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Abstract. We propose a novel architecture for holistic AI systems that integrate 
machine learning and knowledge representation. We extend an earlier proposal 
to divide representations into symbolic, conceptual and subconceptual levels. 
The key idea is to use event boards representing components of events as an 
analogy to blackboards found in earlier AI systems. The event components are 
‘thematic roles’ such as agent, patient, recipient, action, and result. They are 
represented in terms of vectors of conceptual spaces rather than in symbolic 
form that has been used previously. A control level, including an attention 
mechanism decides which processes are run  

Keywords: Holistic AI, event board, knowledge representation, machine learn-
ing, conceptual spaces, attention mechanism. 

1 Program: Integrating categorization and reasoning 

1.1 Knowledge representation and machine learning system are not enough 

AI has two major approaches: Knowledge Representation (KR) and Machine Learn-
ing (ML). During the first decades KR, based on symbolic forms such as logic or 
programming languages, was dominant. Later connectionism, based on neural net-
works, generated a wave of ML with Deep Learning as a recent development [1,2]. 
However, ML is criticised for its bias, data greediness, opacity, and brittleness [3,4], 
while KR suffers from knowledge handling bottlenecks and scalability challenges [5].  

In order to address these problems, hybrid systems that combine the benefits of ML 
and KR have been proposed [6], based on the fact that the two approaches have com-
plementary advantages and disjoint shortcomings. ML's comparative strengths are 
domains with large amounts of training data and where small changes in the inputs 
have, generally speaking, small impacts on the outputs. In contrast, KR works best in 
domains driven by a small number of rules or heuristics or where minor changes can 
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have large-scale cascading effects. 
Attempts to integrate both approaches began in the late 1980s [7] and continue up 

to the present day [8] with applications including medical diagnosis, text classifica-
tion, time management, finance, control systems and bioinformatics. These systems 
are typically designed for specific applications in an ad hoc fashion. 

Existing hybrid systems are therefore limited in scope, and there are few, if any, 
genuinely holistic AI systems. Existing systems often rely on human-intensive inter-
pretation and management to translate ML outcomes into KR systems, and vice versa. 
Integrating ML and KR is recognised as crucial to attaining general AI.  

 
1.2 A proposal for a new architecture 

The main aim of this article is to present an outline of a new architecture for holistic 
AI systems – an architecture that is cognitively motivated. The key idea is to use 
event boards as mediators between different forms of information and different forms 
of processing. Event boards can be seen as a development of the blackboards that 
have been used in some types of integrative AI systems. However, unlike other black-
board models, the event board builds on theories of event representation, which have 
become a central topic in psychology [9] and in semantics [10]. These theories have 
so far not been exploited in AI settings.  

The event boards contain information about different elements of events – present, 
past or planned. They take inspiration from cognitive semantics by keeping track of 
so called thematic roles mainly agents (performing actions) and patients (being affect-
ed), but also objects, recipients, instruments. A main motivation for this form of rep-
resentation comes from the thesis that sentences typically express events [10].  

 
1.3 An outline of a holistic architecture for AI 

Gärdenfors [11] argues that there are aspects of cognitive phenomena for which nei-
ther symbolism of KR nor the connectionism used in ML offer appropriate modelling 
tools. He advocates a third conceptual form of representing information that is based 
on using geometric structures rather than symbols or connections between neurons. 
The essential aspects of concept formation are best described in such representational 
structures. Conceptual representations should not be seen as competing with symbolic 
or connectionist representations. Rather, the three kinds can be seen as three aspects 
of different granularity of representations. Chella et al. [12] implemented a system for 
artificial vision that combines and connects the three types of representation. Chella 
[13] extends the arguments for this type of architecture.  

The new holistic AI architecture introduced herein builds on the three forms of pro-
cessing and their interactions via an event board, but adds an event board as a tool for 
making information available to all three layers of representation. The event board 
also forms a basis for overall controlling functions that, among other things, controls 
the attention of the system. Figure 1 presents an outline of the proposed architecture. 
In the following sections, the different component of the architecture and their inter-
actions will be presented in greater detail. The description is programmatic, but suffi-
cient to inspire AI researchers to new forms of implementations of holistic AI sys-
tems. 
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Fig. 1. The components of the holistic AI architecture 

2 Symbolic, Conceptual and Sub-conceptual Capabilities 

In this section, we briefly describe the three capabilities and their interactions. (For 
more details and arguments see [11, 12, 13]) 

Representing and processing symbolic information essentially consists of symbol 
manipulation, which relies on some logical or programming formalism. The purpose 
of this capability is to handle complex reasoning and planning tasks.  

