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Abstract
Most research on probabilistic commitments fo-
cuses on commitments to achieve conditions for
other agents. Our work reveals that probabilis-
tic commitments to instead maintain conditions for
others are surprisingly different from their achieve-
ment counterparts, despite strong semantic similar-
ities. We focus on the question of how the com-
mitment recipient should model the provider’s ef-
fect on the recipient’s local environment, with only
imperfect information being provided in the com-
mitment specification. Our theoretic analyses show
that we can more tightly bound the inefficiency
of this imperfect modeling for achievement com-
mitments than for maintenance commitments. We
empirically demonstrate that probabilistic mainte-
nance commitments are qualitatively more chal-
lenging for the recipient to model, and addressing
the challenges can require the provider to adhere to
a more detailed profile and sacrifice flexibility.

1 Introduction
Safe cooperative behavior among humans is often realized via
social commitments that constrain people to acting reliably.
By making a commitment, a person promises to act in a man-
ner to fulfill it. This form of commitment-based interaction
also exists among autonomous agents. To build safe artificial
multiagent systems, we need trustworthy and reliable mecha-
nisms that are accountable for pursuing and modeling agent-
based commitments. Adopting a decision-theoretic frame-
work, this paper formulates and studies problems that arise
in managing commitments in multiagent systems.

In multiagent systems, agents are often interdependent in
the sense that what one agent does can be beneficial or harm-
ful to another. If trust means having confidence that another
will act so as to reciprocate help in a safe and reliable manner,
then being trustworthy—worthy of such trust—constrains the
agent to acting thusly. To persuade an agent designer to create
trustworthy agents, other agents (individually and/or collec-
tively) can form and share opinions about agents’ trustwor-
thiness, and won’t act to benefit agents with a bad reputation.

Our work assumes that the designer has been persuaded.
Even so, however, it isn’t always clear how to create a trust-

worthy agent, given that an agent often lacks complete con-
trol over its environment. Specifically, the form of interde-
pendency we focus on is with respect to a scenario where an
agent (the commitment provider) makes a social commitment
[Singh, 1999; Kalia et al., 2014] to another (the commitment
recipient). When stochasticity is inherent in the environ-
ment, the provider cannot guarantee to bring about the out-
comes that the recipient expects [Kwiatkowska et al., 2007;
Nuzzo et al., 2019], and in fact could discover after making
the commitment that how it planned to try to bring about the
outcomes would be more costly or risky than it had previ-
ously realized. Given that the recipient is unable to predict
precisely the future situations it will face, it’s also unclear
how it should model the commitment safely and effectively.

There exists work focusing on semantics and mechanisms
for an agent to follow such that it is assured of faithfully
pursuing its commitments despite the uncertainty [Jennings,
1993; Xing and Singh, 2001; Winikoff, 2006; Durfee and
Singh, 2016]. Previous work articulated the perspective that
such a probabilistic commitment should be considered ful-
filled if the provider’s actions would have brought about the
desired outcome with a high enough expectation, even if in
a particular instance the desired outcome was not realized.
That is, the provider acted in good faith. Thus, even if the
provider changes its course of action as it learns more about
costs and risks on the fly, it can still fulfill its commitment
if whatever course of action it pursued could be expected to
achieve the desired outcome with at least the promised like-
lihood. With this perspective, previous work has focused
largely on commitments of achievement [Xuan and Lesser,
1999; Maheswaran et al., 2008; Witwicki and Durfee, 2009;
Zhang et al., 2016; Zhang et al., 2017], which we also call
enablement commitments, where the provider commits to
changing some features of the state in a way desired by the re-
cipient with some probability by some time. For example, the
recipient plans to take an action (e.g., move from one room to
another) with a precondition (e.g., the door separating them
is open) that it is counting on the provider to enable.

