
263

Driving Digital Transformation Through e-Government

Denis Trček[0000-0003-0727-1324]

University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
denis.trcek@fri.uni-lj.si

Abstract. Digital transformation is increasingly determining the development of
societies through ubiquitous deployment of modern information technologies.
One of the main drivers that are still not paid sufficient attention are application
programming interfaces (APIs). These are not essential just for new services
development and adoption, but have further reach and may result even in creation
of new industries. Their importance is therefore not to be overlooked for further
development, especially by taking into account that the main focus is still on
developers (i.e. bottom-up approach). However, higher level business views (i.e.
top-down approach) are to be considered in de facto and de iure APIs
development, deployment and standardization processes, which is currently not
the case. Therefore this paper presents a framework for facilitating APIs
(services) evolution by considering top-down business views and their proper
addressing. The approach builds on lessons learnt with complex services
architectures, and their higher-level derivatives. In line with these lessons it
defines implementation strategies at technological and business levels. The
whole contribution is conceptualized around e-government services, because
governments are key players in each and every economy, and their impact in
digital transformation is therefore vital.

Keywords: digital transformation, application programming interfaces,
advanced services, e-business, e-government.

1 Introduction

Nowadays, digital transformation is a reality that is driving not only traditional, tangible
products focused primary and secondary sectors, but it extends all the way up through
the tertiary to the quaternary sector with increasing number of advanced services. And
governments present a central entity of digital transformation in quaternary sector. The
reasons are rather straightforward.

Governments are typically one of the largest entities in national economies. Their
budgets present significant – often major – portion of a country’s gross-domestic
product (in case of Germany, for example, the current federal budget presents approx.
11% of its yearly GDP [1]). Despite this, when it comes to IT they are too often
considered as entities that “passively” support citizens and businesses, while, in fact,
they are drivers of whole e-economies:

264

1. First, governments play considerable roles in all of e-business relations, be it
administration to business (A2B) and vice versa (B2A), administration to citizens
(A2C) and vice versa (C2A), or administration to administration relations (A2A).

2. Second, considering their potential, they should play a major and active role also in
further technology promotion through services they offer, e.g. e-government.

Currently, within the on-going digital transformation, application program interfaces,
or APIs, play a pivotal role that exceeds their anticipated influence. Initially and still
today, APIs are almost completely considered to be in the domain of developers, i.e.
belonging to the technological domain (as stated in [2], “unlike past trends that market
to business leaders, APIs market directly to developers”). However, the gathered
evidence shows that they do not have significant impact only on the development on
new services, but even creation of new industries through new business models [3].

Thus APIs are far more than pure technological artefacts. They affect business even
at strategic levels and have to be treated accordingly. Put another way - the gap between
top-down, business views focused approaches (e.g. e-government) and bottom-up,
technology focused approaches (e.g. APIs) has to be bridged in appropriate way. And
this is where the main contribution of this paper comes in. In the second section the
relevant technological driving forces are analyzed together with historical perspective
to include lessons learnt. This line of reasoning is further refined in the third section,
where a new approach to integration of light REST (REpresentational State Transfer)
and complex SOAP (Simple Objects Access Protocol) services is presented. The
approach builds on existing de facto and de jure standards. In the fourth section the
proposed management framework built around e-government initiatives is analyzed
and discussed. There are conclusions in the fifth section, followed by
acknowledgements and references.

2 The Evolutionary Elements Behind Digital Transformation

The era of e-business began in the mid-nineties of the former century when the Internet
started to penetrate business domain [4]. It transformed many industries, starting with
the services sector and followed later by tangibles producing sectors. New industries
appeared based on new business models (which have transformed in IT inherently
present added value), while traditional ones had to adapt many of their processes. As
the operationalization and wide implementation of e-business paradigm required new
knowledge at the intersection of rapidly evolving IT domain and management domain,
a field of e-business engineering emerged [5]. Such approach is crucial, because it
enables appropriate addressing of soft and hard factors, which will be also the case in
the rest of this paper.

Let’s focus now specifically on services. Already during their early development
research focused not only on deployment, but also on their descriptions and discovery.
This resulted in specifications of Simple objects access protocol (SOAP), Web services
description language (WSDL) and Universal description, discovery and integration
protocol (UDDI) [6] (SOAP – WSDL – UDDI triple is also referred to as WS-* family,

265

or remote procedure call, RPC, style services). It is worth to point out that, within this
triple, WSDL was actually describing and API for SOAP services.

