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Abstract
Preference are central to decision making by both
machines and humans. Representing, learning, and
reasoning with preferences is an important area of
study both within computer science and across the
social sciences. When we give our preferences to
an AI system we expect the system to make deci-
sions or recommendations that are consistent with
our preferences but the decisions should also adhere
to certain norms, guidelines, and ethical principles.
Hence, when working with preferences it is neces-
sary to understand and compute a metric (distance)
between preferences – especially if we encode both
the user preferences and ethical systems in the same
formalism. In this paper we investigate the use of
CP-nets as a formalism for representing orderings
over actions for AI systems. We leverage a recently
proposed metric for CP-nets and a neural network
architecture, CPMETRIC, for computing this metric.
Using these two tools we look at the how one can
build a fast and flexible value alignment system.

1 Introduction
Preferences are central to individual and group decision mak-
ing by both computer systems and humans. Due to this
central role in decision making the study of representing
[Rossi et al., 2011], learning [Fürnkranz and Hüllermeier,
2010], and reasoning [Domshlak et al., 2011] with prefer-
ences is a focus of study within computer science and in
many other disciplines including psychology and sociology
[Goldsmith and Junker, 2009]. Individuals express their pref-
erences in many different ways: pairwise comparisons, rank-
ings, approvals (likes), positive or negative examples, and
many more examples are collected in various libraries and
databases [Mattei and Walsh, 2013; Mattei and Walsh, 2017;
Bache and Lichman, 2013]. A core task in working with
preferences is understanding the relationship between pref-
erences. This often takes the form of a dominance query,
i.e., which item is more or most preferred, or distance mea-
sures, i.e., which object is the closest to my stated preference.
These types of reasoning are important in many domains in-
cluding recommender systems [Fattah et al., 2018], collec-
tive decision making [Brandt et al., 2016], and value align-

ment systems [Russell et al., 2015; Loreggia et al., 2018c;
Loreggia et al., 2018b].

Using a formal structure to model preferences, especially
one that directly models dependency, can be useful for reason-
ing. For example, it can support reasoning based on inference
and causality, and provide more transparency and explainabil-
ity since the preferences are explicitly represented and hence
scrutable [Kambhampati, 2019]. A number of compact pref-
erence representation languages have been developed in the
literature for representing and reasoning with preferences; see
the work of Amor et al. [2016] for a survey of compact graph-
ical models; we specifically focus on conditional preference
networks (CP-nets) [Boutilier et al., 2004].

CP-nets are a compact graphical model used to capture
qualitative conditional preferences over features (variables)
[Boutilier et al., 2004]. Qualitative preferences are important
as there is experimental evidence that qualitative preferences
may more accurately reflect humans’ preferences in uncertain
information settings [Popova et al., 2013; Allen et al., 2015].
CP-nets are a popular formalism for specifying preferences in
the literature and have been used for a number of applications
including recommender systems and product specification
[Pu et al., 2011; Fattah et al., 2018]. Consider a car that is
described by values for all its possible features: make, model,
color, and stereo options. A CP-net consists of a dependency
graph and a set of statements of the form, “all else being equal,
I prefer x to y.” For example, in a CP-net one could say “Given
that the car is a Honda Civic, I prefer red to yellow.”, the
condition sets the context for the preference over alternatives.
These preferences are qualitative, i.e., there is no quantity
expressing the degree of preference.

A CP-net induces an ordering over all possible outcomes,
i.e., all complete assignments to the set of features. This is a
partial order if the dependency graph of the CP-net is acyclic,
i.e., the conditionality of the statements does not create a cycle,
as is often assumed in work with CP-nets [Goldsmith et al.,
2008]. The size of the description of the CP-net may be ex-
ponentially smaller than the partial order it describes. Hence,
CP-nets are called a compact representation and reasoning and
learning on the compact structure, instead of the full order,
is an important topic of research. Recent work proposes the
first formal metric to describe the distance between CP-nets
[Loreggia et al., 2018a] and the related formalism of LP-trees
[Li and Kazimipour, 2018] in a rigorous way. What is im-



portant is not the differences in the surface features of the
CP-nets, e.g., a single statement or dependency, but rather the
distance between their induced partial orders. Even a small
difference in a CP-net could generate a very different partial
order, depending on which feature is involved in the modifica-
tion. While the metrics proposed by Loreggia et al. [2018a]
are well grounded, they are computationally hard to compute,
in general, and approximations must be used.

