
PNRD and iPNRD Integration Assisting

Adaptive Control in Block World Domain

José Jean Paul Zanlucchi de Souza Tavares and Gabriel de Almeida Souza

Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, 38400902
Uberlândia Brazil

{jean.tavares,gabrielsouzaworking}@ufu.br

Abstract. Too much effort is being invested in the automated planning
field, but this area has been focusing more on improving the performance
of search algorithms in an abstract space than on applying automated
planning in practice. Among several challenges, online replanning is an
open issue. This paper presents PNRD/iPNRD integration in Blocks
World Domain in order to create an adaptive control of a robotic arm
and passive agents. The procedure is composed of building a Petri space,
PNRD, and iPNRD model for each agent, and by integrating their in-
formation so that the robotic arm may autonomously order the blocks
to the desired final global state, stored previously in each block’s RFID
tag; comparing logical and physical information, generating a sequence of
movements, and executing related actions. Some issues arise because of
the dispersed information, physical-logical interface and its constraints,
requiring the detection of non-conformant results, optimally solve and
realize the required sorting given its partial observability, and sequential
movement of one block each time. The feedback from PNRD/iPNRD
models with physical positioning can certify the required initial, inter-
mediate and final condition and also check for exceptions, resulting in
an adaptive robotic control. This didact example points out where this
approach can work with automated planning for a more complex system.

Keywords: PNRD/iPNRD · Blocks World · Adaptive Control

1 Introduction

It is a well known fact that the AI planning community is very committed
to apply the developments already achieved in this area to real complex appli-
cations. However realistic planning problems bring challenges not only during
design processes but also for the automated planners during the planning itself
[6].
According to [1] there are many reasons for the low adoption of automated
planning in the industry. First, they rely on the widely used ‘preconditions-
and-effects’ representations that provide predictive models of actions often too
abstract to be of use by actors. The automated planning field has been focusing
more on improving the performance of search algorithms in an abstract space



than on improving its models’ predictive capabilities. Planning is easily for-
malized, whereas acting is not. There is a clear frontier between planning and
performing, but the borderline between acting and performing is more blurred.
In addition, automated plans are usually a simple packaged input–output func-
tion, although actor’s deliberation functions are difficult to integrate to open and
dynamic environments. Such changes on focus entail two interconnected princi-
ples: a hierarchical structure to integrate the actor’s deliberation function, and
the continual online planning and reasoning throughout the acting process. [9]
also questioned when automatic planners would be integrated with industrial
systems. However, online process redesign and replanning is still an open issue.
In order to investigate a way to increase automated planning in the industry, this
paper presents how PNRD integrated with iPNRD can assist an adaptive control
in blocks world domain through exception identification. Thus a PNRD/iPNRD
didactic example is presented with three block and one robotic arm. The next
section presents PNRD and iPNRD fundamentals and block worlds in prac-
tice. Section 3 shows PNRD and iPNRD integration case study; followed by the
robotic adaptive control. Some conclusions and further works are presented.

2 PNRD/iPNRD Approach

2.1 PNRD

Each RFID tag can be abstractly identified by a single token on PNRD and
each reader can represent a Petri net (PN) transition. Originally, PNRD was
developed for the identification and monitoring of passive agents, such as com-
mercial items, parts, logistics units, and physical products. The process that an
object must follow is associated with its behavioral model through Petri net data
structure. Thus, PNRD is a formal data structure grounded in elementary Petri
net which stores Petri net equation parts in RFID components: tag and reader
[10].
Operationally, along the physical distributed RFID readers, tag data can repre-
sent a single marking, and this marking is automated updated during the tag
data capture following the matrix equation.
It is possible to evaluate in real time whether the next calculated marking is
suitable or not. In this sense, a suitable marking should respect the tag-token
bi-univocal unique relationship, it means, each tagged object cannot have any
negative component in its marking. Thus, the PNRD exception can assist Edge
Computing to solve some issues locally.
A conflict in the PNRD approach arises when the same reader/antenna is re-
lated to more than one transition for the same tag identification and previous
marking. In this case, it is necessary to apply a decision algorithm to define
which transition should be chosen based on additional data or software based on
specific cases [10]. This conflict can be also represented as a stochastic choice.
To exemplify the practical application of the PNRD, Fig. 1 presents a didactic
example where a raw material is machined an pass through a test. The machined
part, if approved, goes to the stock. If it is rejected it is disposed. Otherwise it

74 PNSE’19 – Petri Nets and Software Engineering



is remanufactured. Fig. 2 is the corresponded PNRD presenting activities of the
process that holds RFID readers.
In the process in question, raw material (p0) is sent to a workstation (p1), and,

Fig. 1. Machined part test schema.

after it, the machined part p2 pass throught a specific test p3. If the test approves
the part, it goes to the stock p4. If it is rejected, the piece goes for recycling p5.
If the part does not meet the test, it goes to the rework queue p6, and through a
new machining process and it returns to the beginning of the machined system.
Although t0 and t6 are related to Reader1/Antenna1, both have distinct pre-
vious marking (p1 and p6, respectively), what doesn’t generate a conflict. The
Fig. 2 correspondently adjacent matrix A is presented as following.

