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Abstract
From the data that goes into the AI pipeline to the
choice of models and target application, AI safety
demands examination at various levels of abstrac-
tion. Additionally, the notion of safety has to be
assessed across different types of humans-in-the-
loop involved in the AI pipeline—from AI scien-
tists and software engineers to various types of con-
sumers. Much of the research on AI safety has fo-
cused on catering to the needs of AI scientists (such
as in design of systems robust to adversarial attacks
and ethically grounded algorithms) and consumers
(such as in engendering trust and facilitating model
interpretation). Choosing the right AI model, tun-
ing various parameters, and processing datasets are
some of the many issues that engineers face. A
wrong choice in any of these steps can aggravate
safety issues in an inconspicuous manner and can
harm the interests of the consumer. There is thus
a need to provide software engineers with a much
more accessible tool whereby they can be better
aware of their decisions and the consequences those
decisions bear to the consumer. In this paper, we
propose a persistence homology based visualiza-
tion that can aid software engineers in understand-
ing bias in datasets. Unlike other machine learning
methods, this topological data analysis method im-
poses less burden in the sense that the human-in-
the-loop does not need to select the right metric or
tune parameters, and can determine the bias based
on the data before choosing any model. Experi-
ments on the German credit dataset demonstrates
the effectiveness of the proposed method in identi-
fying the bias in the dataset due to age.

1 Introduction
Amidst the massive upsurge of AI-based applications, there
has been growing concern amongst regulatory bodies, pol-
icy makers, and consumers about AI being a black-box tech-
nology. Beyond just AI scientists, today, a variety of stake-
holders are involved in AI based decision pipelines. These
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stakeholders could include business executives, software en-
gineers, and consumers. Thus, successful adoption and safety
of AI systems relies on how much different types of stake-
holders can trust the AI based decision and understand its
functionality.

Most existing works study AI safety from the perspective
of either an AI scientist or the consumer. Some such efforts
include building systems robust to adversarial attacks, design-
ing ethically grounded and fair algorithms, and creating ex-
plainable AI models to facilitate model interpretation and to
engender trust in the consumer. However, there are signifi-
cant knowledge gaps between an AI scientist who designs a
model, a software engineer who implements and integrates
various models, and a consumer who uses a model for their
custom applications. These gaps could affect safety of AI
systems in inconspicuous ways.

Consider the role of software engineers in the AI pipeline.
People in these roles are responsible for building software.
These engineers could choose some off-the-shelf AI mod-
ules and integrate them with various APIs and other software
components. They do have to understand various parameters
involved, tune them, and perhaps re-configure various archi-
tectural blocks to suit the requirements of an application. At
the outset, the job of such developers may seem to be mostly
engineering oriented without having to worry about the con-
sequences of how the model’s decision affects the consumer.
However, this is not the case.

For one, there are several models available, which is the
right model for a particular application? Next, there are mil-
lions of parameters involved, which ones need to be tuned
and how to set their values? Even before choosing the right
model, the data has to be processed and set into a format
that is amenable for the model to process. The data itself
could be biased or limited. How to ensure accurate data pre-
processing? Such questions have to be carefully examined
and appropriately addressed. Failure to do so can aggravate
safety issues in an inconspicuous manner and can cause seri-
ous consequences to the consumer.

As an instance, consider prediction of loan defaulting us-
ing AI. A software engineer unaware of bias in training data
may inadvertently use it to train models basing his judgement
merely on validation and test accuracy. Suppose the train-
ing data was biased- say there were too many young people
who defaulted- then the model is likely to predict the same



on test data. This can have serious consequences on a young
applicant who actually may not default. Thus, there are sev-
eral safety critical issues that need to be addressed from the
perspective of a software engineer. Engineering trust-worthy
AI software architectures necessitates accessible and explain-
able methods that allow software engineers to seamlessly pre-
process the data, select the right model, and integrate various
AI modules into the use cases of their interest. Given the
widespread adoption of AI and the scarcity of people skilled
in AI, there is an even greater need for building such accessi-
ble tools in order to ensure AI safety.