The SOAP / WSDL / UDDI development was still mainly of technological nature.
It was about elementary software procedures (routines) at the business sub-operations
level. To further address business needs (i.e. the levels above operations level, all the
way to complete business processes), aggregation of these elementary routines was
needed for WS-* architectures. But such efforts did not succeed. One well known
example was ebXML (e-business eXtended Markup Language) standard proposed by
UN CEFAT and OASIS [7], where complex business rules and processes description
language were introduced. This was supposed to enable business solutions development
with the business processes specifications, which could be almost automatically
transformable into program code. However, this technology became very complex and
it was too demanding in terms of required efforts and resources for their
implementations. On top of this, automatic finding and deploying of available services
by using UDDI did not take ground.

What are the lessons learnt for APIs framework? First, avoid too complex structures.
Second, avoid imposing too strict specifications – preferably, these should be flexible
and based on de iure and de facto solutions to a maximal possible extent. Additional
argument for these two requirements is a huge success of lightweight and easier
deployable REST services that are forming RESTful architectures. Business
community started to deploy them extensively soon after their introduction, and access
to these services started almost at the same time to via APIs. As shown in Fig. 1 APIs
deployment shows (close to) exponential growth.

Fig. 1. The growth of REST APIs (source https://www.programmableweb.com).

However, the basic nature of RESTful architectures is such that they and their APIs are
developers focused, most likely due to the fact that APIs are protocols intended to be
used as interfaces by software components to communicate with each other in order to
extend reach of their applications (services) [8]. This narrow view triggered some

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 . . . 2017

APIs growth

266

authors to start exposing business importance of APIs. In [9] it is even exposed that
APIs should be treated as a kind of contracts, which are linking the technological and
business domains.

3 Fostering Business-centric APIs Through e-Government
Services

Contrary to SOAP architectures, RESTful APIs have been primarily considered in a
data-centric way so far. One understandable reason is due to many governments’ goal
that public data should be publicly available. RESTful solutions with their APIs come
very handy to fulfill this goal, so it should not be surprising that also OECD in its Open
Government Data document, when mentioning APIs, considers them in a data-centric
way [8] (this subject is similarly handled in [10]).

Such data-centrism of REST APIs is also a natural consequence of the fact that these
web services enable clients to access and manipulate textual representations of
resources, i.e. data. Taking into account further that they are largely deployed in inter-
organizational settings, while SOAP architectures remain notably limited to intra-
organizational settings, there exists a gap. On one hand we have processes centric
architectures that are very complex and limited to intra-organizations use, while on the
other hand data centric architectures face huge inter-organizational success, but they
remain limited to data without extensive offering of processes-centric support.

It can be concluded on the basis of the above given facts and the line of reasoning
that REST APIs would benefit from supporting process-centric needs (see Fig. 2).
However, imposing such addressing comes with a risk. If this is enforced (e.g. by de
jure standardization processes), the natural bottom-up driven access may be blocked.
Therefore, any de facto or de jure extensions of APIs should be flexible, potentially
optional, and done in a way where existing technology can included with minimal
coding or reconfiguration effort.

Fig. 2. APIs – linking the technology and business domains.

267

Before detailing out the proposed extensions to REST APIs, the most important existing
standards this area should be briefly provided and analyzed:

─ Currently the most promising industry standard, the winning player, is Open API
Initiative, OAI, formerly known as Swagger [11]. OAI enables computers to
discover and understand a service without accessing its source code or software
documentation. This specification that is built upon JSON data representation is
comprehensible also to humans, developers and non-developers. OAI is currently
the main initiative in the field and it is based on open source software.

─ A competing specification to OAI is RESTful API Modeling Language, RAML
(http://www.raml.org), which, in turn, is based on a human-readable data
serialization language YAML that is a superset of JavaScript Object Notation, JSON.
Compared to OAI, RAML specification is supposed to provide more flexibility, even
to an extent that includes support of architectures like SOAP [12].

─ Beside OAI and RAML, another important specification (that is not an API per se)
is Common Gateway Interface, CGI [13]. CGI is the oldest one and during the early
ages of web it provided means for running scripts or programs on server’s (the most
successful language for this purposes was PHP, which is still among the most
popular programming languages [14]). Despite popularity of CGI, its
standardization never ended in de iure standards, although, contrary to a wider belief,
CGI still is a de facto standard. It is natively supported by Apache servers, which
have close to 50% market share [15]. Therefore, as Apache servers are natively
backed by PHP, which may run in CGI mode or as an Apache module, CGI related
kind of web services are still more than alive.

