
An Asynchronous Game on
Distributed Petri Nets

Federica Adobbati, Luca Bernardinello, and Lucia Pomello

Dipartimento di informatica, sistemistica e comunicazione
Università degli studi di Milano - Bicocca

viale Sarca 336 U14
Milano, Italia

Abstract. A Petri net is distributed if its elements can be assigned to
a set of locations so that each element belongs to exactly one location,
and each transition belongs to the same location as its input places.
We define an asynchronous game played on the unfolding of a distributed
net with two locations, the ‘User’ and the ‘Environment’. The user can
control the transitions in its location. A play in the game is a run in
the unfolding, together with a sequence of cuts in that run. The rules
of the game require that the environment satisfies a progress constraint:
no transition in its location can be indefinitely postponed. In the general
case, the game can be defined so that the user can observe only some
transitions. In this paper, we only consider the case in which all transi-
tions are observable, and study a reachability problem, in which the user
tries to fire a target transition. We propose an algorithm which decides if
the user has a winning strategy and, if so, computes a winning strategy.

1 Introduction

The ideas behind this paper were conceived while studying the problem of weak
observable liveness ([4] and [1]), where we suppose that a Petri net models a
system comprising a user and an environment; the user controls a subset of
transitions, and observes a subset of transitions. The aim of the user is to force
liveness of a special transition (the target), whatever the behaviour of the envi-
ronment. The environment is supposed to guarantee progress of uncontrollable
transitions.

The problem can be stated as deciding whether the user has a strategy allow-
ing him to achieve his aim, irrespective of the choices of the environment. The
strategy is formalized as a response function, mapping observations (sequences
of observable transitions) to sets of controllable transitions.

In a first attempt to develop an algorithm for finding a strategy, the problem
was translated into an infinite game on a finite graph, where the finite graph
is derived from the marking graph of the net ([1]). Besides the usual problem
of state explosion, this approach hides the potential concurrency in the net, by
using an interleaving semantics.

Hence, the authors started to explore the idea of defining an asynchronous
game, to be played on the unfoldings of Petri nets, in which to encode the
weak observable liveness problem, but also several other problems, formalized
by defining a suitable aim for the user. Such a game was proposed in [2], where
its application to weak observable liveness was studied.

Other possible applications of such a game could be in the general frame of
verification, adaptation and control of distributed systems; so that, in the case
of a winning strategy for the user with respect to a specific behavioral property,
the system model could be adapted imposing that specific property, for example
by adding an interacting component implementing the user behavior.

In this paper, we consider distributed net systems, in which all choices are
local to one component, restrict to the case of exactly two components (user and
environment), and study a reachability problem, in which the user tries to fire
a target transition, under the hypothesis of full observability, and propose an
algorithm which decides if the user has a winning strategy and, if so, computes
a winning strategy.

In the next section, we recall the needed notions about Petri nets, distributed
Petri nets, and unfoldings, In Sect. 3 we define the general game, and the no-
tions of strategy and winning strategy. The problem of controlled reachability is
introduced in Sect. 4, together with the algorithm looking for a winning strategy.

Several approaches to notions of asynchronous games are briefly discussed
in Sect. 5, while prospects for future developments are presented in the final
section.

2 Petri nets

A Petri net models a concurrent system. The basic elements of a net are local
states (places) and local transitions. The global state of a net is distributed
among its local states. Several types of nets have been defined and studied. Here,
we use elementary nets, where local states can be seen as Boolean variables, or
propositions. When a transition occurs, it changes the value of local states in its
neighbourhood.

Definition 1. A net is a triple N = (P, T, F), where P and T are disjoint sets.
The elements of P are called places and represented by circles, the elements of
T are called transitions and represented by squares. F is called flow relation,
with F ⊆ (P × T) ∪ (T × P), and is represented by arcs.

By F ∗ we denote the reflexive and transitive closure of F .
Let x ∈ P ∪ T be an element of the net, the pre-set of x is the set •x = {y ∈

P ∪ T | (y, x) ∈ F}, the post-set of x is the set x• = {y ∈ P ∪ T | (x, y) ∈ F}.
A place p is a side condition if •p∩ p• ̸= ∅. We assume that there are no side

conditions, and that any transition has non-empty pre-set and post-set: ∀t ∈ T ,
•t ̸= ∅ and t• ̸= ∅.

A net is infinite if P ∪ T is infinite, finite otherwise.

18 PNSE’19 – Petri Nets and Software Engineering

If places and transitions are enumerated, a net can be also represented by a
|P |× |T | matrix, called incidence matrix, where the value in the ith row and jth
column is equal to −1 if pi ∈• tj , 1 if pi ∈ t•j , and equal to 0 otherwise.

Two elements x, y ∈ P ∪ T are said to be in conflict, denoted x#y, iff there
exist t1, t2 ∈ T : t1 ̸= t2, t1F ∗x, t2F ∗y ∧ ∃p ∈ •t1 ∩ •t2.

Two transitions, t1 and t2, are independent if (•t1 ∪ t•1) and (•t2 ∪ t•2) are
disjoint.

A net N ′ = (P ′, T ′, F ′) is a subnet of N = (P, T, F) if P ′ ⊆ P , T ′,⊆ T , and
F ′ is F restricted to the elements in N ′.
Definition 2. An elementary net system is a quadruple Σ = (P, T, F,m0) con-
sisting of a finite net N = (P, T, F) and an initial marking m0 ⊆ P . A marking
is a subset of P and it represents a global state.
A transition t is enabled at a marking m, denoted m[t⟩, if •t ⊆ m ∧ t• ∩m = ∅.
A transition t, enabled at m, can occur (or fire) producing a new marking m′ =
t• ∪m \ •t, denoted m[t⟩m′. A marking m′ is reachable from an other marking
m, if there is a sequence t1t2 . . . tn such that m[t1⟩m1[t2⟩ . . .mn−1[tn⟩m′; in this
case, we write m′ ∈ [m⟩. The set of reachable markings is the set of markings
reachable from the initial marking m0, denoted [m0⟩.