With the number of biased systems expected to increase
within the next five years, understanding safety in the con-
text of bias and ensuring fair decisions has been a major area
of interest across several AI based systems used in banking,
insurance, hiring, to name a few. In this paper, we propose
a method based on topological data analysis (TDA) to en-
able software engineers to visualize the bias in datasets prior
to even applying any bias mitigation algorithm. Specifically,
we leverage a technique called persistence homology which
can be viewed as a complement to standard feature repre-
sentation techniques used in AI. Unlike other feature repre-
sentation techniques which require guidance from a machine
learning expert regarding the choice of algorithm, model ar-
chitecture and parameters, this technique does not require the
human-in-the-loop to select any metric or tune parameters,
and can work with sparse datasets as well. Experiments on
the German credit dataset demonstrates the effectiveness of
the proposed method in uncovering the bias due to age in the
prediction of loan defaulting. The specific contributions of
the paper can be summarized as follows:

1.1 Contributions
• We study AI safety from the perspective of software en-

gineers who form a critical link in the AI pipeline. In
particular, we describe an accessible method by which
software engineers can understand bias in datasets.
• We elucidate a novel application of topological data

analysis to quantify bias due to different attributes in a
dataset. Presence of bias is visualized by means of per-
sistence barcodes and is also validated through permuta-
tion tests (Section 3).
• We demonstrate the effectiveness of the proposed

method in detecting bias due to age on the German credit
dataset (Section 4).
• We provide an accessible guideline to facilitate software

engineers to easily use the method.
The rest of the paper is organized as follows. A review of
related work is provided in Section 2. Section 3 provides
the details of the method. Results are discussed in Section
4. Section 5 lists some common questions and answers in
order to enhance comprehension about the accessibility of the
approach. Conclusions are provided in Section 6.

2 Related work
We review related works concerning TDA and its applications
in machine learning. We also review works concerning AI
safety, and bias and accessibility of AI systems.

2.1 TDA
TDA is an interdisciplinary field spanning topology and data
analysis, and is used as a tool to uncover patterns in data.
TDA is based on the philosophy that data has shape, and that
shape has meaning. Persistence homology (PH) is a tech-
nique from TDA that can identify clusters, holes, and voids
within a set of points. Persistence homology can be viewed as
a complement to standard feature representation techniques
used in artificial intelligence, and offers the advantage of be-
ing applicable to sparse datasets as well. Unlike other fea-
ture representation techniques which require guidance from
a machine learning expert regarding the choice of algorithm,
model architecture and parameters, this technique does not
require any parameter tuning.

TDA can be used as an independent tool to uncover pat-
terns in data or it can also be used in conjunction with ma-
chine learning (ML) techniques as a feature extractor. TDA
has been used in several computer vision applications such as
for shape analysis [Zhou et al., 2017; Wang et al., 2011], for
texture analysis [Zeppelzauer et al., 2018], for medical imag-
ing [Pachauri et al., 2011], for pose estimation [Nguyen et al.,
2018], and for structure recognition [Li et al., 2014]. It has
also been used in NLP applications for detecting structural
similarity in texts [Zhu, 2013]. TDA can also help in time se-
ries data analysis such as in [Umeda, 2017]. Recently, TDA
has also been used to shed light about the workings of convo-
lutional neural networks through works such as [Gabrielsson
and Carlsson, 2018; Carlsson and Gabrielsson, 2018] wherein
the authors perform TDA on the weight matrices of the deep
networks to study what is being learnt at each step of train-
ing. In a recent blog post [Gunnar, 2018], it is also mentioned
that TDA on weight matrices of CNNs can be used to un-
derstand dataset variability, correlation between accuracy and
persistence barcodes, etc. However, we have not come across
works that use TDA and PH to understand bias due to various
attributes in a dataset, which is the focus of this work.