We envision the use of CP-nets to solve one part of the
value alignment problem [Russell et al., 2015; Loreggia et
al., 2018c; Loreggia et al., 2018b]. This is part of a broader
research program we call Ethically Bounded AI, that seeks
to understand how to harness the power of AI yet prevent
these systems from making choices we do not consider ethical
[Rossi and Mattei, 2019]. In this work we envision using a dis-
tance metric to measure the difference between an individual
agent’s preferences over actions and another ordering given by,
e.g., ethics, norms, or business values [Loreggia et al., 2018c;
Loreggia et al., 2018b].

Following work in metric learning over structured repre-
sentations [Bellet et al., 2015], we wish to learn the distance
between partial orders represented compactly as CP-nets. We
do not want to work with the partial orders directly as they
may be exponentially larger than the CP-net representation. In-
formally, given two CP-nets, we wish to estimate the distance
between their induced partial orders using a neural network.
The number of possible CP-nets grows extremely fast, from
481,776 for 4 binary features to over 5.24 × 1040 with 7 bi-
nary features [Allen et al., 2017]. However, the computation
time of the approximation algorithm proposed by Loreggia et
al. [2018a] scales linearly with the number of features, hence,
new methods must be explored. Therefore, leveraging the
inferential properties of neural networks may help us make
CP-nets more useful as a preference reasoning formalism.
Contributions. We propose using metric learning as a tool
to practically solve aspects of the value alignment problem. We
propose to model both user preferences and ethical priorities
over actions using the CP-net formalism and we demonstrate
how one can use a state of the art neural network formula-
tion, CPMETRIC, to quickly and accurately judge distances
between preferred actions and ethical actions. We evaluate
our models and metrics on generated CP-nets and show that
CPMETRIC leads to a speed up in computation while still
being accurate.

2 CP-nets
Conditional Preference networks (CP-nets) are a graphical
model for compactly representing conditional and qualita-
tive preference relations [Boutilier et al., 2004]. CP-nets are
comprised of sets of ceteris paribus preference statements
(cp-statements). For instance, the cp-statement, “I prefer red
wine to white wine if meat is served," asserts that, given two
meals that differ only in the kind of wine served and both
containing meat, the meal with red wine is preferable to the
meal with white wine. CP-nets have been extensively used
in the preference reasoning preference learning and social
choice literature as a formalism for working with qualita-
tive preferences [Domshlak et al., 2011; Rossi et al., 2011;

Brandt et al., 2016]. CP-nets have even been used to com-
pose web services [Wang et al., 2009] and other decision aid
systems [Pu et al., 2011].

Formally, a CP-net has a set of features (or variables)
F = {X1, . . . , Xn} with finite domains D(X∞), . . . ,D(X\).
For each feature Xi, we are given a set of parent features
Pa(Xi) that can affect the preferences over the values of Xi.
This defines a dependency graph in which each node Xi has
Pa(Xi) as its immediate predecessors. An acyclic CP-net is
one in which the dependency graph is acyclic. Given this struc-
tural information, one needs to specify the preference over the
values of each variableXi for each complete assignment to the
parent variables, Pa(Xi). This preference is assumed to take
the form of a total or partial order over D(X〉). A cp-statement
for some feature Xi that has parents Pa(Xi) = {x1, . . . , xn}
and domain D(Xi) = {a1, . . . , am} is a total ordering over
D(Xi) and has general form: x1 = v1, x2 = v2, . . . , xn =
vn : a1 � . . . � am, where for each Xi ∈ Pa(X1) : xi = vi
is an assignment to a parent of Xi with vi ∈ D(X〉). The set
of cp-statements regarding a certain variable Xi is called the
cp-table for Xi.