This paper focuses on another form of commitment, which
we refer to as a maintenance commitment, where instead of
committing to some course of action that in expectation will
enable conditions the recipient wants, the provider instead
commits to courses of action to probabilistically avoid chang-
ing conditions that are already the way the recipient wants



them maintained, up until a particular time. After that time,
the condition cannot be assumed to remain unchanged, and
before that time, there is a (usually small) probability it could
be changed at any point. For example, an open door the re-
cipient needs might be initially achieved, but as the provider
opens and closes other doors during its housekeeping tasks, a
resulting draft could close the door the recipient needs open.
The provider could plan its tasks to postpone altering the
riskiest doors as long as possible, but an ill-placed breeze
could close the door at any time.

Our claim is that decision-theoretic mechanisms for repre-
senting and reasoning about enablement commitments can-
not straightforwardly apply to maintenance commitments be-
cause, despite strong superficial similarities, the two types of
commitments are fundamentally different. We will substanti-
ate this claim analytically and empirically. This in turn raises
the questions of whether modifications could be made to
existing decision-theoretic mechanisms for representing and
reasoning about enablement commitments so that they can be
applied to maintenance commitments. We will show empir-
ical results that cast doubt on whether this is possible, thus
suggesting that in the future a different treatment of mainte-
nance commitments should be considered.

2 Preliminaries
In this section, we describe the decision-theoretic setting
we adopt for analyzing probabilistic commitments, includ-
ing both enablement commitments and maintenance commit-
ments. We review the prior work in the definition and seman-
tics of enablement commitments, which can be extended to
maintenance commitments.

The recipient’s environment is modeled as an MDP de-
fined by the tuple M = (S,A, P,R,H, s0) where S is the
finite state space, A is the finite action space, P : S × A →
∆(S) (∆(S) denotes the set of all probability distributions
over S), R : S × A × S → R is the reward function, H is
the finite horizon, and s0 is the initial state. The state space is
partitioned into disjoint sets by the time step, S =

⋃H
h=0 Sh,

where states in Sh only transition to states in Sh+1. The
MDP starts in s0 and terminates in SH . Given a policy
π : S → A and starting in the initial state, a random tra-
jectory is generated by ah = π(sh), sh+1 ∼ P (sh, ah), rh =
R(sh, ah, sh+1) for h = 0, · · · , H−1. The value function of
π is V πM (s) = E[

∑H−1
h′=h rh′ |π, sh = s] where h is such that

s ∈ Sh. There exists an optimal policy in M , denoted as π∗M ,
and its value function maximizes V πM for all s ∈ S and is ab-
breviated as V ∗M . The value of the initial state is abbreviated
as vπM := V πM (s0).

As one way to model the interaction between the provider
and the recipient [Witwicki and Durfee, 2010; Zhang et al.,
2016], we assume that the recipient’s state can be factored as
s = (l, u), where l is the set of all the recipient’s state features
locally controlled by the recipient, and u is the state feature
shared with the provider. The provider and the recipient are
weakly coupled in the sense that u is the only shared state
feature and is only controllable by the provider. Formally, the
dynamics of the recipient’s state can be factored as

P (s′|s, a) = P ((l′, u′)|(l, u), a) = Pu(u′|u)Pl (l
′|(l, u), a) .

We assume the recipient’s cumulative reward can be ex-
pressed in the trajectory of l:

R(s, a, s′) = R(s′) = R((l′, u′)) = R(l′).

Note that though the value of u does not directly determine
the reward, it does affect the value of l′ at the next time step.
Throughout, we refer to Pu as the true profile of u, which is
fully determined by the provider’s policy.