Two transitions, t1 and t2, are concurrent at a marking m if they are inde-
pendent and both enabled at m.

A marking m is a contact for a transition t if •t ⊆ m and t• ∩m ̸= ∅. A net
system is contact-free if no reachable marking is a contact.

In this paper, we consider only contact-free elementary net systems.

The non sequential behaviour of elementary net systems can be recorded by
occurrence nets, which are used to represent by a single object the set of potential
histories of an elementary net system.
Definition 3. A net N = (B,E, F) is an occurrence net if

– for all b ∈ B, |•b| ≤ 1
– F ∗ is a partial order on B ∪ E
– for all x ∈ B ∪ E, the set {y ∈ B ∪ E | yF ∗x} is finite
– for all x ∈ B ∪ E, x#x does not hold

We will say that two elements x and y, x ̸= y, of N are concurrent, and write
x co y, if they are not ordered by F ∗, and they are not in conflict.

By min(N) we will denote the set of minimal elements with respect to the
partial order induced by F ∗.

A B-cut of N is a maximal set of pairwise concurrent elements of B. B-cuts
represent potential global states through which a process can go in a history of
the system. By analogy with net systems, we will sometimes say that an event
e of an occurrence net is enabled at a B-cut γ, denoted γ[e⟩, if •e ⊆ γ. We will
denote by γ + e the B-cut (γ\•e) ∪ e•. A B-cut is a deadlock cut if no event is
enabled at it.

Let Γ be the set of B-cuts of N . A partial order on Γ can be defined as
follows: let γ1, γ2 be two B-cuts. We say γ1 < γ2 iff

Adobbati et.al.: An asynchronous game on distributed Petri nets 19

1. ∀y ∈ γ2∃x ∈ γ1 : xF ∗y
2. ∀x ∈ γ1∃y ∈ γ2 : xF ∗y
3. ∃x ∈ γ1,∃y ∈ γ2 : xF+y

In words, γ1 < γ2 if any condition in the second B-cut is or follows a condition of
the first B-cut and any condition in the first B-cut is or comes before a condition
of the second B-cut (and there exists at least one condition coming before).

A sequence of B-cuts, γ0γ1 . . . γi . . . is increasing if γi < γi+1 for all i ≥ 0.
We will say that an event e ∈ E precedes a B-cut γ, and write e < γ, iff

there is y ∈ γ such that eF+y. In this case, each element of γ either follows e or
is concurrent with e in the partial order induced by the occurence net.

Definition 4. A branching process of Σ = (P, T, F,m0) is an occurrence net
N = (B,E, F), together with a labelling function µ : B ∪ E → P ∪ T , such that

– µ(B) ⊆ P and µ(E) ⊆ T
– for all e ∈ E, the restriction of µ to •e is a bijection between •e and •µ(e);

the same holds for e•

– the restriction of µ to min(N) is a bijection between min(N) and m0

– for all e1, e2 ∈ E, if •e1 = •e2 and µ(e1) = µ(e2), then e1 = e2

For γ a B-cut of N , the set {µ(b) | b ∈ γ} is a reachable marking of Σ, and we
refer to it as the marking corresponding to γ.

Let (N1, µ1) and (N2, µ2) be two branching processes of Σ. We say that
(N1, µ1) is a prefix of (N2, µ2) if N1 is a subnet of N2, and

– min(N1) = min(N2)
– if b ∈ B1 and (e, b) ∈ F2, then e ∈ E1

– if e ∈ E1, and b is either a precondition or a postcondition of e in N2, then
b ∈ B1

For any elementary net system Σ, there exists a unique, up to isomorphism,
maximal branching process of Σ. We will call it the unfolding of Σ, and denote
it by unf(Σ) (see [5]).

A run of Σ is a branching process (N,µ) describing a particular history, in
which conflicts have been solved, i.e.: such that the conflict relation # is empty
on its set of elements. Any run of Σ is a prefix of the unfolding unf(Σ), we say
it is a run on unf(Σ).

We suppose that Σ models an Environment interacting with a User. Direct
interactions happen by means of a subset of controllable transitions; whenever
such a transition is enabled, the User can decide to fire it or not. In the general
setting, we assume that some uncontrollable events are not observable by the
User.

Definition 5. A controlled net system is an elementary net system Σ = (P, T, F,
m0,K, V), where K ⊆ V ⊆ T . The transitions in V are observable, those in K
are controllable; the set NK = T \K is the set of uncontrollable transitions.

20 PNSE’19 – Petri Nets and Software Engineering

Let unf(Σ) = (B,E, F, µ) be the unfolding of a controlled system Σ, then Ec =
{e ∈ E | µ(e) ∈ K} is the set of occurrences of controllable transitions, called
controllable events, and Enc = E \Ec is the set of occurrences of uncontrollable
transitions, called uncontrollable events.

In the graphical representation, controllable transitions and events will be
represented by black squares.

We assume that choices among transitions are local either to the Environ-
ment or to the User, and moreover, that both Environment and User have a
sequential behaviour. We are therefore in the setting of distributed net system,
as introduced and studied in [3] and in [8].
Definition 6. A distributed net system over a set L of locations is a system
Σ = (P, T, F,m0) together with a map

λ : (P ∪ T) → L

such that
1. For every p ∈ P , t ∈ T , if p ∈ •t, then λ(p) = λ(t);
2. For every pair t, u ∈ T , if t and u are concurrent at some reachable marking

m, then λ(t) ̸= λ(u).