2

666666664

�1 0 0 0 0 1 0
1 �1 0 0 0 0 1
0 1 �1 0 0 0 0
0 0 1 �1 �1 �1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 �1 0 0 0 1 �1

3

777777775

PNRD exception can be shown as follow. Initially a part which is a raw with
a given RFID tag. This tag is at p0, corresponds to the initial marking m0 =
[1, 0, 0, 0, 0, 0, 0]t. Now Reader1/Antenna1 (t0) reads this tag. Next state calculus
result is stored in the tag as m1 = p0+At · [1, 0, 0, 0, 0, 0, 0]t = [1, 0, 0, 0, 0, 0, 0]t+
[�1, 1, 0, 0, 0, 0, 0] = [0, 1, 0, 0, 0, 0, 0]t = p1. Here, Reader1/ Antenna1, does this
calculation, and store the new marking in tag’s memory. Next, this tag is read by
Reader1/Antenna2 (transition t1), and it used next state calculus to compute
marking m2 = [0, 0, 1, 0, 0, 0, 0]t = p2, using m2 = p1 + At · [0, 1, 0, 0, 0, 0, 0]t.
It stores this new marking on tag. At this stage, tag at m2 can be perceived
by Reader2/Antenna2 which computes the next marking by using next state

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 75



p0

p1

p2

p3

p4p5

p6

t0

t1

t2

t3t4

t5

t6

– States:
– p0: Raw Material
– p1: Part in Workstation
– p2: Machined Part
– p3: Part in Test
– p4: Part in Stock
– p5: Rejected Part
– p6: Part in Queue

– Transitions and RFID readers:
– t0: Reader1/Antenna1
– t1: Reader1/Antenna2
– t2: Reader1/Antenna3
– t3: Reader2/Antenna1
– t4: Reader2/Antenna2
– t5: Reader2/Antenna3
– t6: Reader1/Antenna1

Fig. 2. PNRD machined part test.

calculus as follows: m3 = [0, 0, 1,�1, 0, 1, 0]t = m2 + At · [0, 0, 0, 0, 1, 0, 0]t. This
marking has a �1 in it, which is not possible at any reachable marking in the
net. So the Reader2/Antenna2 senses that there is some anomaly in the object
expected process and raises an exception.

2.2 iPNRD

As the active agents are normally embed with a micro controller, it becomes
impracticable to associate their identification with only one RFID tag, as it is
more reasonable to place an RFID reader in agents similar to mobile robots. The
use of tags to identify strategic points and places of interest within the course
of agents is capable of changing the behavior of these agents. In addition, the
use of passive tags in remote locations to identify locations along tracks without
network and eletric infrastructure, and in environments with sparse power points
proves to be adequate, and technically and economically feasible. Thus, to fit the
PNRD approach in the control and monitoring of active agents, it is necessary
to inverse the storage locations of the components of the Petri net equation. This
approach was called inverted PNRD or iPNRD and it was presented by [7] [8].
In the iPNRD, the tag stores information about the firing vector uk, while the
adjacent matrix At and the current marking Mk are associated with the RFID
Reader/Antenna.
To illustrate the iPNRD, a search and rescue problem, which has been simplified
and dealt with on mobile robot stands, is presented in Fig. 3 here are three
distinct agents or mobile robots, namely AerialBot, Groundbot and Walker.

76 PNSE’19 – Petri Nets and Software Engineering



These refer to aerial robots (a platform capable of filming the workbench), search
and rescue robots, and robots emulating users, respectively.
Each agent has different inputs and outputs. In the case of AerialBot, it has
access to images from a camera (view) and the exchange of TCP / IP messages.
The outputs correspond to the movement of motors and the TCP/IP messages.
For Groundbot the inputs refer to contact sensor, ultrasonic sensor and RFID
reader with iPNRD software, in addition to receiving TCP / IP type messages.
The outputs are TPCP / IP messages, motors and data recording in RFID tags
arranged along the workbench. Walker has contact sensors, ultrasonic sensors
and RFID reader with iPNRD as input, as well as motors, access to benchtop
RFID tags and an emergency light to indicate any type of problem (physical
failure or when it is lost). Corresponded Walker iPNRD is shown at Fig. 4.
The adjacency matrix A of Petri net of Figure 4 is as follows:

Fig. 3. Search and rescue schema.