Consider the CP-net depicted graphically in Figure 1 (left)
with features are A, B, C, and D. Figure 1 (right) gives the
full induced preference order for the CP-net. Each variable
has binary domain containing f and f if F is the name of the
feature. All cp-statements in the CP-net are: a � a, b � b,
(a∧ b) : c � c, (a∧ b) : c � c, (a∧ b) : c � c, (a∧ b) : c � c,
c : d � d, c : d � d. Here, statement a � a represents
the unconditional preference for A = a over A = a, while
statement c : d � d states that D = d is preferred to D = d,
given that C = c. The semantics of CP-nets depends on the
notion of a worsening flip: a change in the value of a variable
to a less preferred value according to the cp-statement for that
variable. For example, in the CP-net above, passing from abcd
to abcd is a worsening flip since c is better than c given a
and b. One outcome α is preferred to or dominates another
outcome β (written α � β) if and only if there is a chain of
worsening flips from α to β. This definition induces a preorder
over the outcomes, which is a partial order if the CP-net is
acyclic [Boutilier et al., 2004], as depicted in Figure 1 (right).

The complexity of dominance and consistency testing in
CP-nets is an area of active study in preference reasoning
[Goldsmith et al., 2008; Rossi et al., 2011]. Finding the opti-
mal outcome of a CP-net is NP-hard [Boutilier et al., 2004] in
general but can be found in polynomial time for acyclic CP-
nets by assigning the most preferred value for each cp-table.
Indeed, acyclic CP-nets induce a lattice over the outcomes as
(partially) depicted in Figure 1 (right). The induced preference
ordering, Figure 1 (right), can be exponentially larger than the
CP-net Figure 1 (left), which motivates learning a metric using
only the (more compact) CP-net.

3 Preferences and Ethical Priorities
In what follow we assume that we can describe a user’s behav-
ior through her preferences over the features of the domain.
This can be modeled as a CP-net and it gives us an ordering
over the actions the user would like to take. The example given
in Loreggia et al. [2018c] concerns a driver of a vehicle: they
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Figure 1: A CP-net with n = 4 features (left) and part of in the induced partial order (right). Note that the partial order is over all
2n = 16 possible combinations and arrows denote the dominance relation. We have arranged the nodes so that each is one flip
between the levels.

may want to go as fast as possible and run over certain small
animals. However, there may be some overall ethical or moral
guidelines (priorities) the system must follow. In this case we
want to evaluate the difference, or distance, between the indi-
vidual user and the society. This idea of morality as ordering
over actions was first proposed by Sen [1974].

To operationalize this system we wish to describe both pref-
erences and priorities using the CP-net formalism and using a
notion of distance in the metric space of CP-nets. This enables
us and the system to understand whether users’ preferences
are close enough to the moral principles or not. Eventually,
when preferences deviate from the desired behavior, we can
use CP-nets, since they induce an ordering, to find a trade-
off so that the quality of the decision with respect to the
subjective preferences does not significantly degrade when
conforming to the ethical principles [Loreggia et al., 2018c;
Loreggia et al., 2018b]. In this way we have bounded the be-
havior of the system to be ethical while still being responsive
to the user preferences [Rossi and Mattei, 2019].

Traditional reasoning and learning approaches in AI provide
different and complementary capabilities to an autonomous
agent. Symbolic and logical reasoning allow these agents to
manipulate symbols and perform inference, while machine
learning techniques can learn and optimize many ill-defined
problems from large amounts of data. As ongoing work, we
intend to study the use of both kinds of approaches to model,
learn, and reason with both preferences and ethical princi-
ples. Inspired by the System 1 and System 2 theory of Daniel
Kahneman [Kahneman, 2011], we will define a dual-agent
architecture that will provide autonomous agents with the abil-
ity to combine symbolic and accurate reasoning with data
interpretation and learning, for both preferences and ethical
principles. This will allow machines to be flexible and context-

dependent in how they handle and combine these two sources
of information for decision making [Rossi and Loreggia, 2019;
Rossi and Mattei, 2019].