2.1 Commitment Semantics
An enablement or maintenance commitment is concerned
with state feature u that is shared by both agents but only
controllable by the provider. Intuitively, a commitment pro-
vides partial information about Pu from which the recipient
can plan accordingly. We will refer to u as the commit-
ment feature. In this paper, we focus on the setting where
the value of u is binary, letting u+, as opposed to u−, be
the value of u that is desirable for the recipient. Further, we
assume that u can be toggled at most once. Citations with
this assumption include [Hindriks and van Riemsdijk, 2007;
Witwicki and Durfee, 2009; Zhang et al., 2016]. In transac-
tional settings, a feature (e.g., possession of goods) changing
once is common. It is also common in multiagent planning
domains where one agent establishes a precondition needed
by an action of another. Some cooperative agent work re-
quires agents to return changed features to prior values (e.g.,
shutting the door after opening and passing through it). And
in the extreme case where toggling reliably repeats frequently
(e.g., a traffic light) there may be no need for explicit commit-
ments. More generally, while removing this assumption can
complicate the specification of a commitment (e.g., a com-
pound commitment to enable and then maintain a condition
over a time interval), we think the fundamental difference be-
tween modeling enablement and maintenance commitments
can be best theoretically explained and conceptually under-
stood without such complications. We next formally give
the definition and semantics of enablement commitments and
maintenance commitments, respectively.

Enablement Commitments
Let the initial state be factored as s0 = (l0, u0). For enable-
ment commitments, the initial value of the commitment fea-
ture is u−, i.e. u0 = u−. The provider commits to pursuing a
course of action that can bring about the commitment feature
desirable to the recipient with some probability. Formally, an
enablement commitment is defined by tuple ce = (Te, pe),
where Te is the enablement commitment time, and pe is the
enablement commitment probability. The provider’s commit-
ment semantics is to follow a policy µ that sets u to u+ by
time step Te with at least probability pe, i.e.

Pr(uTe
= u+|u0 = u−, µ) ≥ pe.

Maintenance Commitments
As a reminder, our maintenance commitment is motivated by
scenarios where the initial value of state feature u is desir-
able to the recipient, who wants it to maintain its initial value
for some interval of time (e.g., [Hindriks and van Riemsdijk,
2007; Duff et al., 2014]), but where the provider could want
to take actions that could change it. Formally, a maintenance



commitment is defined by tuple cm = (Tm, pm), where Tm
is the maintenance commitment time, and pm is the main-
tenance commitment probability. Given such a maintenance
commitment, the provider is constrained to follow a policy
µ that keeps u unchanged for the first Tm time steps with at
least probability pm. Since u can be toggled at most once, it
is equivalent to guaranteeing u = u+ at Tm, i.e.

Pr(uTm
= u0|u0 = u+, µ) ≥ pm.

2.2 The Recipient’s Approximate Profile
The commitment semantics provides partial information on
Pu by specifying the profile at the single time step, rather
than in a potentially more gradual manner. Why would we
choose to do that? The most important reason is that it opens
up even more latitude for the provider to evolve its policy as it
learns more about its environment: instead of needing to meet
probabilistic expectations at multiple time steps, it can mod-
ify its policy much more flexibly as long as in the long run
(by the commitment time) it hits the target probability. Prior
work has shown the value of having such flexibility [Zhang
et al., 2017]. Here, we are interested in the problem when
the recipient creates a profile P̂u with this partial information
as an approximation of Pu, and plans accordingly. Specifi-
cally, we are interested in the quality of the plan computed
from approximate profile P̂u when evaluated in (true) profile
Pu. Formally, given P̂u, let M̂ = (S,A, P̂ , R,H, s0) be the
approximate model that only differs from M in terms of the
profile of u, i.e. P̂ = (Pl, P̂u). The quality of P̂u is evaluated
using the difference between the value of the optimal policy
for M̂ and the value of the optimal policy for M when both
policies are evaluated in M starting in s0, i.e.

Suboptimality : v∗M − v
π∗
M̂

M .

Note that when the support of Pu is not fully contained in
the support of P̂u, the recipient could end up in un-modelled

states when executing π∗
M̂

in M , which makes V
π∗
M̂

M ill-
defined. In this paper, we fix this by re-planning: during exe-
cution of π∗

M̂
, the recipient re-plans from un-modelled states.