Fig. 1. A distributed controlled net system with two locations

We are interested in the special case of distributed controlled net systems ⟨Σ,λ⟩
such that L = {A,G}, i.e. in distributed net systems with only two compo-
nents, representing the Environment and the User, respectively; and such that

Adobbati et.al.: An asynchronous game on distributed Petri nets 21

Fig. 2. The unfolding of a distributed controlled net system with two locations

all and only the transitions belonging to G are controllable; whereas transitions
belonging to A are not controllable, but can be observable.

In this kind of nets, when a transition is enabled, it can never be disabled by
the occurrence of transitions belonging to different componentsů In the case of
a cycle this observation justifies the following lemma.
Lemma 1. Let (Σ,λ) be a distributed controlled net system with two locations,
A and G. Let m be a marking, and

m1[t1⟩m2[t2⟩m3[...⟩m1

be a firing sequence with ti ∈ A for each i. Then, if t ∈ G is enabled at mi for
some i between the two repetitions of m1, then t is enabled at mj for each mj

in the cycle.

Example 1. Figure 1 shows a distributed controllable net system with two loca-
tions. Places are not explicitly divided into the two components, because their
partition can be inferred by their post-transitions, moreover they are immate-
rial in order to determine a strategy. A prefix of the unfolding of the system is
shown in Fig. 2. Each element of the unfolding is decorated with the label of an
element in the net, with an exponent which distinguishes different occurrences
of the same element. The dotted line suggests that the unfolding goes on by
repeating occurrences of transitions t6 and t5, and of their neighbouring places.

3 An asynchronous game on the unfolding

We define a game on unf(Σ) in the special case in which T = V , that is with
full observability of the system. Definitions in this section are adapted from [2].

22 PNSE’19 – Petri Nets and Software Engineering

Definition 7. Let ρ = (Bρ, Eρ, Fρ, µρ) be a run on unf(Σ) and π = γ0, γ1, · · · ,
γi, · · · an increasing sequence of B-cuts. The pair (ρ,π) is said to be a play if:

– ∀e ∈ Enc\Eρ, the net obtained by adding e and its postconditions to ρ is not
a run of unf(Σ);

– ∀e ∈ Eρ there is a B-cut γi ∈ π such that e < γi.

In general, the winning condition for the User is defined by a set of plays. The
significant cases to analyze are the ones in which the winning set of plays is
determined by a property that we are interested in investigating on the model.

For example, let us suppose that we are interested in knowing if a user is able
to force the occurrence of a target transition once. We can model this problem
as a game in which the User wins if there is the target in the run of the play.

Another possible goal of a play, as analyzed in [7], is to verify if it is always
possible to avoid a certain marking in a controllable system. In this case the
User wins those plays in which there are not cuts associated with that mark-
ing. Whatever the goal of the game is, a strategy is a function formalizing the
behaviour of the User during a play.

When all transitions are observable, the User can determine the current cut
in the unfolding on the basis of the transition occurrences observed so far; hence,
a strategy can be defined as a map from B-cuts to sets of controllable transitions.

Definition 8. Let Γ be the set of B-cuts in unf(Σ). A strategy is a function
α : Γ → 2Ec such that for every γ ∈ Γ and for every e ∈ Ec, if e ∈ α(γ), then e
is enabled in γ.

A play is weakly fair with respect to an event e if e is not finally postponed.

Definition 9. Let (ρ,π) be a play. An event e is finally postponed in (ρ,π) iff
there is a cut γi ∈ π in which e is enabled and such that ∀k ≥ i, γk[e⟩.

Definition 10. Let (ρ,π) be a play and α be a strategy. An event e is finally
eligible in (ρ,π) by α iff there is a cut γi ∈ π such that e ∈ α(γi) and ∀k ≥ i,
e ∈ α(γk)

A play complies with a strategy if all controllable events in the play have been
chosen according to the strategy, and no controllable transition is finally post-
poned and eligible.

Definition 11. Let ρ = (Bρ, Eρ, Fρ, µρ) be a run in unf(Σ), π = γ1γ2, ..., γi be
a strictly increasing sequence of B-cuts and α be a strategy. The pair (ρ,π) is an
α−play iff:

1. (ρ,π) is a play;
2. For every controllable event e belonging to the Eρ, there must be a B-cut

γi ∈ π such that e ∈ α(γi) and e < γi+1 = (γi\•e) ∪ e•.
3. If |Eρ ∩Ec| < ∞, there is not an event e ∈ Ec ∩Eρ finally eligible by α and

finally postponed in the play.

Adobbati et.al.: An asynchronous game on distributed Petri nets 23

Fig. 3. An α-play

A strategy α : Γ → 2Ec is winning iff the User wins all the α-plays. In general,
if there is a winning strategy, it is not unique.
Example 2. The net system shown in Fig. 1 is distributed and controlled, with
two locations. Suppose that all transitions are observable. Define a game on its
unfolding, shown in Fig. 2, so that the User wins a play if the play contains an
occurrence of t7.

By inspecting the net, it is clear that a winning strategy for the User consists
in waiting for the Environment to choose between t1 and t2, and then fire,
respectively, either t8 or t9. Since the Environment can not postpone its choice
forever, and will be forced to eventually fire either t3 or t4, the User will be able
to fire t7, and win the game. Formally, the winning strategy can be defined as
follows: α({p11, p16}) = {t19}, α({p11, p15}) = {t18}, α({p27}) = {t27}, α({p17, p}) =
{t17}, where p is any occurrence of either p9 or p10, α(γ) = ∅ for any other B-cut
γ. In particular, α({p11, p12}) = ∅, to encode the decision to wait, in the initial
cut, for the Environment to choose its first move. Figure 3 shows an α-play.

