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Abstract. In this work, we present a deep exhaustive framework for
the MEDDOCAN shared task. The framework employs a generic named
entity recognition (NER) model that captures the underlying seman-
tic information of texts. The key idea of our model is to enumerate all
possible spans as potential entity mentions and classify them with deep
neural networks. We introduce different sets of learning algorithms, in-
cluding base representation(BR) average (BR-Avg), BR with attention
mechanigm (BR-Attn), LSTM-Minus-based average (LM-Avg), LSTM-
Minus-based attention (LM-Attn), where with or without context is used
after LSTM layer (Context or None) and an ensemble approach using
maximum voting of all the approaches. We evaluate our exhaustive model
on two sub-tasks in the MEDDOCAN shared task in medical domain
using the official evaluation script. Among the five submitted runs, the
best run for each sub-task achieved the F-score of 93.12% on Sub-task 1
and the F-scores of 93.52% (strict) and 94.92% (merged) on Sub-task 2
without any external knowledge resources.

Keywords: Deep learning · NER · Exhaustive approach.

1 Introduction

The MEDDOCAN shared task [9] is an open challenge medical entity detection
task that allows participants to use any methodology and knowledge sources for
the clinical records with protected health information (PHI). The task allows
the comparison of the participating systems using the same benchmark data-
set and evaluation method. Named entity recognition has drawn considerable
attentions as the first step towards many natural language processing (NLP)
applications including relation extraction [10], event extraction [3], co-reference
resolution [4], and entity linking [5]. Recently, deep neural networks have shown
impressive performance on flat named entity recognition in several domains [8].
Such models achieved the state-of-the-art results without requiring any hand-
crafted features or external knowledge resources.

In this paper, we present a novel neural exhaustive model that detects flat
and nested entities. The model reasons over all the regions within a specified
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maximum size. The model first represents each region as the combination of
the boundary and inside representations by using the outputs of bidirectional
long short-term memory (LSTM). The inside representation simply treats all the
tokens in a region equally by taking the average of LSTM outputs corresponding
to tokens inside the region. It then classifies the regions into their entity types or
non-entity. Unlike the existing models that rely on token-level labels, our model
directly employs an entity type as the label of a region.

We evaluated our model on the MEDDOCAN task in clinical domain, which
aims at named entity recognition (NER), which is officially called NER offset
and entity type classification, and sensitive span detection. The best run for
each sub-task achieved the F-score of 93.12% on sub-task 1 and the F-scores of
93.52% (strict) and 94.92% (merged) on sub-task 2.

2 Related Works

Sohrab et al. [11] detected the inner and outermost entities using exhaustive
approach and outperformed the state-of-the-art results by achieving 77.1% in
terms of F-score. Zhou et al. [14] detected nested entities in a bottom-up way.
They detected the innermost flat entities and then found other NEs containing
the flat entities as sub-strings using rules derived from the detected entities. The
authors reported an improvement of around 3% in the F-score under certain
conditions on the GENIA corpus [2]. Recent studies show that the conditional
random fields (CRFs) can produce significantly higher tagging accuracy in flat
or nested (stacking flat NER to nested representation) [12] NERs. Ju et al. [6]
proposed a novel neural model to address nested entities by dynamically stacking
flat NER layers until no outer entities are extracted. A cascaded CRF layer is
used after the LSTM output in each flat layer. The authors reported that the
model outperforms state-of-the-art results by achieving 74.5% in F-score.

3 Neural Exhaustive Approach

We solve the NER and sensitive span detection (SSD) tasks using a neural
exhaustive approach that exhaustively consider all possible regions in a sentence
using a single neural network. The model detects nested entities by enumerating
all possible spans or regions. Our model is built upon a shared bidirectional
LSTM (Bi-LSTM) layer. Figure 1 shows the exhaustive model to solve the entity
recognition and SSD.