Previous work chooses an intuitive and straightforward ap-
proximate profile for enablement commitments that models a
single branch (at the commitment time) for when u− proba-
bilistically toggles to u+. This strategy reduces the complex-
ity of the recipient’s reasoning; the inefficiency caused by
imperfect modelling is easily outweighed by computational
benefits [Witwicki and Durfee, 2010; Zhang et al., 2016].
This profile takes a pessimistic view in the sense that u is
(stochastically) enabled at the latest possible time consistent
with the commitment, and, if it was not enabled at that time,
will never be enabled after the commitment time. Therefore,
we refer to it as the pessimistic profile, as formalized in Defi-
nition 1. For maintenance commitments, the pessimistic pro-
file should probabilistically disable u at the earliest time, and
should determinisically disable u after the commitment time,
as formalized in Definition 2.
Definition 1. Given enablement commitment ce = (Te, pe),
its pessimistic profile P̂ pessimistic

u,ce toggles u in the transition

from time step t = Te − 1 to t = Te with probability pe, and
does not toggle u at any other time step.

Definition 2. Given maintenance commitment cm =
(Tm, pm), its pessimistic profile P̂ pessimistic

u,cm toggles u in the
transition from time step t = 0 to t = 1 with probability
1 − pm, and from t = Tm to t = Tm + 1 with probability
one. It does not toggle u at any other time step.

In a previous, unpublished workshop paper [Zhang et al.,
2018], we have addressed the general topic of using an ap-
proximate profile, especially the pessimitisc profile, for the
recipient to model probabilistic commitments, but didn’t pro-
vide any results. This paper presents both theoretical anal-
ysis (Section 3) and empirical results (Section 4) that reveal
the fundamental difference between enablement and mainte-
nance commitments.

3 Theoretical Analysis
In this section, we derive bounds on the suboptimality of the
pessimistic profiles. Our analysis makes the following two
assumptions. Assumption 1 intuitively says that u+ estab-
lishes a condition for an action that would be irrational, or
even unsafe, to take when u− holds. For example, if u+ is
a door being open, then the action of moving into the door-
way could be part of an optimal plan, but taking that action if
the door is closed (u−) never is. Assumption 2 is a simplify-
ing assumption for our analysis stating the true profile agrees
with the pessimistic profile after the commitment time, so that
the suboptimality is caused by the imperfect modeling by the
commitment time.

Assumption 1. Let s− = (l, u−) and s+ = (l, u+) be a pair
of states that only differ in u. For anyM with arbitrary profile
Pu, we have

Pl
(
·|s−, π∗M (s−)

)
= Pl

(
·|s+, π∗M (s−)

)
.

Assumption 2. Pu(uh+1|uh) agrees with the pessimistic
profile for h ≥ T , where T is the commitment time.

To derive bounds on enablement and maintenance commit-
ments, we will make use of the following lemma, where M+

(M−) is defined as the recipient’s MDP identical to M ex-
cept that u is always set to u+(u−). Lemma 1 directly follows
from Assumption 1, stating that the value of M− is no more
than that of M+ and the value of any M is between the two.

Lemma 1. For any M with arbitrary profile Pu and initial
value of u, we have v∗M− ≤ v

∗
M ≤ v∗M+ .

Proof. Let’s first consider the case in which Pu toggles u
only at a single time step. We show v∗M− ≤ v∗M by con-
structing a policy in M for which the value is v∗M− by mim-
icking π∗M− . Whether u is initially u− and later toggled to u+
or the other way around, we can construct a policy πM that
chooses the same actions as π∗M− assuming u = u− through-
out the episode. Formally, for any s− = (l, u−), letting
s+ = (l, u+), we have πM (s+) = πM (s−) = π∗M−(s−).
By Assumption 1, πM in M yields the same trajectory distri-
bution of l as π∗M− in M−, and therefore vπM

M = v∗M− since
value only depends on the trajectory of l.



Similarly, we show v∗M ≤ v∗M+ by constructing a policy
πM+ in M+ for which the value is v∗M by mimicking π∗M .
Formally, for time steps when u = u− in M , let πM+(s+) =
π∗M (s−). For time steps when u = u+ in M , let πM+(s+) =
π∗M (s+), where s− = (l, u−), s+ = (l, u+).