The combined use of deep learning techniques and logi-
cal reasoning formalisms is an exciting research direction to
find a principled ways to develop AI systems that are both ac-
countable and able to explain themselves. We hope that these
approaches will be able to overcome limitations of the “black-
box paradigm” in the machine learning discipline [Rossi and
Loreggia, 2019].

4 Metric Learning on CP-nets
Metric learning algorithms aim to learn a metric (or distance
function) over a set of training points or samples [Sohn, 2016].
The importance of metrics has grown in recent years with the
use of these functions in many different domains: from clus-
tering to information retrieval and from recommender systems
to preference aggregation. For instance, many clustering algo-
rithms like the k-Means or classification algorithm including
k-Nearest Neighbor use a distance value between points.

Formally, a metric space is a pair (M,d) where M is a set
of elements and d is a function d : M ×M → R where d
satisfies four criteria. Given any three elements A,B,C ∈M ,
d must satisfy

1. (1) d(A,B) ≥ 0, there must be a value for all pairs;
2. (2) d(A,B) = d(B,A), d must be symmetric;
3. (3) d(A,B) ≤ d(A,C) + d(C,B); d must satisfy the

triangle inequality; and
4. (4) d(A,B) = 0 if and only if A = B; d can be zero if

and only if the two elements are the same.
Xing et al. [2002] first formalized the problem of metric

learning, i.e., learning the metric directly from samples rather



than formally specifying the function d. This approach requires
training data, meaning that we have some oracle that is able
to give the value of the metric for each pair. The success of
deep learning in many different domains [Krizhevsky et al.,
2012] has lead many researchers to apply these approaches to
the field of metric learning, resulting in a number of important
results [Bellet et al., 2015].

In this work we focus on metric spaces (M , d) where M
is a set of CP-nets. Given this, we want to learn the distance
d which best approximates the Kendall tau distance (KTD)
[Kendall, 1938] between the induced partial orders. Informally,
the Kendall tau distance between two orderings is the number
of pairs that are discordant, i.e., not ordered in the same way,
in both orderings. This distance metric extended to partial
orders (Definition 1) was shown to be a metric on the space of
CP-nets by Loreggia et al. [2018a]. To extend the classic KTD
to CP-nets, a penalty parameter p defined for partial rankings
[Fagin et al., 2006] was extended to the case of partial orders.
Loreggia et al. [2018a] assume that all CP-nets are acyclic
and in minimal (non-degenerate) form, i.e., all arcs in the
dependency graph have a real dependency expressed in the
cp-statements, a standard assumption in the CP-net literature
(see e.g., [Allen et al., 2017; Boutilier et al., 2004]).
Definition 1. Given two CP-nets A and B inducing partial
orders P and Q over the same unordered set of outcomes
U : KTD(A,B) = KT (P,Q) =

∑
∀i,j∈U,i 6=j K

p
i,j(P,Q)

where i and j are two outcomes with i 6= j (i.e., iterate over
all unique pairs), we have:

1. Kp
i,j(P,Q) = 0 if i, j are ordered in the same way or are

incomparable in P and Q;
2. Kp

i,j(P,Q) = 1 if i, j are ordered inversely in P and Q;
3. Kp

i,j(P,Q) = p, 0.5 ≤ p < 1 if i, j are ordered in P
and incomparable in Q (resp. Q,P ).

To make this distance scale invariant, i.e., a value in [0, 1],
it is divided by |U |.

CP-nets present two important challenges when used for
metric learning. The first is that we are attempting to learn a
metric via a compact representation of a partial order. We are
not learning over the partial orders induced by the CP-nets
directly, as they could be exponentially larger than the CP-nets.
The second challenge is the encoding of the graphical struc-
ture itself. Graph learning with neural networks is still a active
and open area of research; Goyal and Ferrara [2017] give a
complete survey of recent work as well as a Python library of
implementations for many of these techniques. Most of these
works focus on finding good embeddings for the nodes of the
network and then using collections of these learned embed-
dings to represent the graph for, e.g., particular segmentation
or link prediction tasks. None of these techniques have been
applied to embedding graphs for metric learning.