2

66664

�1 0 0 0 1 0 0 0
1 �1 0 0 �1 1 0 0
0 1 �1 0 0 �1 1 0
0 0 1 �1 0 0 �1 1
0 0 0 1 0 0 0 �1

3

77775

iPNRD data storages firing vector in tag can also hold the history composed by
the agents Id, timestamps and additional information. This historical data facil-
itates the tracking and tracing of Walkers by the Groundbots. This information
is helpful in order to directed search to the region most likely to find the victim,

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 77



p0

p1

p2

p3

p4

t0

t1

t2

t3

t4

t5

t6

t7

– States:
– p0: Walker at Petropolis Entrance
– p1: Walker at First Region
– p2: Walker at Second Region
– p3: Walker at Third region
– p4: Walker Teresopolis Entrance

– Transitions and tags:
– t0: Tag 1 at Petropolis Entrance
– t1: Tag 2 at "Castelo do Açu"
– t2: Tag 3 at "Pedra do Sino"
– t3: Tag 4 at Teresopolis Exit
– t4: Tag 1 at Petropolis Exit
– t5: Tag 2 at "Castelo do Açu"
– t6: Tag 3 at "Pedra do Sino"
– t7: Tag 4 at Teresopolis Entrance

Fig. 4. Search and rescue Walker iPNRD.

reducing search time and, consequently, increasing the chances of rescue.
The route has 4 tags, the first one in the Petrópolis entrance/ exit, the sec-
ond dividing the trail into first to second regions, the third spliting the second
to third region, and the last one at the Teresópolis exit/ entrance of the trail.
Note that each tag has a set of transition it is related to depending on what
is the direction of the trail (from Petrópolis to Teresópolis or vice-versa). The
Walker agent w1 is at w1

0 = [1, 0, 0, 0]t. When Tag 1 is read, them t0 fires,
w1

1 = [1, 0, 0, 0]t + [�1, 1, 0, 0]t = [0, 1, 0, 0]t which means p1, or First reagion.
The Tag 1 receives additional information about the agent ID w1, its previous
marking and the moment of registration in a database (timestamp). Other tags
present similar behavior, but for different transitions. Similarly to PNRD excep-
tion, iPNRD also can identify automatically exception states, which generates
an Edge Computing system.
Fig.5 summarizes how the terms of Petri net matrix equation are associated with
the RFID components in both approaches.

2.3 PNRD/iPNRD Integration

Both PNRD and iPNRD are able to structure the communication between sev-
eral agents of a system that makes use of RFID devices, however, until now only
stand alone aplication was presented. Could their integration assist automated
planning adoption in industry? To answer this question it is necessary to show
how PNRD and PNRD can be integrated in an automated planning domain. In
this direction, this paper presents the integration of PNRD and iPNRD related
with Blocks Worlds of 3 components.

78 PNSE’19 – Petri Nets and Software Engineering



Fig. 5. Petri net matrix equation association with PNRD/iPNRD [8]

Block World in Practice The blocks world is one of the most famous plan-
ning domains in artificial intelligence [3]. The goal is to move the blocks from the
initial state to the desired one. Only one block may be moved at a time, and it
may either be placed on the table or placed atop another block. Because of this,
any blocks that are at a given time under another block cannot be moved. A
physical model is necessary to place the blocks and enable motion control, and,
because of the material bounds, many logical configurations are impossible. The
impossibility of some configurations is further discussed in section 3.3.
In this paper the Blocks World has a 3x3 discrete position grid with three dif-
ferent blocks endowed with unique identity. A notation system is defined where
if a block X is over a block Y , this is represented by XY . If they are in dis-
tinct columns, they is represented by X_Y . For example AB_C means that
block A is over B, and both are besides C. This notation is suitable logically,
however, it generates ambiguity physically, it means, in a place with three pre-
defined columns, AB_C can have 6 distinct physical configurations, depending
on block’s column positioning. In this paper, A_B_C representation (all blocks
over the table) is applied for any displacement in the table (it means 3! distincts
block’s physical positioning). In the case of only one occupied column, the case
of CBA, there are 3!/2! possible physical positioning. The total number of phys-
ical position is 60. To deal with the physical ambiguity, each block only must be
placed on the table in a predetermined position, what reduces the total number
of physical position to 13.
Blocks world planning has been shown to be a difficult problem for finding an
optimal plan, as it is NP-hard in the worst case [3]. Finding an optimal route
means to change the blocks state to the objective with minimal cost, where cost
is generally the total summation of all transitions cost. In this work all transi-
tions have unitary cost.
The Blocks World restrictions, actions and possible configurations can be mod-
eled through different paradigms, such as propositional logic, full state space
representation or tree expansion. As this domain is didactic in order to present
physical informational integration using PNRD/iPNRD, these models have full