For the case in which Pu toggles u atK > 1 time steps, we
can decompose the value function Pu as the weighted aver-
age ofK value functions corresponding to theK profiles that
toggle u at a single time step, and the weights of the average
are the toggling probabilities of Pu at theseK time steps.

3.1 Bounding Suboptimality for Enablement
Here, we derive a bound on the suboptimality for enablement
commitments. From the two assumptions, we also make use
of Lemma 2 to prove Theorem 1 that bounds the suboptimal-
ity for enablement commitments as the difference between
v∗M− and v∗M+ . Lemma 2 states that, for enablement com-
mitments, the possible imperfect modeling of the pessimistic
profile can only improve the expected value.
Lemma 2. Given enablement commitment ce = (Te, pe), let

P̂u = P̂ pessimistic
u,ce , then we have v

π∗
M̂

M ≥ v
π∗
M̂

M̂
where profile

Pu in M respects the commitment semantics of ce.

Proof. For enablement commitments, the initial value of u is
u−. Let Pu(t) be the probability that u is enabled to u+ at t in
profile Pu, vπt be the initial state value of π when u is enabled
from u− to u+ at t with probability one. By Assumption 2,

v
π∗
M̂

M and v
π∗
M̂

M̂
can be decomposed as

v
π∗
M̂

M =
∑Te

t=1 Pu(t)v
π∗
M̂
t + (1− pe)v

π∗
M̂

M− ,

v
π∗
M̂

M̂
= pev

π∗
M̂

Te
+ (1− pe)v

π∗
M̂

M− .

When u is enabled at t in M , π∗
M̂

can be executed as if u
is not enabled, by Assumption 1, yielding identical trajectory
distribution of l (therefore value) as in M̂ . Therefore, the
recipient’s replanning at t when u = u+ will derive a better
policy if possible. Therefore, the value of executing π∗

M̂
in

M is no less than that in M̂ , i.e. v
π∗
M̂
t ≥ vπ

∗
M̂

Te
. Therefore,

v
π∗
M̂

M =
∑Te

t=1 Pu(t)v
π∗
M̂
t + (1− pe)v

π∗
M̂

M−

≥
∑Te

t=1 Pu(t)v
π∗
M̂

Te
+ (1− pe)v

π∗
M̂

M−

≥pev
π∗
M̂

Te
+ (1− pe)v

π∗
M̂

M− commitment semantics

=v
π∗
M̂

M̂
.

Theorem 1. Given enablement commitment ce, let P̂u =
P̂ pessimistic
u,ce . The suboptimality can be bounded as

v∗M − v
π∗
M̂

M ≤ v∗M+ − v∗M− (1)

where profile Pu in M respects the commitment semantics
of ce. Further, there exists an enablement commitment for
which the equality is attained.

…...
0 1 L0=5 L=14

...

0 1 L0=5 L=14
... …...

Optimal policy
Approx. profile policy

Figure 1: 1D Walk. Up: Example in the proof of Theorem 1. Down:
Example in the proof of Theorem 2.

Proof. The derivation is straightforward from Lemma 2:

v∗M − v
π∗
M̂

M ≤ v∗M+ − v
π∗
M̂

M̂
≤ v∗M+ − v∗M− .

Then, we use a simple illustrative example to give an enable-
ment commitment for which the equality is attained.

Example: An Enablement Commitment in 1D Walk
Consider the example of a 1D walk on [0, L], as illustrated
in Figure 1(top), in which the recipient starts at L0 and can
move right, left, or stay still. There is a gate between 0 and 1
for which u+ denotes the state of open and u− denotes closed.
The gate toggles stochastically according to Pu. For each step
until the recipient reaches either end, a −1 reward is given.
Therefore, the optimal policy is to reach either end as soon as
possible in expectation. We assume 1 ≤ L0 < L/2 to avoid
the uninteresting trivial case of v∗M− = v∗M+ . A negative
reward is incurred when bumping into the closed gate, which
makes Assumption 1 hold.