4 Controlled reachability

Let Σ = (P, T, F,m0,K, V) be a controlled distributed net system, with V = T .
The problem of controlled reachability consists in determining if the User is able
to lead the system to fire a certain transition once, despite the Environment
behaviour, starting from the initial marking. This can be analysed through a
game on the unfolding: let t be the target transition. We define as winning

24 PNSE’19 – Petri Nets and Software Engineering

condition for the User the set of plays (ρ,π) in which there is an event e ∈ Eρ

labelled with t. A target transition t is controllably reachable in Σ if, and only
if, there is a strategy α on unf(Σ) such that the User wins every α-play.

Example 3. Example 2 can be seen as a game of controlled reachability. The
strategy discussed in the example is a winning strategy for this game.

Fig. 4. A distributed controlled net system

Example 4. The net shown in Fig. 4 is distributed and controlled, with two
locations. Consider the game of controlled reachability played on its unfolding,
shown in Fig. 5, where the target transition is t5. If the Environment cooperates
with the User by eventually choosing t1, then the target is reached. However, the
Environment can choose t2 at every cut consisting in an occurrence of p1. The
Environment is subject to a weak fairness constraint, but not to a strong fairness
constraint. Hence, irrespective of the strategy chosen by the User, an infinite play
made of repeated occurrences of the cycle p1, t2, p2, t3, p1 is admissible.

In a general case, given a strategy α, there are infinitely many α−plays in
unf(Σ), hence the exhaustive exploration of them would take infinite time.
We propose an algorithm that, given a controlled distributed net system and
a target transition, establishes if there is a winning strategy for the controlled
reachability of the target and, if so, computes a winning strategy. The input data
are the following.

– A net in which the transitions are enumerated so that all the uncontrollable
transitions precede all the controllable ones. If the target is a controllable
transition, it must be the first of the controllable transitions.

– The position of the first controllable transition.
– The initial marking m0 of the system.

Adobbati et.al.: An asynchronous game on distributed Petri nets 25

Fig. 5. The (prefix of the) unfolding of the net system shown in Fig. 4

Algorithm 1 Tree exploration
function Tree_exploration(γ, M , e, str, tree)

if e == target then return (true, str, tree)
else if γ is a deadlock then return (false, str, tree)
else if µ(γ) ∈ M then return explore_cut_c(γ,M)
else if enab_n(γ) ̸= ∅ then

E =enab_n(γ)
repeat

e0 = extract(E)
v, str, tree = Tree_exploration(γ + e0, [M,µ(γ)], e0, str, tree)
if v == true then

tree = tree ∪[γ, e0, γ + e0]
end if

until E == ∅ ∨ v == false
return (v, str, tree)

else
E =enab_c(γ)

◃ E cannot be empty, because the case in which γ is a deadlock or enab_n(γ) = ∅
are alternative to this else.

repeat
e0 = extract(E)
v, str, tree = Tree_exploration(γ + e0, [M,µ(γ)], e0, str, tree)
if v == true then

tree = tree ∪[γ, e0, γ + e0]
choice = e0

end if
until E == ∅ ∨ v == true
if v ==true then return (v, [str, [γ, choice]], tree)
else return (v, str, tree)
end if

end if
end function

26 PNSE’19 – Petri Nets and Software Engineering

– The target transition.

The core of the algorithm is the recursive function Tree_exploration, which
unfolds the net by exploring reachable cuts, and constructs at the same time a
tree, representing a part of the unfolding, and a strategy. Each node in the tree
consists in a cut of the unfolding, while events label the edges between them.
The function takes five input arguments:

1. γ: the cut that must be analysed;
2. M : the list of markings associated to the cuts already analysed in the current

run, in the same order in which they have been analysed;
3. e: the last event added to the current run, leading to γ;
4. str : the strategy computed so far;
5. tree: the tree constructed so far.

It returns three elements:

1. a Boolean value v that is True if there is a winning strategy starting from
the cut input cut γ, False otherwise;

2. the strategy already calculated;
3. the part of the tree already calculated.

The function starts constructing a run by adding uncontrollable events until one
of the following cases occurs: (1) a deadlock cut is reached; (2) a cut is reached
in which no uncontrollable event is enabled, and some controllable events are
enabled; (3) a cut is reached corresponding to a marking which has been already
visited in the current run.

In cases (2) and (3), a controllable event is added, and the exploration restarts
from the new cut. In case (1), the current run corresponds to a play won by
the Environment; hence, the function tries to backtrack along choices among
controllable events, if possible.

Consider the net system shown in Fig. 1, and its unfolding (Fig. 2), where
the ordering on the set of transitions is given by their indices. Starting from
the initial B-cut, the algorithm adds the event t11, reaching a cut in which only
controllable transitions are enabled. It then adds t18, reaching the cut {p13, p15},
and starts again adding uncontrollable transitions. This run will lead to the
target event t27, hence it is not necessary to backtrack on controllable events.

The next backtracking step goes back to the initial cut, and starts exploring
a new run by adding t12; From {p11, p16}, t18 is added, leading to a deadlock. The
algorithm backtracks and tries t19, and so on.

The rest of this section describes Tree_exploration in detail.
At every step, given a cut γ that must be analysed, the algorithm has three

possible behaviours.

1. It can consider γ as a leaf of the tree and stop the in depth exploration. The
cases in which this happens are discussed later.