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 79



state representation due to the small quantity of elements, thus the optimal solu-
tion can be found using simple graph search algorithms, whose time complexity
order is polynomial.
This means that planning for sorting execution is simply about searching through
different PNs to generate the robot driving sequence. The search algorithm of
choice is the BFS (breadth-first search), that will expand all places following a
FIFO (First In First Out) list, this algorithm being optimal for uniform cost arcs
[5]. The time and space complexity is O(TP ), where T is the total number of
transitions and P the total places, because the PN is represented as a modified
adjacency graph and BFS usage.
Using a heuristic search might give significantly better results for bigger state
spaces. If a different paradigm was used, such as tree expansion, the BFS has
completeness assurance, but this paradigm is better suited to deal with bigger
state spaces, meaning that a heuristic search would outperform the non-informed
BFS.
According to [2], in the physical domain there are some distinct dynamic treat-
ments for fixed robots, like inverse kinematics [4] for pre-established spatial co-
ordinates, which is very useful when dealing with very well managed object
disposition, but it requires higher environment control in order to work well. In
more flexible and robust applications it might require the use of sensors, plan-
ners and controllers for adaptive action, like vision systems and machine learning
methods, that can be computationally expensive and require training data.
As this work deals with predefined discrete points similar to a Petri space [4] for
the robot to move and act, them the course of action can be given by a planner
based on PN matrix search algorithm. This method is simpler to implement and
has inferior computational cost when compared to a machine learning high level
sorter, but is more adjustable than a pick-and-place methodology that does not
include superior level instruction planning.
Sorting can be very challenging depending on the level of automation [2], so con-
straints might be necessary to reduce the need for more sophisticated tools. As
autonomous sorting is enabled by sensors and actuators, this system dynamics
is constrained by the use of a single sensory system. The RFID components are
the unique sensory system in this work which activates actuation in the robotic
arm. Because the possible positions are modeled in Petri Space there is no need
for a more complex motion planner, as the whole position state space is repre-
sented, where the transitions represent the modeled movements and the places
position, again a graph search algorithm can be used to find the optimal logical
path given the model restrictions. A robot can perform tasks at any point in
its Petri space, so it is possible to flexibilize the discrete positions into a less
constrained method in a case which requisites of using more complex motion
planners and sensor systems. Fig. 6 represent the Petri state of 3 blocks. A
logical solution to avoid collisions is adding a line atop the original one (specif-
ically places C1_4, C2_4 and C3_4), so that the robot may move superior to
the blocks when changing columns. Thus this Petri space represents the robot’s
physical-movement actions through its transitions between predefined positions

80 PNSE’19 – Petri Nets and Software Engineering



(places). For didatic reason this is a simplified Petri Space which could be mod-
eled as a state machine, however, real applications requires a more complex Petri
space.

Fig. 6. Three blocks physical discrete positioning viewed as Petri Space

3 Case Study: PNRD/iPNRD for Three Blocks

3.1 Block PNRD model

The block PNRD models the relationship of itself with the environment. De-
pending on arm physical movement, it is possible to identify what block is under
another (with a movement from the top to the bottom of a column), or, oth-
erwise, what block is over another (with a movement from the bottom to the
top), what is implemented in this work. So, their PNRD model represents which
element the referred block stays atop. As an example, block A PNRD model can
have three distinct states, A over B (AB), A over C (AC), or A on the table
(AT ) and it is presented in Fig. 7. The PNRD topology is composed of 3 places
and 6 transitions for each one of the three blocks. An additional information is
demanded, each block must inform its expected final state.

