developed a tool that allows a scientist to deploy and

restore entire clusters with minimal effort. Puppet CMS was used to implement the deployment

algorithm. This allowed system administrators to spend less time deploying a cluster. The ATLAS

Tier 3 Cluster is given as an example. Reducing the time spent deploying and maintaining the cluster

will result in more scientific results being produced from the DACs.

There are works that offer novel algorithms for storing and processing data on clusters.

Article [7] contains an approach to distributed image storage. This is done to improve the

efficiency of parallel image processing algorithms. The distributed image was defined as a set of

overlapping fragments. This made it possible to avoid bottlenecks of parallel processing and

overlapping associated with reading/writing image data. Since the efficiency of a distributed system

for processing large-sized images is largely determined by data access methods in image processing

software and the convenience of visualizing processing results. The authors analyzed the advantages

and bottlenecks of popular parallel image processing systems. A novel approach to data organization

in distributed systems for image processing and storage is proposed. This approach is based on the

concept of a distributed image. The concept of the organization of distributed image data is proposed,

which solves most of the current problems. Achieved the required level of fault tolerance of the

distributed storage of image fragments.

A number of papers are devoted to the use of the OMNeT++ simulator on cluster architectures.

The article [8] describes the parallelization of OMNeT++ simulations with Xgrid. The necessary

changes in OMNeT++ for the automatic creation of job description files for Xgrid are developed. This

allows the user to easily set up a simulation for Xgrid. By processing the job specification file, the

Xgrid controller then distributes the individual simulation runs to all available parallel computing

machines. Smaller files, such as configuration files, may be included in the job description file. Large

files should be read or written to network shares for increased performance. The actions developed

accelerated simulation modeling, almost linear with respect to additional computing power, compared

to conventional single-process computing.

The article [9] presents a scheme for cluster modeling of distributed systems based on Ethernet

(RTEthernet) in real time. It relies on the OMNeT++ discrete event simulation environment associated

with the ARM-based coprocessor. The presented approach allows us to associate the real RTEthernet

subsystem with virtual components operating in discrete modeling that implement the required

behavior for the subsystem. The authors estimated the performance limits of this approach with

respect to latency and jitter when running a simulation on a Linux system with a real-time kernel fix.

The results showed that synchronization requirements for cluster modeling of small RTEthernet

networks can be achieved.

Data Science

D Y Polukarov, A P Bogdan

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 426

This paper demonstrates the concept of cluster modeling of RTEthernet systems. The computing

platform is based on a standard PC with an RT-Linux kernel, on which RTEthernet models work in the

OMNeT++ simulation environment and the ARM9 microcontroller as a coprocessor.

The evaluation showed that the platform provides sufficient performance for the latency

requirements of distributed real-time systems in the 230µs range, which is limited and has a linear

dependence on frame size. The observed jitter is below 40µs.

The article [10] reports on the novel parallel and distributed modeling architecture for OMNeT++,

an open source discrete-event modeling environment. The main application area of OMNeT++ is

network communication modeling. Support for the conservative PDES protocol (zero message

algorithm) and relatively new simulation protocol has been implemented. The OMNeT++ PDES

implementation has a modular and extensible architecture that makes it easy to add new

synchronization protocols and new communication mechanisms, which also makes it an attractive

platform for PDES research. The advantage of the implementation is that it has the principle of

“separation of experiments from models” and, thus, allows simulation models to run in parallel

without any changes. It is based on a new placeholder approach for instantiating the model on

different logical processes (LPs).

So, to summarize, the above article describes an analysis of the parallelization problems inherent in

the INET set of OMNeT++ models and demonstrates the possibility of INET parallelization, using a

number of modifications to the models; this parallelization was primarily aimed at distributed

initialization of the INET models.

The concept of distributed multistage initialization allows for the creation of a simulation model

which supports distributed simulation execution. The tests showed that there is an acceleration of

execution, due to parallelization, for the given example in most configurations, although there is still

potential for further optimization. The implementation covers the most commonly used protocols, such

as Ethernet, IPv4, TCP, and UDP, as well as the related models such as ICMPv4 or the application of

UDP.

3. Deploy and run a project on a cluster

3.1 Deploying

According to the official documentation [2], the cluster is accessed via SSH-2, and SFTP is used to

transfer files. Programs are run as part of batch processing tasks.

To deploy a network simulator on a cluster, the steps presented in Table 1 are necessary.

Table 1. Steps for deploying a network.

Deploying steps

 access the cluster;

 upload the necessary files to the cluster;

 create a task which build the OMNeT++ network simulator and wait for its completion

(there is a version of OMNeT++ without an IDE, this is what was used here);

 create a task which build the INET Framework;

 create a test simulation model;

 create a task which runs the simulation and wait for its completion;

 download the result of the work.

However, interactive task execution is possible on the cluster - given access to a free node in the

cluster. The simulation will be run as follows (in Figure 2).

It is worth noting that the main difficulties encountered when deploying a simulator on a cluster are

to do with recreating the necessary environment and also there are the problems relating to the limited

access available (all work is done in the console mode).

After initial testing, it was found that the INET Framework does not support parallel simulation

work. To solve this problem, the proposals in “Parallel INET for OMNeT++” [11] were used.

Data Science

D Y Polukarov, A P Bogdan

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 427

However, this work has the disadvantage that it is based on the old versions of OMNeT++ and the

INET Framework (from 2014), and so dictates a slightly different structure for the modules (changes

in the algorithm are necessary).

Figure 1. Deploying diagram.

Figure 2. Running the simulation in interactive mode.