3.1 Embedding Layer

In the embedding layer, each word is represented by concatenating the pretrained
word embedding and character-based word representations where we encode the
character-level information of the word. The character-based word representa-
tions are obtained by feeding the sequence of character embeddings comprising
a word to a Bi-LSTM layer and concatenate the forward and backward output
representations. The character embeddings in a word is randomly initialized.
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Fig. 1: A overview of the exhaustive model with base region representations.

3.2 Bidirectional LSTM Layer

Given an input sentence sequence X = {x1, x2, ...xn}, where xi denotes the
i-th word and n denotes the number of words in the sentence sequence, the
distributed embeddings of words, which are introduced in the last section, are
fed into a bidirectional LSTM (Bi-LSTM) layer. The Bi-LSTM layer computes

the hidden vector sequence in forward
−→
h =

{−→
h1,
−→
h2, . . . ,

−→
hn

}
and backward

←−
h =

{←−
h1,
←−
h2, . . . ,

←−
hn

}
manners. We concatenate the forward and backward

outputs as hi =
[−→
hi;
←−
hi

]
, where [; ] denotes concatenation.

3.3 Exhaustive Layer

The exhaustive layer enumerates all possible regions by exhaustive combination.
We generate all possible regions with the sizes less than or equal to the maximum
region size L, which is predefined. We use (i, k) to represent the region from i
to k inclusive, where 1 ≤ i < k ≤ n and k − i < L.

We represent each region using the outputs of the shared underlying LSTM
layer. We represent the region with two separate representations: the boundary
representation for region detection and the inside representation for semantic
type classification. In the latter part of this section, we first introduce the base
region representations and then explain two enhancements.

Base Region Representations The boundary representation is prepared to
capture the both ends of the region. We rely on the outputs of the bidirectional
LSTM layer corresponding to the boundary words of a target region for this
purpose. We obtain the left- and right-boundary representations R(i, k)[L,R] of
the region (i, k) as follows:

R(i, k)[L,R] = [hi;hk] . (1)
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The inside representation is prepared to capture its semantic type by encod-
ing the whole semantic information of the region. In the base representation, we
average the outputs of the Bi-LSTM layer in the region to treat them equally.

Using the boundary and inside representations, we obtain the left-, inside
with average representation, and right-boundary R(i, k)[L,A,R] of the region (i, k)
as follows:

R(i, k)[L,A,R] =

hi; 1

k − i+ 1

k∑
j=i

hj ;hk

 . (2)

Region Representations using Attention Mechanism Instead of relying
only on the average of the outputs of Bi-LSTM layer, we also try an attention
mechanism [1] over words in each region for the task of notion of headness.
Specifically, we extend the inside representations using attention mechanism as
follows:

αt = wαFFNNα
(←→x t

)
, (3)

αi,t =
exp(αt)∑end(i)

k=start(i) exp(αk)
, (4)

xi =

end(i)∑
k=start(i)

αi,t
←→x t, (5)

where ←→x t is the concatenated output of the Bi-LSTM layer over a region. xiis
a weighted sum of word vectors in region (i, k). Instead of Eq. 2, we obtain left-,

inside with attention-based representation, and right-boundary R(i, k)[L,A,R] of
the region (i, k) as follows:

R(i, k)[L,A,R] = [hi;xi;hk] . (6)

Region Representations using LSTM-Minus We also employ LSTM-Minus
[13] for the boundary representation. The left-boundary computed as the repre-
sentation of the previous word of the region subtracted from the representation
of the last word of the current region. Similarly, the right-boundary computed
as the representation of the next word of the region subtracted from the repre-
sentation of the first word of the current region. We obtain the representation

R(i, k)[L,R] of the region (i, k) by concatenating the left- and right-boundary
based on LSTM-Minus and it is computed as follows:

R(i, k)[L,R] = [hk − hi−1;hi − hk+1] . (7)

The above region or span information is concatenated with average embeddings
of the region (i, k) to produce the LSTM-Minus-based representations as:

R(i, k)[L,A,R] =

hk − hi−1;
1

k − i+ 1

k∑
j=i

hj ;hi − hk+1

 . (8)
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Fig. 2: LSTM-Minus based region representations.

Fig. 3: An overview of the exhaustive model with contextual region representations.