3.2 Robot iPNRD model

The iPNRD represents the active agent perspective on the world, and as there
is only one robot arm, its iPNRD model also represents the whole Blocks World
disposition state space. For three blocks, it is possible to represent the logical
macro state as shown in Fig. 8, that is the blocks relative positions with 13 dis-
tinct states and 30 transitions. As informed in subsection 2.3, there is no logical

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 81



Fig. 7. Block A PNRD model.

distinction between A_B_C and C_A_B, but only the reference physical dis-
positions shown in Fig. 8 are treated in this paper. Each transition refers to a
movement of a block, for instance, miX2Y means movement number i of block
X to position Y (on table – T or another block). Place identification is follow-
ing the notation described at subsection 2.2. Through this iPNRD model it is

Fig. 8. Robot arm iPNRD model.

possible to navigate from a state to another, identifying the necessary intermedi-
ate states and transitions. Searching in the iPNRD model is similar to a macro
state planning, or a discrete state control, which can reach the final state from
the initial by firing a correct sequence of transitions. This planning is of higher
level because it does not relate directly to the robot kinematic sequence. The

82 PNSE’19 – Petri Nets and Software Engineering



movement sequence is generated by searching on the physical level, the Petri
Space.

3.3 PNRD/iPNRD integration with Petri Space

All blocks PNRD representation must be coherent with the arm iPNRD model
and with the Petri Space from the physical system. Places and transitions are
related to the other models directly and these relationships can be expressed
through tables. It is mandatory to inspect whether the physical arrangement is
equivalent to the PNRD and iPNRD representation regarding the initial state.
As this case study has a simple model and the whole state space is modeled in
a PN, the optimal solution can be found using graph search algorithms. For a
more complex model this solution requires a different approach, as an example
automated planner integration with iPNRD model.
The proposed method to identify the position of each block on the physical do-
main is by using the RFID reader placed in the robot grappler. As all the blocks
have RFID tags, which gives them an individual unique identity, the reconnais-
sance of each block and its corresponded position is feasible during a sweep
operation.
All blocks identification from PNRD habilitates the identification of iPNRD ini-
tial and final state. This means that the blocks current position is identified by
tag reading, and this information can be confronted with block’s own state from
its PNRD ; and the final state by reading in each block additional data. Sum-
marizing, Petri state (blocks position perceived by robot), and PNRD data are
mapped to iPNRD state as presented by Table 1, after a robot sweep operation.

Table 1. Petri Space, PNRD and iPNRD State relationship

Petri Space Petri Space Petri Space PNRD PNRD PNRD iPNRD
Block A Block B Block C A B C State
C1_1 C2_1 C3_1 AT BT CT A_B_C
C1_1 C1_2 C3_1 AT BA CT BA_C
C1_1 C2_1 C1_2 AT BT CA CA_B
C1_1 C1_2 C1_3 AT BA CB CBA
C1_1 C1_3 C1_2 AT BC CA BCA
C2_2 C2_1 C3_1 AB BT CT AB_C
C1_1 C2_1 C2_2 AT BT CB CB_A
C2_2 C2_1 C2_3 AB BT CA CAB
C2_3 C2_1 C2_2 AC BT CB ACB
C3_2 C2_1 C3_1 AC BT CT AC_B
C1_1 C3_2 C3_1 AT BC CT BC_A
C3_2 C3_3 C3_1 AC BA CT BAC
C3_3 C3_2 C3_1 AB BC CT ABC

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 83



Exception can occur in two ways. In the PNRD level if and only if the Petri
state set is distinct from PNRD state set, this means some block(s) was moved
from their initial position, as Petri state set has priority over PNRD state set.
Consequently the PNRD states must be updated following the physical dispos-
ing. Constraints in this exception arise from the restrictions of the physical world
and the proposed Blocks World restrictions. There are thirteen different logical
dispositions in the iPNRD for three distinct PNRD places for each block. As the
mapping is a bijective function with three inputs, having three possible values
each, most permutations are invalid having no real transfer to an iPNRD state.
The same occurs on the physical layer to iPNRD or PNRD, mathematically
many configurations exist, but the physical model constraints the possible con-
figurations.
Another exception can be raised from PNRD desirable state set. There is 13 iP-
NRD states with specific PNRD state set, for instance, A_B_C = AT ,BT ,CT .
If the desirable final state set does not belongs to Table 1 PNRD set, it means
that the final state set is unreachable and inconsistency, as example AB, BA,
CA, where A is over B, Bis over A and C is over A, what is physically unfeasible.
This mapping is bijective, so it admits an inverse. Transitions in iPNRD convert
to a sequence of Petri State transition.
A movement command (transition in the Petri State) is converted into a com-
mand signal for the robot driver system. This relation is also bijective, however,
for the physical robot, the mapping between the path and the static position
has an n : 1 relationship, meaning that multiple commands can reach the final
position. This paper deals with this issue storing in advance each movement
sequence and relating them with a correspondent Petri state transition.