5 Structure of CPMETRIC
In our task the metric space is (M,d) where M is a set of
compact, graphical preferences that induce a partial order
and our goal is to learn the metric d only from the compact,
graphical representation. The key challenge is the need to
find a vector representation of not only the graph but the

cp-statement. We briefly define the representations used for
CPMETRIC here, for a complete overview, see Loreggia et
al. [2019].

We represent a CP-net I over m using two matrices. First is
the adjacency matrix adjI which represents the dependency
graph of the CP-net and is a m×m matrix of 0s and 1s. The
second matrix represents the list of cp-statements cptI , which
is a m× 2m−1 matrix, where each row represents a variable
Xi ∈ F and each column represents a complete assignment
for each of the variables in F \Xi. The list is built following
a topological ordering of variables in the CP-net. Each cell
cptI(i, j) stores the preference value for the ith variable given
the jth assignment to variables in F \Xi.

The set of training examples X = {x1, . . . , xn} is made
up of pairs of CP-nets represented through their normalized
Laplacians and the cp-statements. The set of corresponding
labels Y = {y1, . . . , yn}T , where each yi ∈ Y, yi ∈ [0, 1]
is the normalized value of KTD between the CP-nets in xi.
Each xi ∈ X is then a tuple (LA, cptA,LB , cptB) represent-
ing a pair of CP-net (A,B) by their Laplacian, LA, and the
encoding of their cp-statements, cptA.

6 Experiment
CPMETRIC is trained to learn the KTD metric by varying the
number of features of the CP-nets n ∈ {3, . . . , 7} and using
two different autoencoders. For a complete discussion of the
performance of CPMETRIC on the standard classification and
regression tasks in comparison with I-CPD, including a dis-
cussion of tuning hyperparameters see Loreggia et al. [2019].
In this paper we focus on what we call the comparison task
that is necessary for value alignment systems. Informally, this
is the task where given two CP-nets, say one representing the
preferences of the user and one representing a set of ethical
values or constraints, we want to decide if some third CP-net,
say the course of action to be taken, is closer to the preferences
or closer to the constraints.

6.1 Data Generation and Training
For each number of features n ∈ {3, . . . , 7} we generate 1000
CP-nets uniformly at random using the generators from Allen
et al. [Allen et al., 2017]. This set of CP-nets is split into a
training-generative-set (900 CP-nets) and test-generative-set
(100 CP-nets) 10 different ways to give us 10 fold cross vali-
dation. For each fold we compute the training and test dataset
comprised of all, e.g.,

(
900
2

)
, possible pairs of CP-nets from

the training-generative-set and test-generative-set, respectively,
along with the value of KTD for that pair. While we generate
the CP-nets themselves uniformly at random observe that this
creates an unbalanced set of distances – it induces a normal
distribution – and hence our sets are unbalanced. Figure 2
shows the distribution of of CP-net pairs over 20 intervals for
all CP-nets generated for n ∈ {3, . . . , 7}. While our classifica-
tion experiments are for m = 10 classes, dividing the interval
into 20 classes provides a better visualization of the challenge
of obtaining training samples at the edges of the distribution.

We ran a preliminary experiment on balancing our dataset
by sub-sampling the training and test datasets. In these
small experiments, performance was much worse than per-
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Figure 2: Histogram of the number of CP-net pairs per in-
terval across all experimental datasets. CP-nets pairs are not
distributed uniformly in the class intervals.

formance on the unbalanced dataset. Because we are learn-
ing a metric, for each CP-net A, there is only one CP-net
B such KTD(A,B) = 1 and only one CP-net C such
KTD(A,C) = 0. Consequently, attempting to balance or
hold out CP-nets from test or train can lead to poor perfor-
mance. We conjecture that in order to improve this task we
should perform some kind of data augmentation, but this
would introduce more subjective assumptions on how and
where data should be augmented [Wong et al., 2016].