2.2 AI safety
The safety of AI models could be compromised in several
ways—a decision may not be ethically justified [Bostrom and
Yudkowsky, 2018], there could be bias in the system [Srivas-
tava and Rossi, 2018], the system could cause hazardous ef-
fects [Pettigrew et al., 2018], or the privacy and security of
individuals may be at stake [Al-Rubaie and Chang, 2018].
Several works have studied the impact of AI based decisions
in safety critical applications such as healthcare [Challen1 et
al., 2019], judiciary [Kleinberg et al., 2018], transport [Stil-
goe, 2017], finance [FSB, 2017], amongst others. These stud-
ies have examined the impact AI based decisions can have on
various consumers (such as doctors, patients, judges, etc.),
and how the AI model can be made explainable to address
the needs of these consumers. In addition, several other ex-
cellent works [Kurutach et al., 2018; Goodfellow et al., 2014;
Ramakrishan and Shah, 2016] have explored explainable AI
methods to cater to the needs of AI scientists in understand-
ing the underpinnings of various models. However, there is a
pressing need to address AI safety from the perspective of a
software engineer. This paper is one such effort.



2.3 Bias and AI accessibility
Recognizing the need to develop tools that are accessible
across a broader set of users, IBM released AIFairness360
which is an excellent tool to compute bias along various met-
rics [Bellamy et al., 2018]. Accenture also released a similar
fairness assessment tool [Peters, 2018]. It was also reported
that Microsoft is creating an oracle to catch biased AI algo-
rithms [Knight, 2018]. Google introduced AI bias visualiza-
tion with the What-If tool and TensorBoard [Wexler, 2018].
There have also been several academic works in this area.
In a recent paper, MIT researchers detailed what they call as
a toolbox for helping machine learning engineers figure out
what questions to ask of their data in order to diagnose why
their systems may be making unfair predictions [Chen et al.,
2018]. Guidelines have also been proposed to reduce the po-
tential for bias in AI. These include “factsheets for datasets”
from IBM, and “Datasheets for Datasets”, an approach for
sharing essential information about datasets used to train AI
models [Gebru et al., 2018]. In this work, we propose a com-
plementary perspective of analyzing bias using topological
data analysis. This method offers the advantage of being ap-
plicable across sparse datasets and can be used for efficient
feature representations and visualizations. Furthermore, a
software engineer does not have to tune parameters or deal
with metrics of evaluation, thereby enhancing accessibility.

3 Methodology
We begin by reviewing some necessary definitions. More de-
tails about the same can be found in any book on algebraic
topology such as [Weintraub, 2014].

3.1 Definitions
• Point cloud: A point cloud is often defined as a finite set

of points in some Euclidean space, but may be taken to
be any finite metric space.

• Simplex: A simplex is a generalization of a triangle or a
tetrahedron to their higher dimensional counterparts.

• Simplicial complex: A simplicial complex is a combina-
tion of simplexes such that any face (subset) of a simplex
from K is also in K, and the intersection of any two sim-
plices in K is either empty or shares faces.

• Vietoris-Rips complex: Also known as the Rips com-
plex, this is a simplicial complex with radius r that con-
sists of the set of all points (and simplicial complexes)
such that the largest Euclidean distance between any of
its points is at most 2r.

A natural question may then arise as to what is the best value
of r to use for a dataset. The answer is provided by persis-
tence homology, which is defined next.

• Persistence Homology (PH): This is a method for com-
puting topological features of a space at different spa-
tial resolutions. Such topological features could include
clusters, holes and voids in a dataset. More persistent
topological features are detected over a wide range of
spatial scales and are deemed more likely to represent
true topological features of the underlying space rather

than artifacts of sampling, noise, or other factors. For
example, in a 2D space, as the radius r is gradually in-
creased, points that are initially disconnected could get
connected and higher order topological features such as
holes could appear. The holes could later disappear as
the entire space gets connected. The process of varying
the radius is referred to as “filtration”. The best value
of r is one that can reveal persistent topological features
in the dataset. This value is automatically computed by
PH softwares.
• Persistence diagrams: The appearance and disappear-

