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Abstract. There is a vast amount of digitized information about medi-
cal records, treatments and diseases, that used to be in an unstructured
or semi-structured format. In order to take advantage of all the potential
data that can be extracted from this information, it is necessary to deploy
systems capable of converting it into annotated and structured informa-
tion. In the context of the MEDDOCAN shared task of IberLEF2019, we
use a Few-Shot Learning approach for Named Entity Recognition (NER)
in medical documents to identify and classify key phrases in a document.
The architecture of the system is an hybrid Bi-LSTM and CNN model
with four input layers that can recognize multi-word entities using the
BIO encoding format for the labels.
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1 Introduction

Nowadays, there is a vast amount of digitized information about medical records,
treatments and diseases, but is not completely annotated yet so there is unstruc-
tured or semi-structured information. In order to take advantage of all the po-
tential data that can be extracted from this information, it is necessary to deploy
systems capable of processing and converting it into structured information.

Recently, neural networks are shown to be especially successful in complex
NLP tasks [14]. For example, G. Fabregat et al. [2] use a deep learning model for
disabilities and diseases recognition using Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN). Also the work with word embedding is
one hot topic in this area, for example to simplify drug package leaflets written
in Spanish [10] or to define reproducible experiments and replication datasets
[6].

The MEDDOCAN task presented at the Iberian Languages Evaluation Fo-
rum (Iberlef) 2019 [8] has the objective of anonymize medical documents in
Spanish. The task is structured in two sub-tasks: NER offset and entity type
classification and sensitive token detection.
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Our work is based in the Few-shot Learning Model to learn high level fea-
tures from datasets [3, 12]. We propose a hybrid Bi-LSTM CNN model by ex-
tending the model presented in [4] adding a Part-of-Speech (POS) tagging layer,
that is, information about multi-word entities. Moreover, in this work, we use
wikipedia2vec [13], a pre-trained word embedding model from Wikipedia. This
approach to automatically extract and classify keywords is detailed at [5]. The
code is available on Github 3.

The rest of the paper is organized as follows. In section 2, we describe the
architecture of the system. Section 3 describes the evaluation process and results
obtained. Finally, section 4 outlines the conclusions and future works.

2 System description

The system process is organized into (1) a pre-process of the data to be the
input of the neural network, (2) its processing with the neural network and (3)
the post-process of the output data format.

All documents are pre-processed following the next steps. First, sentences are
splitted and tokenized using the Stanford CoreNLP natural language processing
toolkit [7], ignoring all non-alphanumeric symbols. Then, each token is annotated
using the BIO scheme, to preserve the multi-word entities. After that, we get
the POS tag of each token (using the Stanford Core-NLP POS tagger).

The output of the system (annotated as shown in the Table 1: concept, POS
tags and BIO-label) is converted into the BRAT format [11]. The BRAT format
store all the information of the initial data together with the labels of each
category and the positions of the tokens in the text.

Table 1. Structure of processed data in this work

Concept POS tag BIO label

Edad PROPN O

70 NUM B-EDAD SUJETO ASISTENCIA

anyos NOUN I-EDAD SUJETO ASISTENCIA

Sexo NOUN O

The network architecture of this work is detailed also in [5]. It has four input
layers, named as character level, word level, casing input and POS tag level, as
can be seen in Figure 1.

– The character level starts with a character embedding that maps a vocab-
ulary of 120 possible characters to an embedding initialized randomly. The
maximum number of character per word is 52. It has a dropout layer (with
drop rate 0.5) used to avoid the risk of overfitting. Finally, it has a convolu-
tional layer to process the 1-dimension character layer.

3 https://github.com/alicialara/lsi2 uned at MEDDOCAN2019
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Fig. 1. Network architecture used in this work

– The second input layer uses the wikipedia2vec pretrained embeddings in
Spanish language of 300 dimensions 4, mapping the existing vocabulary from
the dataset.

– The third layer maps a vocabulary of eight casing types: numeric, allLower,
allUpper, mainly numeric, initialUpper, contains digit, padding and other.

– The fourth layer maps into a one-hot embedding the POS tags existing in
the vocabulary.

The system starts processing these four inputs independently, to finally merge
them to be processed. The bidirectional LSTM layer Bi-LSTM [9] transforms
the input data into two vectors of 200 units. Finally, the softmax function is
used to obtain a prediction for locating and classifying sequences of words in the
input text.

3 Evaluation and results

The evaluation of the proposed model was carried out using the MEDDOCAN
corpus, that includes 1000 clinical cases, with around 495 thousand words, with
an average of 494 words per clinical case. The corpus is annotated in both BRAT
and i2b2 formats5, and is divided in three sections: training, development and
test. The training set comprises 500 clinical cases, and the development and

4 https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
5 https://www.i2b2.org/

Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019)

757



A. Lara-Clares and A. Garcia-Serrano

test set 250 clinical cases each. The test set is an additional collection of 2000
documents previously non-annotated for competition purposes.

The detailed information of the evaluation is in the MEDDOCAN competi-
tion related paper [8]. There are 29 categories for key phrases and the evaluation
is divided in two subtasks. The first task is an entity-based evaluation and the
second one evaluates whether spans belonging to sensitive phrases are detected
correctly.

In the first task, we have obtained a F-score of 90%. In the second one we
have obtained a 91.5% of F-score. The documents are semi-structured, which
facilitates the correct learning of certain entities. For example, patient names
begin with ”Name: ”. The main difficulty was the detection of discontinuous,
overlapped or nested entities. For example, the names in different lines are
annotated discontinuously: the entity ”T1 NOMBRE SUJETO ASISTENCIA
29 63 Pedro De Miguel Rivera” is annotated in this system as ”T1 NOM-
BRE SUJETO ASISTENCIA 47 63 De Miguel Rivera” and ”T2 NOM-
BRE SUJETO ASISTENCIA 29 34 Pedro”. Other difficulties are the recogni-
tion of entities in the text, such as the recognition of numbers as years (ages) or
dates.
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4 Conclusions and Future Works

In this work, we propose a hybrid Bi-LSTM and CNN model with four input
layers that can recognize multi-word entities using the BIO encoding format
for the labels. Our system achieve a satisfactory performance without requiring
hand-crafted features.

We plan to experiment with other BIO-based formats to detect discontinuous,
overlapped or nested entities, such as BMEWO-V [15]. Moreover, we will extend
the annotation using domain-specific formats and using external sources (such
as Wikipedia with cui2vec format [1]).
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