Let’s now restate our basic problem as follows: Can we make RESTful architecture
also processes-aware knowing that this architecture builds upon only PUT, POST,
GET, DELETE, HEAD, and PATCH methods, where these methods operate
exclusively upon textual resources provided through URIs? If so, the problem now is
how to invoke also general procedures and not only data. These are the main options at
our disposal:

─ Option number one is a new specification (standard) that would use the best from
both worlds, RESTful and SOAP, and fuse them.

─ Option number two is that SOAP APIs and REST APIs remain as they are and an
additional code at a server does the splitting / merging of the services.

─ Option number three is to use REST service to accommodate SOAP service, i.e.
make SOAP exposed as a REST.

─ Option number four is that SOAP is used to accommodate and expose REST service
(i.e. becoming incorporated into a SOAP service).

─ The fifth option is CGI-BIN based web services deployment.

The first option would enable the best from both worlds, but it is unlikely to happen, as
there are currently no such standardization efforts in sight. The second option would
also actually pseudo-integrate the two worlds, but would require some adjustments to
existing implementations. Nevertheless, it is a doable option, as such adjustments are

268

not excessive (so it is not surprising that certain implementations like Oracle SOA Suite
already supports this option in a certain way). The third option is in principle undoable,
as RESTful is about textual representations of resources manipulated by REST
methods, while SOAP is about any kind of data manipulation and processing
procedures (there exists a workaround with limited functionality by wrapping a SOAP
call within a REST call). Now as to option four, this option is doable and there do exist
such solutions [16], but it conceptually favors SOAP and ineffectively complicates
REST parts. Finally, the fifth option is a solution that already exists, although it is tied
to two particular technologies, Apache servers and PHP programming language. But
these technologies are widely adopted and present de facto standard.

According to the above stated analysis, the data and processes focused merging of
the two kinds of services can be enabled by using the architectures that are presented
in Fig. 3 and Fig. 4. For the first proposed architecture a dispatcher (front-end
processor) is introduced. Thus appropriate structuring of a service call needs to be
defined. REST services that are nowadays tied to JSON, were initially tied to XML,
which is about processes and data. Therefore, as XML technology is no stranger to
REST architectures, an efficient way to implement dispatcher architecture goes as
follows:

1. Use a minimal http server, where front-end processor is deployed that analyses
requests from originators. Its parsing operation relies on appropriate XML schema
that reflects composite service envelope structure, presented below.

2. Afterwards parsing, the request is split into REST and SOAP parts accordingly,
while each part is forwarded to an intended destination servers.

3. After obtaining responses from the destination, the front-end processor merges the
responses in an XML envelope and sends this enveloped content to the originator.

Fig. 3. Dispatcher architecture.

SOAP serviceREST service

dispatcher

(HTTPd, XML, SAX, Xpath / XSLT)

clientclient client

269

Fig. 4. Apache / PHP architecture.

The proposed solution is rather easy to implement with minimal programming, because
the majority of tools already exist. For the first step Apache Tomcat server with
containers can be used, while another option is implementation of a simple HTTP server
that requires something between fifty to hundred lines of source code. For the second
step, a widely available SAX (Simple API for XML) or DOM (Document Object
Model) parser can be used. For the third step, XSLT (with XPath) can be used. What
needs to be defined for the fourth step is a simple XML wrapper structure, i.e. an
envelope for a composite service:

<compositeSrvc>
<RESTservice>…</RESTservice> <SOAPservice>…</SOAPservice>
</compositeSrvc>

The second proposed architecture is basically tied to PHP, and the approach is rather
straightforward as well. The open source community offers solutions for years, where
PHP scripting is integrated with Apache servers. Consequently, provisioning REST and
SOAP is just a matter of proper installation and configuration of Apache / PHP pair.

4 Leveraging bottom-up with top-down approaches

Although the main-stream way of thinking about APIs nowadays is data-centric, there
are quite some caveats why such view is likely insufficient for a general digital
transformation. And this is the point where governments with their e-government
services can make a critical technological push (One such initiative (and probably the
first of this kind) has been implemented very recently by the state of Singapore [17]).
Why such a push is needed, and how to approach it, is further elaborated next.

The first reason is purely technical – the emerging era of the internet of things, IoT,
where many devices will lack computing resources, requires more than just raw data.
These devices will be forced to “outsource” also significant part of processing. The

Apache / PHP

SOAP clientREST client

270

second reason is misconception that a straightforward utilization of data-centric APIs
automatically leads to increased value of these data [19]. The third one is that although
APIs are grounded on technological foundations, they have strong organizational
implications and influence organizations even at strategic levels [9]. The fourth one is
that properly conceptualized APIs enable creation of new business models and even
new industries [9, 20], while successful penetration of e-government systems has a
notable impact on business value creation, where this penetration depends on
technological and (inter)organizational factors [21].