ance of clusters, holes and other such topological fea-
tures can be captured by means of persistence diagrams
(bottom right in Figure 2) and persistence barcodes. Per-
sistence diagram is a plot of the birth time (i.e., the value
of the radius at which a topological feature appears) and
death time (i.e., the value of the radius at which a topo-
logical feature disappears) of a topological feature as the
the radius is varied. Any point on the diagonal of this
plot is insignificant as it does not persists long enough
(i.e. it disappears soon after it appears). Points above
the diagonal are topological features that persist.
• Persistence barcodes: This captures the interval be-

tween the birth and death of a topological feature. It
is another way of looking at the persistence diagram.

With the above background, we are now in a position to un-
derstand the intuition behind using PH in analyzing dataset
bias.

3.2 Intuition
Persistent barcodes as computed by PH is a collection of in-
tervals along various dimensions. In dimension=0, the bar-
code output reflects the decomposition of the dataset into
clusters or components. In clustering, a threshold is cho-
sen, and any two points are connected by an edge if their dis-
tance is less than this threshold. As the threshold grows, more
points will be connected, and there will be fewer clusters. The
barcode is a way of tracking this behavior.

The author in [Gunnar, 2018] nicely illustrates the intuition
behind barcodes. We leverage a similar example to explain
the concept of barcodes. Consider some toy data as shown in
Figure 1. On the left, we see a dataset that consists of two
clusters close to each other and on the right we see another
dataset that consists of two clusters which are relatively far-
ther apart. The corresponding barcodes beneath each dataset
represents two lines, one longer than the other. The presence
of two lines indicates that there are two clusters in both these
datasets. However, we notice that in the left dataset, the lines
are shorter compared to the ones on the right. This is because,
the clusters on the left are closer to each other, as a result, the
two initial clusters get merged into a single large cluster and
there is only one line (top one) after the merger happens. For
the dataset on the right, this merger happens little later at a
larger value of radius r as the clusters are farther apart.

The aforementioned illustration is for dimension =0,
wherein PH captures connected components or clusters. The
length of the barcode is indicative of how well connected the
clusters are, and the number of barcodes is indicative of the



number of such connected components. For higher dimen-
sions, the barcodes captures the presence of holes, voids, etc.
Further, lengths of barcodes are used as indicators of varia-
tions in training data. For example, the authors in [Carlsson
and Gabrielsson, 2018] use the length of barcodes as indica-
tors of the accuracy of convolutional neural networks.

Figure 1: Intuition behind barcodes

3.3 Hypothesis
Now, imagine a 2D point cloud of predictors (attributes) and
target variables, i.e., each predictor (say age) constitutes the
x-coordinate and the y-coordinate is the target variable (say
loan defaulting). We will use the words attributes and predic-
tors interchangeably in the paper. In dimension 0, the barcode
captures the connected components of the age variable with
respect to loan defaulting. So, if the data consists of a par-
ticular age group of people who defaulted, it will be evident
in the form of an isolated cluster, not connected to other age
groups. In other words, if there is bias in the dataset, bar-
codes provide a visualization of the same. A barcode that is
significantly longer than others is indicative of bias due to that
predictor. If all barcodes are of same length, there is no bias
due to that predictor.

3.4 Validation
The aforementioned hypothesis can be verified by means of
statistical hypothesis tests. Since the distribution of topo-
logical features has not been well characterized yet, statisti-
cal inference on persistent homology must be non-parametric
tests [Wadhwa et al., 2018]. For our purposes, we use non-
parametric permutation test.

If we define a function T that returns the persistent homol-
ogy of a point cloud, then given two point clouds, C and D,
we can use a permutation test to conduct statistical inference
with the following null and alternative hypotheses:

HA : T (C) = T (D) (1)

H0 : T (C) 6= T (D) (2)

We then use the Wasserstein distance (Earth-mover’s dis-
tance) as a similarity metric between persistent homologies
of two point clouds [Vallender, 1974].