All training was done on a machine with 2 x Intel(R)
Xeon(R) CPU E5-2670 @ 2.60GHz and one NVidia K20
128GB GPU. We train CPMETRIC for 70 epochs using the
Adam optimizer [Kingma and Ba, 2014]. For each number of
features of the CP-net n we use all

(
900
2

)
pairs in the training-

set. There are only 488 binary CP-nets with 3 features [Allen
et al., 2017], hence, for n = 3 the training-set is 17K samples
while for n > 3 the number of samples in the training-set
is 800K. Both the Autoencoder and Siamese Autoencoder
models are trained for 100 epochs using the Adam optimizer
[Kingma and Ba, 2014] using the same training-set. Model
weights from the best performing epoch are saved and subse-
quently transferred to the deep neural network used to learn
the distance function.

Figure 3: Performance of the autoencoder on the validation
and training set for 10 epochs.

The training and validation loss for the autoencoder is
shown in Figure 3. Observe that the loss for the CPT rep-
resentation approaches zero after only 3 epochs for both the
training and validation phases. The same trend is true for the
adjacency matrix, though the loss converges to ≈ 0.15.

6.2 Comparison Task Performance
For many applications we are not concerned with the true
value of the distance but rather deciding which of two prefer-
ences is closer to a reference point. For example, in product
recommendation we may want to display the closer of two
objects and not care about computing the values [Pu et al.,
2011]. Formally, the qualitative comparison takes takes a set of
CP-nets triples (A,B,C), where A is a reference CP-net and
the task is to decide which other CP-net B or C is closer to
A. We generate uniformly at random 1000 triples of CP-nets
for each n ∈ {3, . . . , 7}. For each triple (A,B,C) we com-
pute both KTD(A,B) and KTD(A,C) to establish ground
truth and use our regression networks to predict the distance
between (A,B) and (A,C).

Table 1 displays the accuracy, as a percentage out of 1000
trials, of our three CPMETRIC architectures versus I-CPD for
this task; Table 2 gives the average runtime per pair, averaged
over all 1000 trials. The standard deviations in Table 1 are
across the 10 folds of the training/test set. For all of our net-
works we obtain an accuracy above 85% and all the networks
perform about the same on this task (±2.0%) and the trend for
accuracy is flat across the size of the CP-nets. It is interesting
to note that on this task neither of the autoencoders were able
to significantly improve performance as they did for the quan-
titative comparison tasks. While the results are inconclusive,
as all instances of CPMETRIC performed about the same, it
will be interesting to see if there are autoencoder architectures
that are more suited to the comparison task.

A positive take away is that, as Table 2 shows, we achieve
a sub-linear increase in inference time for our model. I-CPD
scales linearly with the description size of the CP-net so the
neural network does, after training, offer the ability to, in a
practical amount of time, compare CP-nets of larger sizes.
This gives us hope that while the metric itself is NP-hard to
compute in a direct way, we can use the power of deep learning
to enable systems that could be practically deployed.

Unfortunately the trend for accuracy is negative when the
number of features increases. However, this is also the case for
the I-CPD approximation and both metrics seem to be losing
accuracy at about the same rate. The loss in accuracy for the
neural network models could be caused by the unbalanced
nature of the training and testing datasets. Again, as shown
in Figure 2, generating the CP-nets themselves uniformly at
random does not give us a uniform distribution over distances
and correcting this may give better performance.