Further, and as already emphasized, for adoption of advanced IT services soft factors
are at least as important as hard ones – APIs are no exception (such approach is
emphasized also by OECD [18]). And the core concept that encompasses soft factors
is new business model(s). Such models often lead to creation of new industries, not
only products and services per se.

Now contrary to common belief that business models are something of importance
just to commercial businesses, the truth is that they have lots to do with government
agencies and alike as well [22]. Latently present added value in IT technology is
released through appropriate business models, be it in commercial sector or public
administration. Therefore taking into account the framework presented in this paper we
anticipate that e-government provided APIs will also shape business models in general
as shown in Fig. 5.

Fig. 5. APIs and e-government driven business models for digital transformation.

5 Conclusions

By following the e-business engineering principles, the approach in this paper focuses
on digital transformation. This transformation is typically considered to be driven by
the following technologies [23]: analytics, big data, distributed ledger, cloud

indirectdeveloper
is paid

developer
paysfree

APIsAPIs

(e-Government) services

e-Gov

process -
centric

data -
centric

e-Gov

process -
centric

data -
centric

analytics & big data, distributed ledger, cloud computing, IoT, machine learning & AI, mobile technologies

271

computing, internet of things, machine learning with AI, and mobile technologies.
Further, it is considered to be driven by the following sectors: banking, consumer
products, healthcare, high tech, manufacturing, retail and transportation [23].

However, this paper justifies that digital transformation in tertiary and quaternary
sectors is becoming notably tied to APIs (which are front-ends for corresponding
services) that are a kind of common denominator of the above technologies. It has been
shown that APIs are currently primarily treated in a data-centric way, but they should
be considered more broadly to encompass also process-centric views. It is further
justified that among the above stated sectors, government sector is certainly among
digital transformation drivers and should be included in related efforts – most naturally
through e-government services. Such position well coincides with the general position
of, e.g. EU Commission about digital scoreboard and related priorities [24, 25].

This presents the basis for the core contribution of this paper, which is architectural
framework that relies on de facto and de jure standards to fulfil the above goals:
increased digital transformation in services sectors by re-conceptualizing APIs and by
focusing on governments’ role through their e-government services. More precisely, by
building on the influence of governments on many transformation processes, including
the digital one, this paper presents a framework that binds business domain with
technological domain. It re-conceptualizes the role that APIs currently play and extends
it from being primarily about the data to be also about processes. And e-government
paradigm with its services is the way to go, where concrete steps are presented that can
be implemented with existing solutions and standards – the key accent is focus.
Although being a soft factor, appropriate focus of governments has numerous hard
consequences. The experience shows that it often enables new business models and
creates even new industries. The very basic Internet is one such example and as such
additionally justifies the research in the directions given in this paper. However, a large
part of research performed so far has often not taken this view into account and has
focused on issues like quality of e-government services (see, e.g. [26]).

Speaking purely technologically, the approach presented in this paper is about
further services integration and thus presents an evolutionary step forward similar to
the steps like front-end and back-end services integration that took place a decade ago
[27]. Having integration in mind, future work will address further elaboration of the
exposed issues, and eventually some minimal de iure standardization efforts in the area
of REST APIs with shifting their focus from dominantly data-centric ones to balanced
ones that equally cover processes. Again, if nothing else then the weak processing
power segment of the emerging IoT population will stimulate such changes. As a
consequence, the importance of security, privacy and safety will play an increased role
[28]. Namely, these devices will barely possess required processing power for all
possible use and application scenarios, which will therefore have to be harvested from
the environment through APIs, even when lightweight solutions are considered.

272

6 Acknowledgements

Author would like to thank to Slovene research agency ARRS, which has supported
this research work with founding the research program Pervasive computing, number
P2-0359. A part of this research is also the result of collaboration in the ICT COST
Action IC1304, Autonomous Control for a Reliable Internet of Services (ACROSS).

References

1. Zimmermann, N.: German federal budget goes up for 2017. Deutsche Welle.
http://www.dw.com/en/german-federal-budget-goes-up-for-2017/a-36528845 (2016).
Accessed 24 Apr 2019

2. Higginbotham, J.: Designing Great Web APIs – Creating Business Value through Developer
Experience. O’Reilly, Sebastopol (2015)

3. Columbus, L.: 2017 is Quickly Becoming the Year of the API Economy. Forbes
https://www.forbes.com/sites/louiscolumbus/2017/01/29/2017-is-quickly-becoming-the-
year-of-the-api-economy/#1d950ac26a41 (2017). Accessed 30 Mar 2019