Going back to the example considered, suppose we have
two point clouds corresponding to two predictors, say age and
gender, with respect to loan defaulting. We can now run a
permutation test on the two point clouds to confirm that the
persistent homologies of the two are, in fact, distinct. We set
the null hypothesis that the two persistent homologies are not
distinct. The resulting p value from the test indicates whether

the null hypothesis can be rejected or not. Typically if p < α,
the null hypothesis is rejected. The paramaeter α is known
as the significance value of the test and a standard value of
0.05 is typically chosen for α. We use off the shelf TDAstats
package to test the hypothesis [Wadhwa et al., 2018].

3.5 Algorithm
The aforementioned procedure can be summarized as fol-
lows:
1. Create point clouds of individual predictors and the target
variable.
2. Compute Rips complex for each of the point clouds cre-
ated in step 1.
3. Compute persistance homology for the Rips complexes
created in step 2 and plot persistance barcodes.
4. For each PH, the length of the longest barcode is a way
of visualizing the bias due to individual predictors. If all bar-
codes are of same length, then there is no bias. If there are
barcodes that are considerably longer than others, then there
is bias.
5. Compute p values from permutation tests setting the null
hypothesis that the resulting PHs from the two point clouds
under consideration are not distinct. A rejection of null hy-
pothesis indicates that the two PH are indeed distinct and thus
there is bias in the attribute which has a long barcode.

4 Results
We demonstrate the method on German credit dataset [Dua
and Graff, 2019]. This dataset contains 1000 data points
wherein the goal is to predict loan defaulting based on twenty
predictors such as credit history, savings, checking account
status, property, housing, job, etc. “Age” and “gender” are the
protected attributes with “old” and “male” being previlaged
attributes and “young” and “female” being unprevilaged at-
tributes.

As described earlier, different topological features can be
detected at different dimensions. Dimension 0 reveals the ex-
istence of clusters or connected components. Figure 2 pro-
vides the persistence barcodes of age with respect to loan de-
faulting in dimension 0. The x-axis represents the variation
of the radius parameter r. The y axis does not have a physical
interpretation, it represents the set of all connected compo-
nents. We see that there are several individual clusters when
the radius is 1, these merge and there are two clusters until
r = 2. Beyond r = 2, there is a single large cluster that
persists. The length of the longest barcode is 4.

Now, consider the plot of persistence barcodes of gender
with respect to defaulting as shown in Figure 3. We see a
few clusters which persist upto r = 1, thus the length of the
longest barcode is 1. From Figures 2 and 3, it can be inferred
that the persistence homology due to age and gender are dis-
tinct. We can objectively validate the hypothesis that the two
PHs are different by means of permutation test as described
earlier. We obtained a p value of 0, thus leading to the rejec-
tion of the null hypothesis that the two PHs are not distinct.
There is a single large cluster as evident by the long barcode
in the PH of age, thus the bias due to age is significant. Fur-
thermore, if we consider the length of the longest barcode as



Figure 2: Persistence barcode of age with respect to defaulting

an indicator of the bias in the dataset, then the bias due to age
is four times the bias due to gender (if there is any due to gen-
der). In fact, since there is no single persistent bar in the PH
of gender, we can conclude that there is no significant bias
due to gender. In dimension 1, we did not observe a statisti-
cally significant difference between the two PHs. However,
to detect bias, it suffices if there is a statistically significantly
difference between the PHs in any one dimension.