The information processing involves above all computations of logical conse-
quences. In addition to classical logic, it is natural to include defeasible (non-
monotonic) reasoning and belief revision [14, 15, 16] so that some rules function as 
default principles that can be overridden and changed.  

The primary task of the conceptual capability is to provide representations of basic 
concepts and their relations. We propose that this be done with the aid of conceptual 
spaces [11). A conceptual space consists of a number of domains built up from quality 
dimensions. Examples of basic domains are size, weight, shape, colour and location. 
However, there are also domains that are more abstract, for example kinship relations. 
It is assumed that each of the domains is endowed with a certain geometric structure.  

An important aspect is that concepts are not independent of each other but can be 
structured into domains: Spatial concepts belong to one domain, concepts for colours 
to a different domain, kinship relations to a third, concepts for sounds to a fourth, etc.  

A feature that clearly distinguishes the conceptual capability from the symbolic is 
that similarity plays a central role for the conceptual processes. Similarities between 
objects or properties are represented by distances in spaces. Instances of a concept are 
represented as points in space, and their similarity can be calculated in a natural way 
in the terms of some suitable distance measure. 

The task of the sub-conceptual capability is to transform data into structures that 
can be processed by the other layers. A central task of ML is to categorize data. ML 
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architectures often involve neural networks that have been trained on large data sets. 
The output of such a system often involves considerable reduction of the number of 
dimensions. In this way the multi-dimensional data used by a ML system is filtered 
into a (small) number of domains that can be subsequently used by the conceptual or 
the symbolic capabilities. Currently there is a plethora of ML systems that generate 
information for categorization, not only methods of Deep Learning, but also various 
sensors, artificial vision, action recognition, visual question and answer systems. 
When unsupervised semantic approaches [17] are coupled with visualisation tech-
niques [18], such conceptual spaces can be seen through the close clustering of word 
distributions, leading to forms of automatic discovery. 

Since actions are central for the event semantics we use for the event board, ML 
systems that can generate categorizations of action will be important elements of the 
sub-conceptual capability. For example, Gu et al. [19] show how latent space repre-
sentations for actions like opening and closing doors can be learned through robotic 
manipulation. Currently, there are a number of systems that perform such categoriza-
tion, but still few that do it in online in real-time [20]. 

Summing up the comparison between the three capabilities of representation, one 
can say that the conceptual capabilities function on an intermediary scale between the 
coarse symbolic and the fine-grained connectionist representations. One can say that 
the conceptual dimensions ‘emerge’ from self-organising neural networks. The con-
ceptual layer in turn provides the meanings of the expressions on the symbolic layer. 

After this brief description of the three capabilities we next turn to the their interac-
tions. Going from finer to coarser representations, the output from the sub-conceptual 
capability is often a low-dimensional space that generates a categorization of data. 
This low-dimensional space can then be used by the conceptual capability to find 
correlations between categories, for example that blue-eyed parents do not have 
brown-eyed children or causal relations such as if you eat toadstools you will become 
ill. These concept relations can then be represented on the symbolic level by the rea-
soning capability as sentences with varying degrees of defeasibility. 

Going from coarser to finer representations, generic symbolic sentences – for ex-
ample that songbirds build nests – can generate relations between domains for the 
conceptual capability. Machine learning mechanisms for extracting semantic content 
from sentences often involve dimensional reduction approaches [17] or recurrent 
neural networks [21] and output a latent space representation. Next the reasoning and 
conceptual correlations can function as constraints on the learning processes. Such 
processes can help reduce biases for ML learning. For example, there is a clear recog-
nition that the now powerful, but too often biased and legally discriminating machine 
learning algorithms must be carefully managed to avoid undesirable decisions and to en-
sure compliance with policy, business strategy, law, regulations, ethics and societal values. 

3 The structure and mechanisms of an event board 

Blackboard architectures that were used, for example, in Hearsay II [22] and in Hof-
stadter’s Copycat [23] functioned as ‘libraries’ of information that were provided by a 
number of subsystems. What was added to the blackboard could then in turn be used 
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by other subsystems. While this service has high utility, a common drawback of the 
blackboard architectures is that they lacked a unified way of describing what is repre-
sented on the blackboard. Related approaches such as publish-subscribe as used in 
ROS for robotics suffer from the same shortcoming. 

3.1 Thematic roles and event representations 

The event boards that are proposed here build on theories of event representations as a 
way of interpreting and connecting the information across the reasoning, conceptual 
and sub-conceptual capabilities. Our points of departure are accounts of ‘thematic 
roles’ in semantics [24] together with the two-vector representation of events devel-
oped by Gärdenfors and Warglien [10, 25, 26], where an event is built up from an 
agent, an action, a patient, a result and possibly other roles such as instrument, recipi-
ent, and beneficiary. Agent and patient are objects (animate or inanimate) that have 
different properties. A related model is the ‘reservoir computing’ developed by 
Dominey and his colleagues [27, 28, 29] that also employs thematic roles. However, 
reservoir computing builds only on neural networks. The event model also reminds of 
Schank and Abelson’s [30] schema theory, although that theory neither systematically 
relies on thematic roles, nor on vector representations. 