4. Trček, D.: Managing Information Systems Security and Privacy. Springer, New York (2006)
5. Kuo-Ming C.: E-services in e-business engineering, Electronic Commerce Research and

Applications, 16(7), 77–81 (2016)
6. Newcomer, E.: Understanding Web Services: XML, WSDL, SOAP, and UDDI,

Independent technology guides. Addison-Wesley, Boston (2002)
7. The OASIS ebXML Joint Committee: The Framework for e-Business. OASIS.

http://www.oasis-open.org/ (2006). Accessed 24 Apr 2019
8. OECD: Open Government Data. Publications on Digital Government.

http://www.oecd.org/gov /digital-government/digital-government-publications.htm (2013).
Accessed 21 Mar 2019

9. Jacobson D., Brail, G., Woods D.: APIs: A Strategy Guide. O’Reilly Media, Sebastopol
(2011)

10. Tauberer J.: Open Government Data: The Book (2nd Edition). https://opengovdata.io/
(2014). Accessed 24 Apr 2019

11. The Open API Initiative: The Open API Specification v3. The Linux Foundation,
https://www.openapis.org/specification/repo (2017). Accessed 24 Apr 2019

12. Sandoval, K.: Top Specification Formats for REST APIs. Nordis APIS.
http://nordicapis.com/top-specification-formats-for-rest-apis/ (2015). Accessed 24 Apr
2019

13. Robinson, D., Coar, K.: The Common Gateway Interface (CGI) Version 1.1, RFC 3875.
IETF, Reston (2004)

14. Diakopoulos, N.: The 2017 Top Programming Languages: Focus on Jobs. IEEE Spectrum.
https://spectrum.ieee.org/computing/software/top-programming-languages-2017-focus-on-
jobs (2017). Accessed 24 Apr 2019

15. Netcraftt, February 2017 Web Server Survey,
https://news.netcraft.com/archives/2017/02/27/february-2017-web-server-survey.html
(2017). Accessed 30 Mar 2019

16. predic8: Tutorial: Exposing SOAP Services as REST Resources. https://www.membrane-
soa.org/service-proxy-doc/4.4/rest2soap-gateway.htm (2018). Accessed 30 Mar 2019

273

17. Basu, M.: Singapore builds government-wide API platform. GovInsider.
https://govinsider.asia/digital-gov/singapore-builds-government-wide-api-platform/ (2017).
Accessed 30 Mar 2019

18. OECD: Digital Government Strategies for Transforming Public Services in the Welfare
Areas, OECD Comparative Study. http://www.oecd.org/gov/digital-government/ digital-
government-publications.htm (2016). Accessed 30 Mar 2019

19. Tauberer, J.: Open Government Data: The Book. https://opengovdata.io/2014/bulk-data-an-
api/ (2014).

20. Caganoff, S.: API Business Models: 20 Models in 20 Minutes. InfoQ.
https://www.infoq.com/articles/api-business-models (2013). Accessed 30 Mar 2019

21. Hossain, D., Moon, J., Kim, J.K., Choe, Y.C.: Impacts of organizational assimilation of e-
government systems on business value creation: A structuration theory approach. Electronic
Commerce Research and Applications. 10(5), 576–594 (2011)

22. Kaplan, S.: Business Models Aren’t Just for Business. Harvard Business Review.
https://hbr.org/2011/04/business-models-arent-just-for (2011). Accessed 30 Mar 2019

23. SAP: Digital Business and Transformation. https://www.sap.com/trends/digital-
business.html (2017). Accessed on 30 Mar 2019

24. EU Commission: Digital Scoreboard. https://ec.europa.eu/digital-single-market/en/digital-
scoreboard (2017). Accessed 30 Mar 2019

25. EU Commission: Commission and its Priorities, Digital Society.
https://ec.europa.eu/commission/tags/digital-society_en (2017). Accessed 30 Mar 2019

26. Soledad, M.J., Miranda, F.J.: Quality in e-Government services: A proposal of dimensions
from the perspective of public sector employees. Telematics and Informatics. 35(2), 457–
469 (2018)

27. Glushko, R.J., Tabas, L.: Designing service systems by bridging the “front stage” and “back
stage”. Information Systems and e-Business Management. 7(4), 407–427 (2009)

28. Trček, D., Brodnik, A.: Hard and soft security provisioning for computationally weak
pervasive computing systems in e-Health. IEEE Wireless Communications. 20(4), 22–29
(2013)

29. Trček, D.: APIs and emerging economy - driving digital transformation through e-
government. SHS Web of Conferences. 65, 04009 (2019).
doi:10.1051/shsconf/20196504009