Figure 3: Persistence barcode of gender with respect to defaulting

The aforementioned result can also be validated using the
AIfairness 360 tool as can be observed from Figure 4. AIfair-
ness 360 also shows that there is no bias due to gender. Four
out of the five metrics (statistical parity difference, equal op-
portunity difference, disparate impact, and average odds dif-
ference) show bias with respect to age. Theil’s index, how-
ever does not show any bias. The presence of multiple met-
rics and varying amount of bias across those metrics might

be little confusing to a software engineer not aware of the de-
tails of these metrics. The suitability of a particular metric
may be dependent on the type of data amongst other factors.
The burden of choosing a suitable metric might thus fall on
the software engineer, who may not necessarily be equipped
with the knowledge to do so. On the other hand, persistence
homology based bias visualization method provides the soft-
ware engineer with a universal tool that is applicable across
datasets without having to choose any parameter. Intrigued by

Figure 4: Bias due to age: Visualizations from IBM AI360 tool

how PH of other attributes compare with respect to protected
attributes, we also plotted the PH of attribute “job” with re-
spect to the target variable. The PH of “job” was the same as
that of gender indicating that there is no bias due to job as can
be observed from Figure 5.

5 Accessibility for the software engineer
Engineering trust-worthy software architectural pipelines is
an integral aspect of AI safety. There is a pressing need to cre-
ate accessible AI interfaces and tools to ensure that software
engineers who may not necessarily possess technical depth in
AI are able to appropriately pre-process data, select the right
AI model, and tune it. In this paper, we described how TDA
can aid software engineers in understanding bias in datasets,
a pre-processing step that is very important in the context of
AI safety.

In this section, we summarize what a software engineer
needs to know to leverage this method and how they can use
the same. The mathematical background discussed earlier
may give an impression that this method is not simple enough
to be comprehended by a software engineer. However, the
nice thing about TDA is that those details are not necessary
to actually detect bias. Furthermore, the software engineer is
not burdened to choose a bias metric. Below, we enlist some
common questions and simple answers to further enhance the
accessibility of this method.

• What to know about TDA and PH: Topology is the study
of shapes. These shapes may be viewed as generaliza-
tions of triangle in higher dimensions and are referred to
as simplicial complexes. Different simplicial complexes
(triangles, tetrahedrons, etc.) appear based on the reso-
lution at which the data is analyzed. PH is a method for
computing topological features of a space at different
spatial resolutions. Topological features could include
clusters, holes and voids in a dataset.

• How can TDA and PH help in detecting bias: If there is
bias due to an attribute in the dataset, it will be evident
in the form of an isolated topological feature such as a
cluster or hole that persists for a considerable interval.



Figure 5: Persistence barcode of job with respect to defaulting

• How to choose a method to construct simplicial com-
plex: This is based on data type. For example, Rips com-
plex is typically chosen for point clouds, Morse complex
is chosen for images, etc.
• How to prepare data: For categorical datasets, create

point clouds of individual predictors and the target vari-
able.
• How to choose radius parameter : The radius parameter

is automatically chosen by PH based software to detect
topological features of interest.
• How to compute PH: PH is visualized in terms of per-

sistence diagrams and barcodes. Persistence diagram is
a plot of the birth time (i.e., the value of the radius at
which a topological feature appears) and death time (i.e.,
the value of the radius at which a topological feature dis-
appears) of a topological feature. Persistence barcodes
capture the interval between the birth and death of a
topological feature. There are several off-the-shelf soft-
ware packages available to compute PH like GHUDHI,
R-TDA, Dipha, etc [Pun et al., 2018] which can be cho-
sen based on the language of preference.
• How to interpret the barcodes for bias detection: If there

is a single long barcode, there is bias. If all barcodes are
of same length, there is no bias. See Figure 6.
• How to validate bias: Use non-parametric permutation

test to show that the PH of the predictor contributing to
bias is distinct from other predictors.

6 Conclusions
Topological data analysis offers promising alternate feature
representation techniques. In this work, we described a novel
way of quantifying bias in datasets. Specifically, we used
persistence homology to determine bias due to different at-
tributes in the German credit dataset and validated the same

Figure 6: Right: An instance of no bias since all barcodes are of
same length. Left: An instance of bias due to the presence of long
barcodes at the top

using non-parametric statistical permutation tests. The pro-
posed visualization can serve as a useful pre-processing tool
for software engineers to understand which attributes need
to be accounted for and mitigated when ensuring fairness in
classification.
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