Furthermore, the LSTM-Minus based representation using attention can be con-
sidered as:

R(i, k)[L,A,R] = [hk − hi−1;xi;hi − hk+1] . (9)

3.4 Contextual Region Representations

With the LSTM output hi, we introduce a context level representation from bidi-
rectional LSTM layer. The idea of this approach is to capture the surrounding
LSTM output of a target region (i, k) by concatenating vector output of previ-
ous hi−1, current hi, and next index hk+1 of LSTM output. With contextual
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region representations, we can further generate new representation from Eqs.
1-9. Figure 3 shows an architecture of contextual level integration. We then feed
the representation of each segmented region to a rectified linear unit (ReLU) as
an activation function. Finally, the output of the activation layer is passed to a
softmax output layer to classify the region into a specific entity type.

4 Experimental Settings

4.1 Evaluation Settings

We evaluated our exhaustive model on MEDDOCAN3 dataset to provide empir-
ical evidence for the effectiveness of the exhaustive model both in NER and SSD.
Our model is implemented in Chainer4 deep learning framework. We generated
task specific word embeddings by merging the raw text of training, development,
and test (including background set) sets, which included 200-dimensional em-
beddings of 77,559 vocabulary. We used Adam [7] for learning with a mini-batch
size of 10. We used the same hyper-parameters in all the experiments; we set
the dimension of word embedding to 200, the dimension of character embedding
to 25, the hidden layer size to 200, the gradient clipping to 5, and the Adam
hyper-parameters to its default values [7]. We employed the official MEDDO-
CAN evaluation script5 to evaluate our system performances for both tasks.

4.2 Data Pre-processing

We read text directly from input text files. We learn and detect spans using the
neural exhaustive approach from Bi-LSTM layer, creating all possible combi-
nation from beginning to end of a given sequence. Unlike the traditional NER
models, our model is independent from traditional ’BIO’ tagging scheme, where
’B’, ’I’, and ’O’ are stands for ’Begin’, ’Inside’, and ’Outside’ of named entities,
respectively. Thus, each text and annotation files are processed by several simple
rules only for tokenization. After tokenization, each text with mapping annota-
tion files are passed to deep neural approach for mention detection, classification,
and sensitive token detection. Note that the offsets are restored to the original
offsets in evaluation.

5 Results and Discussions

In order to evaluate the performance of NER and sensitive token detection,
we conduct experiments on different sets of learning algorithms, including base
representation(BR) average (BR-Avg), BR attention (BR-Attn), LSTM-Minus-
based average (LM-Avg), LSTM-Minus-based attention (LM-Attn), where with

3 http://temu.bsc.es/meddocan/index.php/data/
4 https://chainer.org/
5 https://github.com/PlanTL-SANIDAD/MEDDOCAN-CODALAB-Evaluation-

Script
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Table 1: Test Set: Performances using strict evaluation on Sub-task 1 and strict and
merged evaluations on Sub-task 2

Sub-task 1 Sub-task 2

Learning Model Strict Strict Merged
P(%) R(%) F(%) Leak(%) P(%) R(%) F(%) P(%) R(%) F(%)

Ensemble 95.68 90.69 93.12 0.070 96.09 91.08 93.52 97.70 92.03 94.78
BR-Attn-None 94.12 89.33 91.66 0.080 92.64 92.03 92.33 94.91 92.81 93.85

LM-Attn-Context 92.55 90.23 91.38 0.073 93.57 91.22 92.38 96.23 92.24 94.20
BR-Avg-None 91.00 91.59 91.29 0.063 91.96 92.56 92.26 95.95 93.91 94.92
LM-Attn-None 93.25 88.61 90.87 0.086 94.75 89.93 92.28 96.92 90.91 93.82

Table 2: Sub-task 1: Categorical performances on test set using strict evaluation

Label P(%) R(%) F(%) Label P(%) R(%) F(%)