Our conjecture for the slight disadvantage for CPMETRIC
over I-CPD has to do with the directionality of the errors.
When training the network we are optimizing for accuracy on
the regression task. However, when using this metric it does
not matter if CPMETRIC overestimates by a small amount
or underestimates by some small amount. However, when
looking at the comparison task, it may matter a lot if the
direction of our errors is random. An important direction for



No Autoencoder Autoencoder Siam. Autoencoder I-CPD

N Accuracy on Triples Accuracy on Triples Accuracy on Triples Accuracy on Triples

3 85.01% (2.01%) 85.76% ( 2.29%) 85.47% (2.32%) 91.80%
4 91.17% (0.92%) 91.38% (1.10%) 91.78% (1.13%) 92.90%
5 88.40% (0.91%) 89.36% (1.08%) 89.18% (1.08%) 90.80%
6 87.33% (0.80%) 87.17% (1.33%) 86.79% (1.84%) 90.10%
7 84.79% (1.16%) 84.57% (1.14%) 85.12% (0.86%) 89.90%

Table 1: Performance of the various network architectures on the qualitative comparison task as well as performance of I-CPD.
While our networks do not achieve the best performance on this task they are competitive with the more costly approximation
algorithm I-CPD.

N I-CPD Autoencoder Neural Network

3 0.69 (0.48) msec 0.087 (0.004) msec
4 1.09 (0.33) msec 0.098 (0.004) msec
5 1.85 (0.49) msec 0.100 (0.005) msec
6 3.16 (0.74) msec 0.114 (0.003) msec
7 4.65 (0.86) msec 0.138 (0.001) msec

Table 2: Comparison of the mean runtime for a single triple
over 1000 trials on the qualitative comparison task of the
neural network and I-CPD.

future work is to try different optimization objectives when
training the network to see if this bias is the reason for the
underperformance.

7 Conclusion
In this paper we have discussed how to use CPMETRIC, a
novel neural network model to learn a metric (distance) func-
tion between partial orders induced from a CP-net, a compact,
structured preference representation, to enable practical value
alignment systems. To our knowledge this is the first use of
neural networks to learn and measure preferences for the value
alignment problem. We feel that this is an interesting and
fruitful direction for research in the AI Safety domain as we
must develop practical and efficient tools that can be used to
effectively harness the power of AI systems.

Important directions for future work include integrating
novel graph learning techniques to our networks and extend-
ing our work to other formalisms including, e.g., PCP-nets
[Cornelio et al., 2013] and LP-trees [Li and Kazimipour, 2018].
PCP-nets are a particularly interesting direction as they have
been proposed as an efficient way to model uncertainty over
the preferences of a single or multiple agents [Cornelio et al.,
2015]. Another important extension involves setting contexts
for different preference and ethical priority encodings. CP-
nets and many other preference formalisms model a particular
domain but do not give us any insight into when we may need
to pass between one context and another.
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and N. Wilson. The computational complexity of dominance and
consistency in CP-nets. Journal of Artificial Intelligence Research,
33(1):403–432, 2008.

[Goyal and Ferrara, 2017] Palash Goyal and Emilio Ferrara. Graph
embedding techniques, applications, and performance: A survey.
CoRR, abs/1705.02801, 2017.

[Kahneman, 2011] Daniel Kahneman. Thinking, fast and slow. Far-
rar, Straus and Giroux, New York, 2011.

[Kambhampati, 2019] S. Kambhampati. Synthesizing explainable
behavior for human-ai collaboration. In Proc. 18th AAMAS, 2019.

[Kendall, 1938] M. G. Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938.

[Kingma and Ba, 2014] D. P. Kingma and J. Ba. Adam: A method
for stochastic optimization. arXiv/1412.6980, 2014.

[Krizhevsky et al., 2012] A. Krizhevsky, I. Sutskever, and G. E. Hin-
ton. Imagenet classification with deep convolutional neural net-
works. In Proc. Advances in Neural and Information Processing
Systems (NeurIPS), pages 1097–1105, 2012.

[Li and Kazimipour, 2018] Minyi Li and Borhan Kazimipour. An
efficient algorithm to compute distance between lexicographic
preference trees. In Proc. 27th IJCAI, pages 1898–1904, 2018.

[Loreggia et al., 2018a] A. Loreggia, N. Mattei, F. Rossi, and K. B.
Venable. On the distance between CP-nets. In Proc. 17th AAMAS,
2018.