3.2 Run on cluster

To work with MPI, the Tictoc1 system was selected; this consists of two modules. These modules

should be assigned to different MPI nodes, as shown in Figure3.

Figure 3. Configuring an MPI project.

Data Science

D Y Polukarov, A P Bogdan

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 428

Then the project in OMNeT++ is built on the local machine.

Figure 4. Building the project on a local machine.

To check the functionality from the project directory via mpirun, the following command is issued:
 $ mpirun -np 2 ./tictoc -m -u Cmdenv -c Tictoc1 omnetpp.ini.

The result of such a command should look like this:

Figure 5. Test result.

In order to execute the simulation on the supercomputer, three files must be copied from the project

folder to the working folder (the latter on the supercomputer).

Table 2. Files of test model.

Testing model structure

 omnet.ini;

 tictoc;

 tictic1.ned.

Next, the folder containing the project itself and the folder containing the source files must be

copied over in order that the necessary libraries can be collected together into a working folder on the

Data Science

D Y Polukarov, A P Bogdan

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 429

supercomputer, so that all can then be compiled (the libraries, and the project itself). The list of

required libraries can be viewed using ldd %executable_file_name%, usually the necessary

libraries will be only those that are in the OMNeT++ folder.

Figure 6. Required dependencies.

Next, it necessary to build the project on the cluster.

Figure 7. Building project on a cluster.

Then you need to create, in the working folder on the supercomputer, the task file *.pbs.

Sample file content is as follows:
#!/bin/bash

#PBS -N helloOMNeT //name of task

#PBS -A helloOMNeT

#PBS -l walltime=00:01:00 //required time

Data Science

D Y Polukarov, A P Bogdan

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 430

#PBS -l nodes=1:ppn=2 //number of nodes and processes

#PBS -j oe //error stream to standard output

cd $PBS_O_WORKDIR

export PATH=$PBS_O_PATH

Loading Intel MPI v4 environment

module load impi/4

export I_MPI_DEVICE=rdma

export I_MPI_DEBUG=0

export I_MPI_FALLBACK_DEVICE=disable

command run task taking into account the features of the environment
mpirun -r ssh -machinefile $PBS_NODEFILE -np $PBS_NP ./tictoc -m -u

Cmdenv -c Tictoc1 omnetpp.ini.

4. Future work

We plan to test the work of OMNeT++ on the cluster "Sergey Korolev" using the project INET

Framework. It is also planned to organize the possibility of full interactive work in the graphical

interface of the modeling environment. To illustrate the effectiveness of the method used, it is planned

to measure the performance of applications running on a cluster.

5. Conclusion

In this paper, we showed the development of software which allows us to combine an interactive mode

of operation of the OMNeT++ modeling system and the batch mode of the cluster “Sergey Korolev”.

in Via initial testing, it was discovered that the way by which networks are created in the course of

simulation does not work in Parallel INET for OMNeT++. As a result, it was decided to create a

network for parallel simulation using a Python script, and for ordinary simulation using a module

created for OMNeT++. These results can be used to solve the other, related, problems [12].

6. References

[1] OMNeT++ Discrete Event Simulator URL: https://omnetpp.org/ (23.01.2019)

[2] Instructions for working with computer systems at SCC of Samara University Supercomputer

center of Samara University URL: http://hpc.ssau.ru/node/19/ accessed 23.01.2019

[3] Enabling Distributed Simulation of OMNeT++ INET Models URL: https://arxiv.org

/pdf/1409.0994.pdf (23.01.2019)

[4] INET Framework URL: https://inet.omnetpp.org/ (23.01.2019)

[5] Yamasaki S, Maruyama N and Matsuoka S 2007 Model-based resource selection for efficient

virtual cluster deployment Proceedings of the 2nd international workshop on Virtualization

technology in distributed computing p 6

[6] Hendrix V, Benjamin D and Yao Y 2012 Scientific Cluster Deployment and Recovery–Using

puppet to simplify cluster management Journal of Physics: Conference Series 396(4) 042027

[7] Kazanskiy N L, Popov S B 2011 Distributed storage and parallel processing for large-size

optical images Proceedings of SPIE (Optical Technologies for Telecommunications) 8410

84100I DOI: 10.1117/12.928441
[8] Seggelmann R, Rüngeler I, Tüxen M and Rathgeb E P 2009 Parallelizing OMNeT++

simulations using xgrid Proceedings of the 2nd International Conference on Simulation Tools

and Techniques (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering) p 69

[9] Karfich O, Bartols F, Steinbach T, Korf F and Schmidt T C 2013 A hardware/software platform

for real-time ethernet cluster simulation in OMNeT++ Proceedings of the 6th International

ICST Conference on Simulation Tools and Techniques (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering) 334-337

[10] Varga A, Sekercioglu A Y 2003 Parallel simulation made easy with OMNeT++ 15th European

Simulation Symposium

[11] Parallel INET for OMNeT++ URL: https://redmine.comsys.rwth-aachen.de/redmine/

projects/parallel-inet/ (01.05.2019)

https://arxiv.org/

Data Science

D Y Polukarov, A P Bogdan

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019) 431

[12] Nikitin V S, Semenov E I, Solostin A V, Sharov V G and Chayka S V 2016 Modeling the"

smartlink connection" performance Computer Optics 40(1) 64-73 DOI:10.18287/2412-6179-

2016-40-1-64-73

Acknowledgments

This work was undertaken as a component of the project part of the state task of the Ministry of

Science and Higher Education of the Russian Federation No. 2.974.2017/4.6.