CORREO elect. 97.85 91.57 94.61 Id asegura. 99.49 99.49 99.49
Sexo sujeto asist. 99.13 99.13 99.13 Famil. sujeto asist. 82.09 67.90 74.32
Edad sujeto asist. 98.02 95.56 96.77 Hospital 91.57 58.46 71.36

Id titulacion per. sani. 99.57 99.99 99.79 Id empleo per. sani. 0.000 0.000 0.000
Nombre per. sani. 96.71 94.01 95.34 Numero telefono 94.74 69.23 80.00

Fechas 97.72 98.20 97.96 Id contacto asist. 99.98 97.44 98.70
Pais 98.82 92.29 95.44 Profesion 0.000 0.000 0.000

Territorio 97.05 92.89 94.92 Institucion 60.00 13.43 21.95
Calle 77.19 63.92 69.93 Numero fax 99.98 14.29 25.00

Id sujeto asist. 99.26 94.70 96.93 Otros sujeto asist. 0.000 0.000 0.000
Nombre sujeto asist. 91.91 99.60 95.60 Centro salud 0.000 0.000 0.000

Overall (micro) 95.68 90.69 93.12 Overall (macro) 95.86 91.30 93.36
Note: We abbreviate some labels for brevity.

or without context is used after LSTM layer (Context or None). Table 1 shows
the five submitted results on NER in terms of F-score on the test sets. In
strict matching, it is shown that ensemble approach using maximum voting of
all the approaches, including BR-avg-None, BR-Attn-None, BR-Avg-Context,
BR-Attn-Context, LM-avg-None, LM-Attn-None, LM-Avg-Context, LM-Attn-
Context for NER and sensitive token detection is very effective to improve the
system performance. In contrast, the BR-Avg-None shows the best performance
on NER in terms of F-score when using merged matching. Table 2 shows the
categorical performances on the MEDDOCAN dataset.

We show the differences in performance on the development data set to com-
pare the possible scenarios of the given solutions and to report the best system
submissions for NER and SSD. Table 3 shows the performances of different ap-
proaches on the development set in Sub-task 1 and 2. Table 3 in Sub-task 1
shows that almost all the results in different approaches are close to each other
to solve the Sub-task 1. In contrast, Table 3 in Sub-task 2 shows that attention
and average with different boundary representations of a region are effective
both in strict and merged evaluations to detect sensitive token.
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Table 3: Development Set: Performances using strict evaluation on Sub-task 1 and
strict and merged evaluations on Sub-task 2

Sub-task 1 Sub-task 2

Learning Model Strict Strict Merged
P(%) R(%) F(%) Leak(%) P(%) R(%) F(%) P(%) R(%) F(%)

Ensemble 95.66 92.01 92.74 0.075 96.01 90.33 93.08 97.29 91.06 94.07
BR-Attn-None 94.03 88.76 91.32 0.084 94.83 89.52 92.10 96.88 90.84 93.57

LM-Attn-Context 92.51 90.04 91.26 0.083 93.29 90.79 92.02 95.74 91.77 93.71
BR-Avg-None 91.52 90.93 91.22 0.081 92.33 91.74 92.04 96.30 93.11 94.68
LM-Attn-None 93.29 88.85 90.81 0.086 89.79 92.79 91.27 92.81 93.95 93.37

6 Conclusion

This paper presented approaches of neural exhaustive and neural contextual ex-
haustive models model that considers all possible regions exhaustively for named
entity recognition and sensitive token detection. The model obtains the repre-
sentation of each region using the outputs of the underlying shared LSTM layer,
and it represents the different regions by concatenating boundary and inside rep-
resentations of the region. Several enhancements, namely attention mechanism,
LSTM-Minus, context from base representations, and context from LSTM-Minus
are investigated for the representations. It then classifies the region into an entity
type or non-entity. The model does not depend on any external NLP tools. In
the experiment, we show that our model learns to detect flat and nested entities
from the generated mention candidates of all possible regions. Among the five
submitted runs, the best run for each subtask achieved the F-score of 93.12% on
Sub-task 1 and the F-scores of 93.52% (strict) and 94.92% (merged) on Sub-task
2 without any external knowledge resources.
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