Adobbati et.al.: An asynchronous game on distributed Petri nets 27

2. If there are k uncontrollable events e1, ..., ek enabled in γ and µ(γ) is unique
in the part of the play that has already been generated, then the algorithm
extends the play in k ways, each of them adding to the play one of the k
events e1, ..., ek with the respective following cuts γ1 = (γ\•e1)∪ e•1, ..., γk =
(γ\•ek) ∪ e•k. Since there is no concurrency in the same component, the k
plays corresponds to different runs. In this case we will call γ uncontrollable
cut or uncontrollable node.

3. If in γ there are only controllable enabled events, or if there is a γ′ < γ
such that µ(γ) = µ(γ′) and all the events ei ∈ {e ∈ E : γ′ < e < γ}
are uncontrollable, then the controllable enabled events are analysed, in the
same order in which the respective transitions are enumerated. Such a γ is
called controllable cut, or controllable node referring to the tree.

At the first call, the input is:

1. the initial cut γ0;
2. an empty list;
3. a fictitious event i;
4. an empty list for the strategy;
5. an empty set for the tree.

The final output is the following:

1. a Boolean value that is True if there is a winning strategy, False otherwise.
2. a strategy
3. a set of triples describing part of the plays consistent with this strategy.

To find a winning strategy, we observe that, if at least an uncontrollable event
is enabled in the current cut, the User cannot prevent the Environment from
firing it and cannot affect the Environment choices. Hence, the User should wait
to observe the behaviour of the Environment as much as possible and then,
using the information gained through the observations, decide what to do. On
the other hand, if cyclic behaviours with only uncontrollable transitions are
admitted in the system, if there are some controllable enabled events, the User
can win only by using the fact that there is no α−play with a finally eligible
and finally enabled event. This can be done by letting the enabled controllable
events to be chosen by the strategy in all the markings in which they are enabled
and that are part of the uncontrollable cyclic behaviour. The moment in which
the controllable event will fire is unknown, but we are sure that, if it is finally
enabled and eligible, at some point it will.

Following this idea, the algorithm computes a strategy α and some prefixes
of α−plays in the unfolding: given a cut γ, if γ is uncontrollable, then all the
enabled uncontrollable events are considered. This is necessary, because if all of
them lead to subtrees in which there is a winning stretegy, then there is also a
winning strategy from γ. If at least one of the subtrees does not necessarily lead
to the victory, then there cannot be a winning strategy from γ, since the User
cannot prevent the Environment to fire that event. If γ is a controllable cut,
then, if there is at least a transition leading to a cut that is root of a subtree

28 PNSE’19 – Petri Nets and Software Engineering

with a winning strategy, there is a winning strategy also starting from γ. Hence,
once that such a controllable event has been found, continuing to explore the
cut is not necessary.

When the algorithm ends, we obtain a list of prefixes of plays. Each of them
is the finest prefix of all the plays starting with it, since for every event there is
the cut immediately preceding it and the one immediately following it.

Since we are interested in finding a strategy in a finite amount of time, we
need to define some ending criteria:

1. the target has been reached in the play;
2. the play has reached a deadlock;
3. there is a cut γ in the play such that there is another cut γ′ such that

µ(γ) = µ(γ′) and γ′ < γ and γ′ is the first occurrence of µ(γ) in the same
play and there is no event e ∈ Ec enabled in all the γi : γ′ < γi < γ.

In this way, the process of generation of the tree is finite. This follows from
the finite number of reachable markings and from the way of working of the
algorithm. In fact, if a cut corresponding to the same marking of a previous cut
in the same play is reached, then, if possible, at the next step, the algorithm
adds a controllable event. If a cut corresponding to the same marking as before
is reached again in the play and the first two criteria have not been satisfied, the
algorithm stops due to the third criterion: a controllable event occurred between
the first cut corresponding to the marking and the last one, and since there is not
concurrency between controllable events, there cannot be another controllable
event enabled in all the cuts between these two.

If we can find a strategy on the prefix, we can extend it on the whole unfolding
by redefining the strategy as a function α : M → 2K , where M is the set
of reachable markings in the system. With such a definition, in the unfolding,
the strategy is the same in the cuts corresponding to the same marking. This
is reasonable, because with full observability, given a cut γ and a transition t
enabled in µ(γ), there is always only an event e enabled in γ and such that
µ(e) = t. Moreover, if a transition is controllably reachable starting from a cut
corresponding to a certain marking, then it is controllably reachable from all
the cuts corresponding to that marking, since the parts of the unfolding starting
with two cuts like these are isomorphic.

Lemma 2. Let α be a strategy defined on the markings. Considering a prefix
of an α−play determined with one of the ending criteria, we can decide if User
wins all the α−plays starting with such a prefix.

Proof. 1. If the target is reached in the prefix, in all α−plays extending it, the
target occurs at least once. The User wins all α−plays with such a prefix.
Of course, this is not enough to state that α is a winning strategy.

2. If there is a deadlock, the run is maximal in the unfolding, hence the prefix
is also an α−play without the target, hence lost by the User.

3. In the third case, if the prefix follows the strategy α, then the play repeating
the behaviour of the prefix infinitely is an α−play and the target never

Adobbati et.al.: An asynchronous game on distributed Petri nets 29

occurs. We cannot guarantee that the User will lose all the α-plays with
such a prefix, but the fact that there is at least one is enough to state that
α is not a winning strategy for the User.

Lemma 3. Let γ1 and γ2 be two cuts in the unfolding such that µ(γ1) = µ(γ2)
and let α be a strategy computed by Algorithm 1. There are two cases:

1. α(γ1) = α(γ2);
2. α(γ1) = e ∈ Ec ∧ α(γ2) = ∅.

In the second case, if α is a winning strategy, the strategy associating to γ2 the
same choices as in γ1 is also winning.