Here, we derive an enablement commitment for which the
bound in Theorem 1 is attained. Consider L = 14, L0 =
5, H = 15, enablement commitment (Te = L−L0 = 9, pe =
1), and the true profilePu inM that toggles the gate to open at
t = 4 with probability pe = 1. The optimal policy in M is to
move left to 0. Therefore, v∗M = v∗M+ = −L0 = −5. Given
the pessimistic profile, moving right to L (arriving at time 9)
is faster than waiting for the gate to toggle at Te = 9 and then
reaching location 0 at time 10. Had the recipient known the
gate would toggle at time 4, it would have moved left, but by
the time it toggles at time 4 the recipient is at location 9, and

going to L is the faster choice. Therefore v
π∗
M̂

M = v∗M− =
−(L− L0) = −9, and bound (1) is attained.

3.2 Bounding Suboptimality for Maintenance
We next ask if the bound in Equation (1) on suboptimality in
enablement commitments also holds for maintenance com-
mitments. Unfortunately, as stated in Theorem 2, the opti-
mal policy of the pessimistic profile for maintenance com-
mitments can be arbitrarily bad when evaluated in the true
profile, incurring a suboptimality exceeding (1). An existence
proof is given with an example.
Theorem 2. There exists an MDP M with nonnegative re-
wards, and a maintenance commitment cm, such that the
profile Pu in M respects the commitment semantics of cm,

v∗M = v∗M+ , v
π∗
M̂

M = 0, and therefore the suboptimality is

v∗M − v
π∗
M̂

M = v∗M+ (2)

where P̂u = P̂ pessimistic
u,cm is the profile in M̂ .



Proof. As an existence proof, we give an example of a main-
tenance commitment in 1D Walk with nonnegative rewards

for which v∗M = v∗M+ and v
π∗
M̂

M = 0.
Consider 1D Walk with the same L = 14, L0 = 5, H = 15

as in the example for Theorem 1. Here we offset the re-
wards by +1 such that the rewards are nonnegative. Consider
maintenance commitment (Tm = 7, pm = 0), and Pu tog-
gles the gate from open to closed at t = 6 with probability
1− pm = 1. As illustrated in Figure 1(bottom), the optimal-
ity policy should take 5 steps to move directly to 0, for which
the value is v∗M+ . With probability pm, the gate is kept open
through Tm, and π∗

M̂
takes 7 steps to reach 0. With probabil-

ity 1− pm, the gate is closed at t = 6, and π∗
M̂

takes 19 > H

steps to reach L = 14. Therefore, v
π∗
M̂

M = 0.

Comparing bound (1) in Theorem 1 with bound (2) in The-
orem 2 reveals a fundamental difference between enablement
and maintenance commitments: maintenance commitments
are inherently less tolerant to an unexpected change in the
commitment feature. For enablement commitments, it is easy
to construct a pessimistic profile, such that any unexpected
changes to the feature, if they impact the recipient at all, can
only improve the expected value. Thus, if despite the pes-
simistic profile, a recipient has chosen to follow a policy that
exploits the commitment, it can never experience a true pro-
file that would lead it to regret having done so. The same
cannot be said for maintenance commitments. The easily-
constructed pessimistic profile does not guarantee that any
deviations from the profile can only improve the expected
value. As our theoretical results show, the pessimistic pro-
file of assuming toggling from u+ to u− right away can still
lead to negative surprises, since if the toggling doesn’t occur
the profile suggests that it is safe to assume no toggling until
Tm, but that is not true since toggling could happen sooner,
after the recipient has incurred cost for a policy that would
need to be abandoned. The poor performance of the pes-
simistic model for maintenance is because it is not reliably
pessimistic enough: in the example for Theorem 2, the worst
time for toggling to u− is not right away, but right before the
condition would be used (the gate shutting just as the recipi-
ent was about to pass through).