3.4 Block World solution deployment

The first process to solve the Block world consists on recognizing the initial
and objective states. Then a sorting engine based on the iPNRD model uses the
robotic arm to act, following the Petri state transition movement.
The sorting engine is a multi-process composed of solving for the optimal action
plan given the original and final global states, respecting the model constraints.
This process consists of searching in the iPNRD model for the least amount of
transitions. Then it is necessary to map the physical level, in which each tran-
sition has an initial and final position. The next step is to search for the least
amount of robot movements in the physical model. Afterwards it is necessary
to concatenate the actions and to translate them into robot driver command,
moving the blocks in the physical world. This multi-process sorting is described
in the next section.
After the definition of iPNRD objective and its correspondent iPNRD transi-
tions, it is necessary to generate Petri state sub-goals, meaning, the required
initial and final physical place that each involved block must be moved in or-
der to complete a iPNRD transition. Each transition in the iPNRD maps to
an unique sequence of Petri Space transitions, as is in Fig. 9. These movements
must be concatenated in order to reach the desirable final set, so it is necessary

84 PNSE’19 – Petri Nets and Software Engineering



to connect the final place of a sub-goal to the initial in the consequent one. The
final step is to convert a Petri space transition to a robot command. The simplest
way to perform this task is composed of mapping these transitions into a more
easily readable order, converting the concatenated transitions into an driving
order string, then it is processed by the robot driver. The robot driver converts
the string orders into joint angles and grappler movement by commanding the
servomotors.

Fig. 9. iPNRD and Petri State Relationship.

4 Robotic Adaptive Control Based on PNRD and

iPNRD Integration for Three Blocks

The implemented solution involves a PC, an Arduino mega microcontroller,
RFID components, robotic arm and the three tagged blocks. This interfacing
can be done by a range of methods, like serial protocols or intranet. In this pa-
per the means for transmission are the RFID sensor for interfacing the blocks
to the microcontroller and serial bus to communicate the microcontroller to the
computer. For motor command the microcontroller sends processed signals to
move the robot. The system could be adapted to be processed in a monolithic
manner or to be further distributed among other agents.
The main idea of the adaptive control is presented in Fig. 10, which shows an
PNRD/iPNRD feedback depending on whether there is exception in the pro-
cess. The sorting process finishes when all steps have been fulfilled correctly.
This system can operate independent of supervision, unless an exception that
disables the process achievability happens. An example of disabling occurrence
is sensorial malfunctioning.
The adaptive control flow starts with an external command to start the opera-
tion, such as a supervisor sending a job request.
The system performs a sweep to locate the blocks using the arm and mounted

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 85



Fig. 10. Adaptive Sorting Process with PNRD/iPNRD feedback.

RFID reader. This sweep starts at C1_4 Petri state and always follows a fixed
transition sequence {T4 ! T24 ! T25 ! T1 ! T18 ! T10 ! T26 ! T27 !
T7 toT20 ! T16 ! T28 ! T29 ! T13 ! T23}. The adaptive control algo-
rithm performs the physical inspection reading each discrete position in a column
from below to the top, as informed in section 3.1. When the first column is done
the next occupied position will be the highest in the second column, then the
robot will descend to the lowest point and will perform the scan upward. When
all three columns are done the system will process the PNRD data.
Then, through the use of Table 1, initial and objective iPNRD states (macro
states) are generated by PNRD and Petri space information. A BFS search is
performed to find the optimal route in the iPNRD model. In each iPNRD tran-
sition a sub-goal search is done to find the set of movements in the Petri space
transitions. The movements are concatenated and converted into a string to be
fed to the microcontroller robot arm driver. The robotic arm motors respond
and the system actuates the blocks until the final command.
A simplified sweep is done to verify if the current state is equal to the desired
one through Petri state position, PNRD updates the block next state, as iPNRD
changes the system state. In this step, it is verified if the final movement was
possible to be executed. If not, it means that another block was moved without
robotic assistance to that position, and it raises another exception type. The
system verifies whether the process was finished. If not, it goes to the next sub-
goal.
This adaptive control works by searching in the iPNRD model, called macro
states, to generate a global plan. Each iPNRD transition maps to an initial and
final state in the Petri Space for movement, defining a sequence of sub-goal ac-
tion.
In order to concatenate the generated movements and act correctly, some special
cares are necessary. The first step is to have a reference position to begin and
end the actuation. The next required step is to concatenate the final state to
the initial state for the different sub-goal. This is necessary because the robot

