
Simulating Place/Transition Nets

by a Distributed, Web Based, Stateless Service

Jan Henrik Röwekamp, Matthias Feldmann, Daniel Moldt, Michael Simon

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, http://www.informatik.uni-hamburg.de/TGI/

Abstract Executing Petri nets in a distributed manner is, in general, a
non-trivial task. To achieve portability of the simulation, as a precondi-
tion for scalability, it is desirable to keep the majority of the simulation
components stateless. This paper presents a first approach to model dis-
tributed Place/Transition nets (P/T nets) using stateless services and
only a (stateful) database. The presented theory has been implemented
in a web API based service. First tests look promising.

Keywords: P/T Nets, Distributed Systems, Scalability, Stateless Ar-
chitecture, Tools, Container, Docker

Introduction

The astonishing growth of today’s systems allows for widespread use of compu-
tational resources. The resulting complexity of distributed systems keeps rising.

Excellent formalisms to model this kind of systems are Petri nets and the
diverse formalisms built on top of them. Petri net simulators, however, usually
only focus on local execution of nets and less on distribution or scalability issues.

In this work, the basic idea of a Petri net simulator focused on distribution
and scalable architecture is presented. It is important to note, that a distributed
simulation of Petri nets is of interest, not the simulation of distributed Petri
nets.

Related Work

Chiola and Ferscha studied distributed timed Petri nets in 1993 [1]. In the case of
reference nets, some results for distributed simulation are available as a plug-in
for Renew [3], using virtual machines and finally some ideas that form the basis
of the simulator presented here [2].

Concept

To cope with the critical parts of a distributed Petri net simulation focus is
put on the net partitioning, firing uniqueness and atomic token consumption. In
regards to data storage transition firings and token consumption are both write
operations. Write operations usually tend to be problematic in a concurrent
environment.



Transition Firing and Token Consumption

As actively simulating transitions in a distributed fashion imposes severe difficul-
ties in regards to the uniqueness of firing and/or self-concurrency, the presented
approach focuses on simulating active tokens. Tokens, however, may also occur
as passive entities. Actively simulated tokens will be referred to as main tokens.
Places are not modeled, but tokens and transitions hold them implicitly.

The simulation is organized in multiple infinite loops. A node selects a ran-
dom token as the main token and loads all tokens of all presets of all attached
transitions into memory. The node then iterates through all transitions and tries
to fire a random active transition. Firing is done by issuing a transaction to the
underlying data storage, that assures uniqueness.

If conflicts occur (two or more nodes handle the same token), the transaction
will succeed, that is committed into the database first.

The Simulator Core and Technical Aspects

The simulator consists of an evaluation unit layer and a database service. The
database service holds the current state of the net, while the evaluation layer
only temporarily copies data, that is required to compute transition firings. As
the evaluation layer is stateless and only communicates to the database, it is
easily scalable. The database layer is harder to scale, but several well-engineered
solutions exist and can be utilized.

The evaluation layer was implemented using Java Spring, with later appli-
cation to colored nets and reference nets in mind, where transition firings and
binding searches become more advanced in the order of magnitudes.

As scalability is one of the proposed main features, the simulator is designed
to be used with container and PaaS solutions in mind, especially Docker and
Kubernetes. Kubernetes offers excellent means to keep an application robust
and scale it up to several replicas. Automatic scaling solutions (based on CPU
load) also exist.

Next things to address are the incorporation of existing tools and formats
(like PNML) and the evaluation of graph databases (like Neo4j), as well as the
transition to higher level Petri net formalisms.

References

1. Chiola, G., Ferscha, A.: Distributed simulation of Petri nets. IEEE Parallel Distrib.
Technol. 1(3), 33–50 (Aug 1993)

2. Röwekamp, J.H., Moldt, D., Feldmann, M.: Investigation of containerizing dis-
tributed Petri net simulations. In: Applications and Theory of Petri Nets and Con-
currency. pp. 133–142 (2018)

3. Simon, M., Moldt, D.: Extending Renew’s algorithms for distributed simulation. In:
Cabac, L., Kristensen, L.M., Rölke, H. (eds.) PNSE’16. CEUR Workshop Proceed-
ings, vol. 1591, pp. 173–192. CEUR-WS.org (2016)

164 PNSE’19 – Petri Nets and Software Engineering