If the algorithm states the existence of a winning strategy, the strategy α exhib-
ited by the algorithm is singular. In fact, the strategy is updated if all the leaves
of the subtree having the cut below a controllable node as root are cuts following
the target. When the algorithm finds such a subtree, it adds to the strategy the
controllable cut associated with the event labelling the connection between it
and the root of the subtree and ends the exploration of the subtrees of the chil-
dren of the controllable cuts. Given a controllable cut γ in the prefix, the enabled
events are examined in the same order in which their corresponding transitions
are enumerated. Since for all the controllable cuts γ′ such that µ(γ) = µ(γ′) in
the prefix, the unfolding starting from γ′ is the same as the unfolding starting
from γ, if the choice of e is winning starting from γ, the choice of e′ : µ(e′) = µ(e)
must be winning also starting from γ′. If e is the first winning choice analysed,
also e′ must be the first. If there was another winning choice e′′ from γ′ such that
µ(e′′) precedes µ(e′) in the incidence matrix, then also e1 : γ[e1⟩∧µ(e1) = µ(e′′)
should be a winning choice in γ and should have been analysed before e. Hence,
fixed every reachable marking m, for every γi ∈ {γ : µ(γ) = m} controllable in
the prefix, an event corresponding to the same transition is chosen.

It is possible that both a controllable cut and an uncontrollable one corre-
spond to the same marking due to the uncontrollable cyclic behaviour. In this
case, if the strategy is winning, then it is updated in this way: starting from
the first cut corresponding to the same marking as the controllable one and for
all the cuts between them, the strategy associates the same choice made for the
controllable cut. This does not prevent a winning strategy to be singular: let us
assume to have four cuts γ1, γ′

1, γ2, γ
′
2 such that µ(γ1) = µ(γ′

1) ∧ γ1 < γ′
1 and

µ(γ2) = µ(γ′
2)∧γ2 < γ′

2, such that all the events e ∈ E : γ1 < e < γ′
1∧γ2 < e < γ′

2

are uncontrollable and are not the target. Let us also assume that there are two
cuts γ3, γ4 such that µ(γ3) = µ(γ4) and γ1 < γ3 < γ′

1 and γ2 < γ4 < γ′
2.

If the algorithm states that there is a winning strategy, the construction of
it impose that α(µ(γ1)) ⊆ α(µ(γ3)) and α(µ(γ2)) ⊆ α(µ(γ4)). Specifically
α(µ(γ4)) = α(µ(γ3)) = α(µ(γ1)) ∪ α(µ(γ2)). If the hypothesis is false and the
strategy is not singular, it must be t1 = α(µ(γ1)) ̸= α(µ(γ2)) = t2. Without
loss of generality we can assume t1 < t2. Since the algorithm chooses the first
transition that leads to the victory of the User, this means that t1 is not winning
in µ(γ2), but the User cannot guarantee that in µ(γ3) the system will not arrive

30 PNSE’19 – Petri Nets and Software Engineering

in µ(γ2), since t1 is concurrent with the uncontrollable cycle. In such a situation
the strategy would not be winning and the algorithm would recognize it, because
there would be a path leading to γ′

2 from γ4.

Algorithm 2 Full strategy
v, str, tree = Tree_exploration(γ0, [], i, [], [])
if v == True then

str = cuts_to_markings(str)
str = complete_strategy(str, tree)

end if

In Algorithm 2 there are calls to some auxiliary functions:

– cuts_to_markings(str) takes the strategy defined on the cuts as input
and returns a strategy defined on the markings. The Lemma 3 guarantees
that this will not change the value of v.

– complete_strategy(str, tree) considers all the runs in the generated tree
starting from the root of the prefix and checks if there are cuts corresponding
to the same marking in the same run such that all the events between the
two of them are uncontrollable. If there are, the strategy is completed adding
the choice made in the repeated marking to all the marking associated with
cuts in between. This is crucial in order to have a winning strategy, because
if this happens, it means that the User can win only if the play with only
uncontrollable events between cuts corresponding to the same marking is
not admitted, and this happens if a controllable event is finally enabled
and eligible, hence this event must be chosen in all the markings of the
uncontrollable cycle.

In Algorithm 1 the functions that are used, but not described are:

– enab_n(γ) is a function that given a cut γ, returns the uncontrollable events
enabled in that cut;

– analogously, enab_c(γ) returns the list of controllable events enabled in γ.
– Given the list of events (controllable or not) that we are interested to explore,

extract(E) returns the first one and deletes that event from the list E.

We wish to show that the algorithm provides a sufficient condition to find a
winning strategy. In order to do this, we need to show that if the algorithm states
that there is a winning strategy, then there is one, and the strategy proposed by
the algorithm is winning.

Let us observe that if the algorithm finds a winning strategy, all the prefixes
of plays in the prefix reach the target and are consistent with the strategy. All
the plays in the list are consistent with the strategy, because every time that
the algorithm analyzes a controllable node, it explores the subtrees following
each of the controllable enabled transitions, stopping when it finds a transition
leading to a subtree in which there is a winning strategy. When this happens,

Adobbati et.al.: An asynchronous game on distributed Petri nets 31

Algorithm 3 Controllable cuts due to a repeated marking
Input: the cut γ that must be analyzed and an ordered list M of the markings corre-
sponding to the cuts visited in the run before γ.

function explore_cut_c(γ,M)
if f(γ,M))= ∅ then return (false, str, tree)
else

E = f(γ,M)
repeat

e0 = extract(E)
v, str, tree = Tree_exploration(γ + e0, [M,µ(γ)], e0)
if v == true then

tree = tree ∪[γ, e0, γ + e0]
choice = e0

end if
until E == ∅ ∨ v == true
if v ==true then return (v, [str, [γ, choice]], tree)
else return (v, str, tree)
end if

end if
end function

Algorithm 4 Controllable events that can be forced to fire
Input: the cut γ that must be analyzed and an ordered list M of the markings corre-
sponding to the cuts visited in the run before γ.
Output: list of events that have been enabled from the cut associated with the first
repetition of the marking µ(γ) to γ.