86 PNSE’19 – Petri Nets and Software Engineering



needs to materially move the block to perform the tasks. It is also fundamental
to open and close the robot grappler at the right moments, so that instruction
must be included in the command string.
The feedback of final condition is necessary to perceive intermediate exceptions.
There can be many different types of exceptions through the process of solving
the system, assuming every model and table was created correctly. Exceptions in
the system identification might mean that a block is missing or an RFID element
is malfunctioning. This return permits that the system self regulates and accuse
anomalies. It is fundamental to emphasize that the system is partially observ-
able, meaning that some external actions and singularities cannot be perceived
immediately, sometimes only after a sorting requisition is finished, other during
the beginning of another job. One methodology to analyze irregularities, their
causes and origin, is viable through the circumstances of exception. This can be
accomplished using methods that involve failure mode analysis and statistics to
infer about possible faults.
In the case that the process is successfully finished it is necessary to update
PNRD data. This is done by moving into the blocks position and sending new
data to be stored in the tag according to the job last performed.
In order to actuate correctly the system needs geometrical references so that the
arm and blocks can be positioned right. These markings are absolutely necessary
if the system has a pick-and-place approach, doing work without trajectory feed-
back. In a model that includes more sensors and auxiliary systems for dynamics
the layout can be more flexible.
Other very important aspects are the mechanical and electronic projects. The
system has to be designed to handle the mechanical load and operate in the
specified work space. In the block world explored here, it was simple to build an
adequate robot for the task, so it was not necessary to make studies and formu-
late deeper about dimensions, stress, controls, power and their material tools and
needs. A small arm was projected and built using additive manufacturing and
common servomotors, and a simple microcontroller is used to operate the arm
and manage data coming from the RFID reader and computer. In a more de-
manding situation studying those requirements is fundamental to use a suitable
robot and components.

4.1 Adaptive control example

This example has BA_C initial state (Fig. 11) and BAC as final state (Fig. 12).
First, the system must be booted by a supervisor, then it will proceed to sweep
through the discrete positions identifying the blocks by their unique ids and get
their desired PNRD state. The robot will execute this process as described in
section 4.1. The initial identified Petri Space is {C1_1, C1_2, C3_1}. Through
Table 1 it is possible to find the current iPNRD state as BA_C. The current
PNRD state can be checked to conclude about changes in the expected state.
The data about the blocks desired position is previously added in the PNRD, and
it is collected during the initial sweep. Thus desired PNRD set is {AC,BA,CT},
Table 1 correlates this with BAC iPNRD state.

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 87



Fig. 11. Initial state representa-
tion.

Fig. 12. Final state representation.

The next step is to feed the initial and objective macro states to the sorting en-
gine as {BA_C,BAC}, in order to determine the course of action in the iPNRD
state space.
The result of a BFS search algorithm (planner) is the subobjective progression
and transition firing sequence. In this case, the best path to reach the objec-
tive state is, in order, through A_B_C, AC_B and finally to BAC. These
macrotransitions must relate to Petri State transitions in order to actuate on
the material world.
To move, the robot must leave a reference initial position, defined as C2_4, to
the initial position of the first subobjective with the gripper open. The first sub-
objective is to change from iPNRD state BA_C to A_B_C, which translates
into moving block B from C1_2 to C2_1. To move from C2_4 to C1_2 Petri
Space transitions T19 and T2 must be fired in sequence. The next step is to grip
the block. This action is provided in the database, because logically the block
has to be caught and moved. In sequence, transitions T3, T18 and T10 must
occur. Reaching its final position the arm can open. This ends the movement
sequence to reach the first subobjective.
Now, to start the second subobjective, it is necessary to move from the current
position to the next initial position. The next block that will be moved is block
A. The planner identifies that it must concatenate the movement sequence and
the subobjective now is to move from C2_1 to C1_1 with an open arm. Then
another search is performed to change the iPNRD from A_B_C to AC_B. To
perform this shift the planner must move block A from C1_1 to C3_2. In this
example the last subobjective consists of moving AC_B to BAC. When sorting
is complete the gripper must return to C2_4, ending the adaptive control.
The robot driver just interprets the received string and executes it. For each
Petri Space transition there is a corresponding robot configuration. To reach the
desired position each servomotor must be in a specified angle. If the position
C2_2 is requested, a robot with 6 controlled joints (motors) must command
each one to be in a pre specified angle. This can represented as the sextuple
where is the desired servomotor angle, as an example {90, 120, 60, 40, 170, 20} in

88 PNSE’19 – Petri Nets and Software Engineering



degrees. Final steps are a certification sweep and PNRD rewrite. If the resulting
iPNRD macro state is equal to the desired, the goal was performed successfully,
else an exception occurred. If successful, each blocks PNRD must be updated
by rewriting its tag’s data.