4 Empirical Results
Our analyses suggest the pessimistic profile might not be the
best approximate profile for a recipient to adopt for mainte-
nance commitments. In this section, we identify several alter-
native heuristics to create approximate profiles for the recipi-
ent, and evaluate them for both maintenance and enablement
commitments. We conduct our evaluations in two domains.
The first is the same 1D Walk domain as in our theoretical
analysis, and the second is a Gate Control problem with a
more interesting transition profile (violating Assumption 2).

4.1 1D Walk
As previously defined, the 1D Walk domain restricts the set
of profiles to toggle u only at a single time step no later than
the commitment time, and agree with Assumption 2 there-
after. We denote the set of such profiles as P1

u from which

Pu, P̂u are chosen. Besides using the pessimistic profile to
approximate the true profile, we consider the following three
heuristics for generating approximate profile P̂u ∈ P1

u:

Optimistic. As opposed to the pessimistic, the optimistic
profile toggles u right after the initial time step for en-
ablement commitments, and at the commitment time for
maintenance commitments.

Minimum Value. The toggling time minimizes the op-
timal value over all possible profiles in P1

u, i.e.,
arg minP̂u∈P1

u
v∗
M̂

, where P̂u is the profile of u in M̂ .

Minimax Regret. The toggling time is chosen based on the
minimax regret principle. Formally,

arg minP̂u∈P1
u

maxPu∈P1
u
v∗M − v

π∗
M̂

M

where Pu, P̂u are the profiles of u inM, M̂ , respectively.

The four heuristics include two simple, inexpensive heuris-
tics (Pessimistic and Optimistic), and two more complex and
expensive heuristics (Minimum Value and Minimax Regret).
Recall that our theoretical analysis suggests, for maintenance,
the worst time for toggling to u− is not right away, but right
before the recipient uses the condition, and this causes the
poor performance of the pessimistic profile. We hypothesize
that the latter two heuristics can improve the pessimistic pro-
file by identifying the worst toggling time.

Results Here we evaluate the suboptimality of our candi-
date heuristics for both enablement commitments and main-
tenance commitments. The setting is the same as the exam-
ple for Theorem 1 except that the horizon is longer, L =
14, L0 = 5, H = 30. Figure 2 shows the mean, minimum,
and maximum suboptimality over all realizations of Pu ∈ P1

u
for commitment time Te, Tm ∈ {5, 7, 10}. We see that for en-
ablement commitments, the suboptimality of the pessimistic
profile is comparable to the two more sophisticated strategies,
and the optimistic profile incurs most suboptimality overall.
For maintenance commitments, however, the two expensive
strategies incur overall less suboptimality than the pessimistic
and the optimistic, yet it is difficult to identify a single best
heuristic that reliably reduces the suboptimality for all the
maintenance commitments.

4.2 Gate Control
In this domain, we are concerned with the more general situ-
ation in which Pu 6∈ P1

u can toggle u at more than one time
step by the commitment time, and even can toggle u after the
commitment time. We also consider approximate profiles P̂u
that are not elements of P1

u.
As illustrated in Figure 3, the provider’s environment con-

tains four cells, A ↔ B ↔ C ↔ D ↔ A, that are connected
circularly. The provider can deterministically move to an ad-
jacent cell or stay in the current cell. Upon a transition, the
gate could toggle with probability 0.5 if the provider ends
up in cell C. In the enablement commitment scenario, the
provider gets a +1 reward if it ends up in cell C, and in the
maintenance commitment scenario it gets a +1 reward if end-
ing up in cell A. For a given commitment, the provider adopts
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0.0 0.2 0.4 0.6 0.8 1.0
maintenance commitment probability

0

2

4

6

8

10

12

14

su
bo

pt
im

al
ity

commitment time = 10

(f) maintenance, Tm = 10

Figure 2: Suboptimality in 1D Walk. Markers on the curves show
the mean suboptimality over possible time steps of toggling, Pu ∈
P1

u. Bars show the minimum and maximum.

a policy that aims to maximize its cumulative reward while re-
specting the commitment semantics. The recipient gets a -0.1
reward each time step. Upon reaching cell G, the recipient
gets a +1 reward and the episode ends.