[Loreggia et al., 2018b] A. Loreggia, N. Mattei, F. Rossi, and K. B.
Venable. Preferences and ethical principles in decision making.
In Proceedings of the 1st AAAI/ACM Conference on AI, Ethics,
and Society (AIES), 2018.

[Loreggia et al., 2018c] A. Loreggia, N. Mattei, F. Rossi, and K. B.
Venable. Value alignment via tractable preference distance. In R. V.
Yampolskiy, editor, Artificial Intelligence Safety and Security,
chapter 18. CRC Press, 2018.

[Loreggia et al., 2019] A. Loreggia, N. Mattei, F. Rossi, and K. B.
Venable. CPMETRIC: Deep siamese networks for learn-
ing distances between structured preferences. arXiv preprint
arXiv:1809.08350, 2019.

[Mattei and Walsh, 2013] N. Mattei and T. Walsh. PREFLIB: A
library for preferences, HTTP://WWW.PREFLIB.ORG. In Proc. 3rd
ADT, 2013.

[Mattei and Walsh, 2017] N. Mattei and T. Walsh. A PREFLIB.ORG
Retrospective: Lessons Learned and New Directions. In U. En-
driss, editor, Trends in Computational Social Choice, chapter 15,
pages 289–309. AI Access Foundation, 2017.

[Popova et al., 2013] A. Popova, M. Regenwetter, and N. Mattei. A
behavioral perspective on social choice. AMAI, 68(1–3):135–160,
2013.

[Pu et al., 2011] P. Pu, B. Faltings, L. Chen, J. Zhang, and P. Viap-
piani. Usability guidelines for product recommenders based on
example critiquing research. In F. Ricci, L. Rokach, B. Shapira,
and P. B. Kantor, editors, Recommender Systems Handbook, pages
511–545. Springer, 2011.

[Rossi and Loreggia, 2019] F. Rossi and A. Loreggia. Preferences
and ethical priorities: Thinking fast and slow in AI. In Proc. 18th
AAMAS, pages 3–4, 2019.

[Rossi and Mattei, 2019] Francesca Rossi and Nicholas Mattei.
Building ethically bounded AI. In Proc. 33rd AAAI, 2019.

[Rossi et al., 2011] F. Rossi, K.B. Venable, and T. Walsh. A Short
Introduction to Preferences: Between Artificial Intelligence and
Social Choice. Morgan and Claypool, 2011.

[Russell et al., 2015] Stuart Russell, Daniel Dewey, and Max
Tegmark. Research priorities for robust and beneficial artificial
intelligence. AI Magazine, 36(4):105–114, 2015.

[Sen, 1974] A. Sen. Choice, Ordering, and Morality. Blackwell,
1974.

[Sohn, 2016] K. Sohn. Improved deep metric learning with multi-
class n-pair loss objective. In Advances in Neural Information
Processing Systems (NeruIPS), pages 1857–1865, 2016.

[Wang et al., 2009] Hongbing Wang, Shizhi Shao, Xuan Zhou,
Cheng Wan, and Athman Bouguettaya. Web service selection
with incomplete or inconsistent user preferences. In Proc. 7th
International Conference on Service-Oriented Computing, pages
83–98. Springer, 2009.

[Wong et al., 2016] S. C. Wong, A. Gatt, V. Stamatescu, and M. D
McDonnell. Understanding data augmentation for classification:
When to warp? In Proc. of the 2016 International Conference on
Digital Image Computing: Techniques and Applications (DICTA),
pages 1–6, 2016.

[Xing et al., 2002] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J.
Russell. Distance metric learning with application to clustering
with side-information. In Proc. 15th NeurIPS, pages 505–512,
2002.


	Introduction
	CP-nets
	Preferences and Ethical Priorities
	Metric Learning on CP-nets
	Structure of CPMetric
	Experiment
	Data Generation and Training
	Comparison Task Performance

	Conclusion