function f(γ,M)
i = 0
while M [i] ̸= m(γ) do

i = i+1
end while
E = []
for all e ∈enab_c(γ) do

if µ(e) enabled in m ∀m ∈ M [i : len(M)] then
E = [E, e]

end if
end for

return E
end function

32 PNSE’19 – Petri Nets and Software Engineering

the subtree is connected with the controllable node through the controllable
transition and the strategy is updated choosing that controllable transition in
the cut corresponding to the controllable node. In this way, at every step, all
the parts of runs in the prefix constructed until that moment are consistent with
the strategy updated until that moment. Given a controllable node that has
been analyzed, it can happen that there are no controllable enabled transitions
leading to a subtree in which there is a winning strategy; in this case the part
of the prefix already generated cannot be connected to the initial cut in the
unfolding. Also the part of strategy already computed is not deleted, but, if
there is a winning strategy, it cannot depend on the strategy calculated on the
disconnected parts of the tree. If the algorithm finds a winning strategy and a
disconnected part was found, since there are controllable nodes only if taking a
controllable transition is needed to win, then there is another controllable node
in the prefix, closer to the root from which the subtree has a winning strategy.

All maximal runs in the prefix contain the target. If a run ends without the
target, then the strategy allowing that run is not winning and must be changed.
If it cannot be changed, then the algorithm will not state that there is a winning
strategy, hence there must be a controllable node in which the decision previously
taken can be changed. When another possible choice is analysed, all parts of runs
depending on the previous one are deleted. Hence all the remained runs contain
the target.

If the algorithm finds a winning strategy, all the plays in the unfolding con-
sistent with this strategy can be considered as equivalent to an extension of a
play in the prefix. Let us first consider the case without uncontrollable cyclic
behaviours of the system. In every run, the uncontrollable transitions can be
ordered in just one way, since there is no concurrency inside a component. The
strategy α constructed by the algorithm chooses a controllable transition only
if there are not uncontrollable enabled ones, hence the order in which a given
sequence of transitions t1, ..., tn will fire in an α−play is unique and completely
determined. Given an α−play, there must be a prefix of its run in the unfolding,
because all the uncontrollable transitions are considered in all the uncontrollable
cuts of the prefix and the strategy is singular, hence the controllable choices must
be the same of the ones considered in the prefix. This is enough to state that
the play is won by the User, because in the common prefix of the run there
is the target transition. If there are uncontrollable cyclic behaviours, such that
there is a controllable enabled transition leading to the target, and such that it
is concurrent with all the ones in the uncontrollable cycle, then there is more
variety in the possible α−plays, because the strategy is defined on markings in
which uncontrollable cuts are enabled. Anyway, if an α-play has a prefix with
the same events of one of the prefixes produced by the algorithm, then it is won
by the User, regardless of the order of the cuts in the play. Some of the α−plays
have a longer uncontrollable part, because if a transition is always enabled and
eligible, there must be a certain point in which it will fire, but the precise point
is unknown. However, since we complete every cycle once and from every uncon-
trollable cut all the possible uncontrollable extensions are explored, and since

Adobbati et.al.: An asynchronous game on distributed Petri nets 33

the part of the unfolding starting from a given cut is isomorphic to the part
of the unfolding starting from every cut corresponding to the same marking,
the uncontrollable sequence of the α−play can be divided in parts such that an
isomorphic one has been considered by the algorithm.

Based on the previous observations, if the algorithm finds a winning strategy,
the proposed strategy is winning in the unfolding.

5 Other approaches to asynchronous games

The general notion of asynchronous game presented in this paper was defined in
[2], where it was applied to a problem of controlled liveness, under the hypothesis
of full observability.

An asynchronous game on Petri nets was also defined by Finkbeiner and
Olderog in [7]. This game is developed for Place/Transition nets, and is played on
their unfoldings. The players are represented by tokens, moving on the places of
the unfolding, divided into two teams: system and environment. System players
have an equivalent function as the User in the game defined by [2] and used
in this paper. Their objective is to guarantee a safety property. For example,
the aim might be to avoid reaching a certain place. The places are divided into
system places, where system players can move, and environment places, reserved
to environment players. The strategy is defined on each place and states which
is the next place where a token has to move. Places are the central elements in
this game, in contrast to the game in [2] where the focus is on transitions.

The information available to the players is another difference. In [2], and in
our approach, this information consists in observed transitions. If a transition
is observable, then the User knows whether the transition occurred or not. If a
transition is unobservable, then there is no way for the User to know whether it
occurred, unless he can infer this from observations. In the game described by
Finkbeiner and Olderog, the players communicate by means of synchronizations.
Participating in the same transition, they acquire the knowledge of the past of
the players that take part to the synchronization. One or the other approach
may be more convenient for the User/System depending on the structure of the
system and on the property that has to be verified.

In [7] a strategy for the User is defined on the unfolding of the net system,
and must be fair, i.e. if a System player can move, then it must do it. This
requirement avoids the trivial case in which safety is verified just because the
players refuse to move. In the game in [2] for a similar reason, progress is granted
by the environment. In that case the User wishes to force a transition to occur
infinitely often. In almost every case this goal would be impossible to reach if
the environment does not fire any of its transitions.

Under the restricted hypothesis of just one environment player (and an arbi-
trary number of system players), and complete information, Bernd Finkbeiner,
Manuel Gieseking and Ernst-Rüdiger Olderog developed a tool, presented in [6],
finding a strategy for the game as defined in [7]. The tool translates the game
to a standard two-players game over finite graphs.