The two-vector model states that an event is represented in terms of two compo-
nents – the force/trigger of an action that drives/initiates the event, and the result of 
its application. The result of an event is modelled as a vector representing the change 
of properties of the patient before and after the event [10]. For example, when some-
body (agent) pushes (force vector) a table (patient), the forces exerted make the table 
move (the result vector). Or when somebody bends a stick, the result may be that the 
stick breaks. (When the result involves no change, then the event is a state.) A central 
part of an event category is the mapping from actions to results. This mapping is part 
of the representation of an event category [26] and it contains the central information 
about causal relations. Ideally, the event board will represent persistent background 
events. The decay of objects, the tendency of objects to fall if unsupported, the fact 
that liquids will settle may all be attributed to persistent processes. 

The event board may be queried for the set of active events or states at any given 
point in time. Representation capabilities will lead to activities on the event board and 
they can respond to and contribute new events to the event board. Where concrete 
observations are unavailable, changes can be extrapolated from previous states by 
interpolating the change vector of current events and by integrating over the gradient 
of any continuous events and the background. 

The events need not only involve physical forces, but can also be mental (for ex-
ample commands, threats, insults and persuasive arguments) that can create a change 
in the emotional state of the addressee. The change is not physical but it can still be 
represented in terms of changes in a conceptual space (assuming that the concept 
‘person’ has a domain of emotional states). Also social events such as buying, selling, 
marrying, can be represented in terms of thematic roles and conceptual spaces. 
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3.2 The role of the event board in the flow of information 

By explicitly deconstructing events into constituent parts (agent, action, result, etc.) 
the event board can translate between semantic representations of events, like descrip-
tions, and empirically witnessed events in a manner that allows statistical observa-
tions to be recorded. In this way, we can learn rule based descriptive beliefs that trans-
late to events and actions, which in turn can lead to outcome expectations that can 
guide action planning. 

What distinguishes an event board from a traditional blackboard is that the event 
structure generates a rich set of expectations that can guide the various processes. For 
example, actions lead to expectations of results. Similarly, if an agent doing some-
thing is detected, this can lead the system to search for the patient and what happens 
to it. Such expectations are also a central factor for the attention process that will be 
outlined in the following section. 

Most blackboard systems use some symbolic form of representation, for example 
‘object spaces’ [31]. In contrast, the event boards are based on vector representations: 
objects are represented as vectors in property spaces and actions and other processes 
as dynamic vectors. Vector representations allow various forms of similarities to be 
calculated. This form of representation also allows more realistic simulations of 
planned actions and their consequences in a dynamic system.  

3.3 From events to sentences 

A major reason for focussing on event representations is that according to Gärdenfors 
[10], the meanings of sentences are events (including states). When formulating a 
sentence from an event representation, a construal that picks out a focus of attention 
on the event must be chosen. For example, if a robot sees that another robot called 
“Pepper” pushes the box, the construal can select the agent and the action performed. 
Then the appropriate sentence expressed would be:  

(1) Pepper pushed the box. 
If the attentional focus instead is on the patient and the action performed on it, the 
corresponding sentence would be  

(2) The box was pushed by Pepper. 
A similar approach to generating sentences from a board, called a ‘reservoir’, of facts 
has been developed by Dominey and his group [27, 28, 29]. The elements in the res-
ervoir are sorted into information about an agent, a patient, an object and a recipient, 
which covers some of the main thematic roles. In their architecture, all information is 
generated by neural networks, while in our version the event components can be gen-
erated from symbolic and conceptual systems in addition to the sub-conceptual ones. 

4 The cognitive control 

The control part can use the sub-conceptual capability to learn to map from descrip-
tions (provided by sentences) or sensory data to events in a form that extracts the 
constituent thematic roles, particularly separating the actions and the results. This 



7 

mapping process involves learning an attention model that directs the focus of the 
system highlighting the facets of information that are most relevant to each compo-
nent. 

4.1 Input and output 

All capabilities in the holistic AI architecture can receive input and produce output 
directly, and share information on the event board. There are two major kinds of input 
to the proposed architecture: sentences and sensory data. Sentences are either generics 
(“Spiders have eight legs”) that feed directly to relations between regions on the con-
ceptual layer or specific facts that are used by the reasoning capability and for gener-
ating data points for the conceptual capability that are made available on the event 
board. Separating the component roles, particularly the actions and results, along with 
other thematic constituent parts of a description can be performed by parsing [32] 
providing either a textual or context rich latent space result. The sub-conceptual capa-
bility acquires sensory and symbolic data and provides it to its ML modules for cate-
gorization or as data points to the conceptual capability. 