Besides the four heuristics we considered for the 1D Walk,
we further consider the following two that choose an approx-
imate profile outside of the set P1

u:

Constant. This profile toggles u at every time step up to the
commitment time with a constant probability, and the
probability is chosen such that the overall probability of
toggling by the commitment time matches the commit-
ment probability. It agrees with the pessimistic profile
after the commitment time.

Multi-timepoints. Besides time T , the provider also pro-
vides the recipient with the toggling probabilities for
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Figure 3: Gate Control. Left: The provider. Cell C toggles the gate.
Right: The recipient.
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(c) enablement, Te = 6
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(d) maintenance, Tm = 6

Figure 4: Suboptimality in Gate Control. Markers on the curves
show the mean suboptimality over possible time steps of toggling.
Bars show the minimum and maximum.

other time steps T . Here, we consider T = {1, bT/2c},
and the pessimistic heuristic is then used to match the
toggling probabilities at these three time steps.

Results We consider the combination of the following sce-
narios: the provider can start in any one of the four cells;
and the toggling can happen in even, odd, or all time steps.
The time horizon is H = 10 for both the provider and the
recipient. This yields in total 12 (true) profiles Pu. Figure 4
shows the mean, maximum, and minimum suboptimality for
Te, Tm ∈ {4, 6} over the 12 profiles. Similar to 1D Walk,
the results show that the pessimistic profile is among the best
for enablement commitments, but it is difficult for mainte-
nance commitments to identify a best heuristic, besides the
multi-timepoints, that reliably reduces the suboptimality for
all commitment time/probability pairs we consider. Using the
multi-timepoints profile that is more aligned with the true pro-
file, the suboptimality can be dramatically reduced for main-
tenance commitments, but it has a less significant impact for
enablement commitments. This suggests that, unlike enable-
ment commitments where the cost is low of the provider re-
taining considerable flexibility by only committing to a single
time-probability pair (leaving itself freedom to change its pol-
icy dynamically so long as it meets or exceeds that target),
maintenance commitments greatly benefit from a provider
committing to a more detailed profile, sacrificing flexibility
in order to improve the quality of the recipient’s expectations
to reduce the frequency and costs of negative surprises.

5 Conclusion
We have shown that we cannot straightforwardly extend the
semantics and algorithms for trustworthy fulfillment of en-
ablement commitments to maintenance commitments. Our
theoretical and empirical results suggest that, despite their
similarities in describing the toggling of conditions over time,



maintenance commitments are fundamentally different from
enablement commitments. We have theoretically shown that
the easily-constructed pessimistic profile can only improve
the expected value in the face of unexpected changes for
enablement commitments but not for maintenance commit-
ments. Empirically, we have seen that an inexpensive pes-
simistic approximation of the profile works comparably to
more sophisticated approximations for enablement commit-
ments, but not for maintenance commitments.

The fact that approximating profiles well is harder for
maintenance commitments could mean that agents engaged
in maintenance commitments might need to make a differ-
ent tradeoff. That is, for enablement, we could give the
provider a lot of flexibility by only constraining it to meet
the probability at the commitment time and so can unilater-
ally change the profile before then. The gain in flexibility
for the provider is worth the relatively small value loss to
the recipient from using the pessimistic profile. However, for
maintenance commitments, the potential for the recipient to
lose more value with a bad (simple or sophisticated) approxi-
mate profile could mean that the provider should commit to a
more detailed profile—the loss of flexibility for the provider
in this case is warranted because the recipient makes much
better decisions. In other words, our theoretical and empirical
work suggests that maintenance commitments could require
providers and recipients to inherently be more tightly coupled
than they need to be for enablement commitments.
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