34 PNSE’19 – Petri Nets and Software Engineering

A different approach for the verification of properties through asynchronous
games was developed by several authors, among which Glynn Winskel ([10])
and Julian Gutierrez ([9]). The game is defined on event structures. An event
structure is a set of events in which a partial order and a conflict relation are
defined. Event structures are in relation with Petri nets used in this paper: given
an occurrence net, there is always an event structure with the same partial
order and the same conflict relations of the events in the occurrence net. The
opposite is also true: constructing an occurrence net in which the partial order
between events is the same as in a event structure is always possible. However,
this occurrence net is not always equivalent to the unfolding of a Petri net. As
in the game in [7], the two players have limited knowledge of what happens in
the system. When two or more events cause the occurrence of another one, there
is an exchange of information that can be used by the strategy. Gutierrez shows
that the game can be applied to the bisimulation problem and model-checking.

6 Conclusions

In this work we have presented an algorithm for the computation of a strategy
for a reachability problem in a distributed net system with full observability. The
algorithm has been implemented in Python. The next step consists in studying
the complexity of the algorithm and testing it on different nets.

We plan to apply the general idea of the game to different problems and to
define proper algorithms to find winning strategies in each case.

On the theoretical side, we will consider the case of partial observability. In
this extended case the definition of a strategy needs to be redefined, because
in general, if only some transitions are observable, the current marking of the
system, and the current cut on the unfolding, are unknown. Moreover, while
with full observability the information given by the observations on the system
or on the unfolding is the same, with partial observability a strategy on the
unfolding may be able to distinguish two different evolutions of the system, even
if the observed transitions are the same. This happens because in the structure
of the unfolding there is a track of the different stories of the system, hence being
able to distinguish two events corresponding to the same transition would mean
being able to reconstruct also the unobservable story of the system up to every
observed event.

Another future generalization is increasing the number of players. It would
be interesting to analyse a game in which more than two players try to reach
a goal, eventually in a cooperative or in a competitive way, and considering a
game in which concurrency within a component is allowed.

Acknowledgments

This work has been partially supported by MIUR. The authors thank the anony-
mous referees for their useful comments.

Adobbati et.al.: An asynchronous game on distributed Petri nets 35

References

1. Bernardinello, L., Kilinç, G., Pomello, L.: Weak observable liveness and in-
finite games on finite graphs. In: van der Aalst, W.M.P., Best, E. (eds.)
Application and Theory of Petri Nets and Concurrency - 38th International
Conference, PETRI NETS 2017, Zaragoza, Spain, June 25-30, 2017, Proceed-
ings. Lecture Notes in Computer Science, vol. 10258, pp. 181–199. Springer
(2017). https://doi.org/10.1007/978-3-319-57861-3, https://doi.org/10.1007/978-
3-319-57861-3

2. Bernardinello, L., Pomello, L., Puerto Aubel, A., Villa, A.: Checking weak observ-
able liveness on unfoldings through asynchronous games. In: Moldt, D., Kindler,
E., Rölke, H. (eds.) Proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’18), Bratislava, Slovakia, June 24-29, 2018. CEUR
Workshop Proceedings, vol. 2138, pp. 15–34. CEUR-WS.org (2018), http://ceur-
ws.org/Vol-2138/paper1.pdf

3. Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E.M., Virbit-
skaite, I., Voronkov, A. (eds.) Perspectives of Systems Informatics - 8th Inter-
national Andrei Ershov Memorial Conference, PSI 2011, Novosibirsk, Russia, June
27-July 1, 2011, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 7162, pp. 1–18. Springer (2011). https://doi.org/10.1007/978-3-642-29709-0,
https://doi.org/10.1007/978-3-642-29709-0

4. Desel, J., Kilinç, G.: Observable liveness of Petri nets. Acta Inf.
52(2-3), 153–174 (2015). https://doi.org/10.1007/s00236-015-0218-1,
https://doi.org/10.1007/s00236-015-0218-1

5. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6), 575–591 (1991).
https://doi.org/10.1007/BF01463946, https://doi.org/10.1007/BF01463946

6. Finkbeiner, B., Gieseking, M., Olderog, E.: Adam: Causality-based synthesis of
distributed systems. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 9206, pp. 433–439. Springer (2015). https://doi.org/10.1007/978-3-319-21690-
4_25, https://doi.org/10.1007/978-3-319-21690-4_25

7. Finkbeiner, B., Olderog, E.: Petri games: Synthesis of distributed
systems with causal memory. Inf. Comput. 253, 181–203 (2017).
https://doi.org/10.1016/j.ic.2016.07.006, https://doi.org/10.1016/j.ic.2016.07.006

8. van Glabbeek, R.J., Goltz, U., Schicke-Uffmann, J.: On characteris-
ing distributability. Logical Methods in Computer Science 9(3) (2013).
https://doi.org/10.2168/LMCS-9(3:17)2013, https://doi.org/10.2168/LMCS-
9(3:17)2013

9. Gutierrez, J.: Concurrent logic games on partial orders. In: Beklemishev, L.D.,
de Queiroz, R.J.G.B. (eds.) Logic, Language, Information and Computation - 18th
International Workshop, WoLLIC 2011, Philadelphia, PA, USA, May 18-20, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6642, pp. 146–160. Springer
(2011). https://doi.org/10.1007/978-3-642-20920-8, https://doi.org/10.1007/978-
3-642-20920-8

10. Winskel, G.: Distributed games and strategies. CoRR abs/1607.03760 (2016),
http://arxiv.org/abs/1607.03760

36 PNSE’19 – Petri Nets and Software Engineering