 Likewise, there are two major kinds of output: sentences and actions. Sentences 
are communicated as part of cooperative or planning activities. Actions are also per-
formed as part of cooperation by the control part. Output processes can be thought of 
either as conditional models, extracting information from text, or as generative mod-
els, able to create textual output from their latent state inputs [33]. In this way, the 
mechanism that learns internal representations from descriptions also learns to gener-
ate compatible instructions for cooperation and planning purposes. 

4.2 The role of the attention mechanism 

The role of attention is to direct the system to relevant information. Attention models 
have been developed for language translation [34], which shows a latent space repre-
sentation can be formed by learning multi-headed attentions that inform which parts 
of a sentence correspond in different languages. Attention models have also been used 
for image captioning and labelling [35] which converts a latent representation of a 
picture into a latent caption representation and then into a description by learning how 
to focus attention on each part of the image. Attention has also been used as the basis 
for the cognitive architecture ASMO [36]. 

The attention mechanism in the cognitive control determines the entities of an 
event that are most relevant. In fact, the attention mechanism not only provides a 
priority – it also determines if an event is posted to the event board. At any time, sev-
eral ML algorithms can run in parallel and independently process similar information 
streams and the outcomes can go into direct competition for attention. When writing 
event parts on the event board, these algorithms can compete for similar resources 
within an event. For example, assume an agent is pushing an object, thus moving it, 
while at the same time an apple falls from a tree. If attention is currently biased to-
wards observing the action of the agent, the apple falling from the tree may be con-
sidered irrelevant to the current event and not allowed entry to the event board. The 
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agent action, the object motion and the apple falling can be detected and represented 
by separate ML algorithms, which demand attention to write the captured entities on 
the event board. 

ASMO [36] is an attention architecture able to resolve conflicts on single resources 
demanded by multiple processes. This is critical for controlling a robot in real-time. In 
this architecture, each process is attributed an ‘attention value’ on the basis of the 
current available context, which in our proposed model can come from the event 
board itself. Each time a resource is demanded by multiple processes at the same 
time, the attention mechanism allows the process with higher attention value to take 
control of the resource, while inhibiting the competing process(es). The architecture 
comes with learning mechanisms that can adapt the attention values provided by the 
demanding processes through experience. Building upon the ASMO architecture, we 
propose to use a similar attention mechanism to prioritise events on the event board. 

4.3 The role of simulations 

Learning from simulated environments has gained popularity because simulated 
events can accelerate learning more than using real-time events. Mnih et al. [37] show 
how optimum policy functions can be learned through game play, while Gu et al. |38] 
show how continuous advantage functions can be used to learn skills through simula-
tion. However, in each case, the scope of the model is constrained to simple tasks 
because of the slow learning regimes and complex calculation overheads of Deep 
Learning architectures. By transforming these into conceptual spaces, the added con-
straints can reduce the parameter space allowing more efficient learning to occur and 
causal relations to be identified. 
 Johnston’s COMIRIT [39] can be used to integrate commonsense reasoning and 
the geometric inference of conceptual spaces. COMIRIT establishes a novel mecha-
nism for assigning ‘semantic attachments’ to symbols in KR systems that can be used 
to automatically construct simulations of the external world and utilise machine learn-
ing outputs. Simulations are just one of many representations that use similarity measures 
and operations for projecting forward and backwards to understand the causes and conse-
quences of actions. Conceptual spaces of actions, such as those proposed Chella et al. [40] 
and more recently by Gharaee et al. [20] will be similarly used to reason about complex 
situations. In this way, simulation provides the AI system the imagination to depict a de-
scription of events needed to better understand the physical, social and, one day, emotional 
world we live in. 

5 Conclusion 

If we want an AI systems to solve the same tasks in similar ways that as humans do, it 
is natural to take inspiration from the architecture of human cognition. The main idea 
underlying the new holistic AI architecture is to use semantic event boards to inte-
grate reasoning and learning capabilities and representations. This builds on the fact 
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that event cognition is characteristic for human deliberation, planning and problem 
solving.  

The architecture we propose allows for representations on three different degrees 
of coarseness: the sub-conceptual, the conceptual and the symbolic layers. We have 
proposed that by using event boards, based on vector representations, a new type of 
holistic architecture can be constructed. Given the limited space, our proposal is by 
necessity programmatic. It will be evaluated by implementations of some application 
domains including social robotics. 
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