5 Conclusions and Further Works

This paper presented how PNRD and iPNRD integration can be applied in an
adaptive control. It also shows that it is feasible to integrate this solution with
automated planners. However, for more complex system (as example 10 blocks)
iPNRD model is not able to represent all blocks state space, and it must be
simplified based on automated planning results. In each operation it is indis-
pensable to rectify the model. In special on the physical level, the adequate fit
for positions and trajectory, with uncertainty and precision levels inside a certain
tolerance are essential. To build the models correctly and to realize the system it
is fundamental to, in each step, certify that what was built is accurate and done
right. But when dealing with automatic model generators and bigger systems
this problem gets harder, and it must be investigated.
Partial observability is another issue, because it makes exception detection much
harder and limits the sweeps average speed. By including more sensors partial
observability issues could be greatly reduced. Building auxiliary systems that
make exceptions harder to happen or faster to detect could increase system per-
formance.
There are dynamical and geometrical issues regarding the blocks disposition
and manipulation. In order to successfully realize the actuation and sensing the
system must be precise or robust, meaning that motors torque, potency and
control, vibration analysis, sensor signal studies and physical references to as-
sure the fidelity of the driver system motion might be required. Using any form
of position sensors to fully monitor the grid would make the moving processes
faster. Adding other sensors the data could be compared to whatever additional
information lies inside the tags. Vision systems could make the methods more
flexible and be auxiliary in the movement planner. A more profound study and
building improved hardware could make the system faster and more reliable.
The RFID system generates a complementary data structure locally, and, in case
of network issues, it could assist robot movement independently, acting as Edge
Computing application. This aspect must be studied straight forward.
Other means for improvement are making the machines and objectives more
flexible and having multiple agents. The system could support many different
objective states or perform partial satisfaction on conflicting jobs. The system
could work on parallel or concurrent robots that share a common work space,
having distributed tasks and logic but keeping consistent. To work based on a
reference clock would be great for timing activities. These changes could be fur-
ther improved by using model paradigms better suited for state space expansion
but it would require more computational power and the use of more sophisti-
cated techniques. A very important addition to the system is FMEA (Failure

Tavares et.al.: PNRD and iPNRD Integration Assisting Adaptive Control 89



Mode and Effect Analysis) for determining exception cause. A more powerful
sensory system coupled with tools for inference and statistical analysis could
provide useful data for concluding about the original problems.
PNRD/iPNRD must be formaly defined for concepts, operations and analysis.

6 Acknowledgement

This work is supported by CNPq, CAPES, FAPEMIG, UFU. This paper is
dedicated to prof. Dr. José Reinaldo Silva (PMR/USP).

References

1. Ghallab, M., Nau, D.S., Traverso, P.: The actor?s view of automated
planning and acting: A position paper. Artificial Intelligence 208, 1–
17 (2014). https://doi.org/https://doi.org/10.1016/j.artint.2013.11.002,
http://www.sciencedirect.com/science/article/pii/S0004370213001173

2. Guerin, J., Stephane, T., Nyiri, E., Gibaru, O.: Unsupervised robotic sort-
ing: Towards autonomous decision making robots. International Journal
of Artificial Intelligence and Applications (IJAIA) 9(2), 81–98 (03 2018).
https://doi.org/10.5121/ijaia.2018.9207

3. Gupta, N., Nau, D.S.: On the complexity of blocks-
world planning. Artificial Intelligence 56(2), 223–254 (1992).
https://doi.org/https://doi.org/10.1016/0004-3702(92)90028-V,
http://www.sciencedirect.com/science/article/pii/000437029290028V

4. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic
Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (1994)

5. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edn. (2009)

6. Sette, F.M., Vaquero, T.S., Park, S.W., Silva, J.R.: Are automated planners
up to solve real problems? IFAC Proceedings Volumes 41(2), 15817–15824
(2008). https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.02674,
http://www.sciencedirect.com/science/article/pii/S1474667016415387, 17th IFAC
World Congress

7. da Silva, C.E.A., de Souza Tavares, J.J.P.Z., Ferreira, M.V.M.: Arduino library
developed for petri net inserted into rfid database and variants. In: Khomenko,
V., Roux, O.H. (eds.) Application and Theory of Petri Nets and Concurrency. pp.
396–405. Springer International Publishing, Cham (2018)

8. da Silva Fonseca, J.P.: High-level Petri nets and inverted PNRD associated to
mobile robot control: an approach to search and rescue on trails and crossings.
Ph.D. thesis, Universidade Federal de Uberlândia (2018)

9. da Silva Fonseca, J.P., de Sousa, A.R., Ferreira, M.V.M., de Souza Tavares,
J.J.P.Z.: Planpas: Plc and automated planning integration. Inter-
national Journal of Computer Integrated Manufacturing 29(11),
1200–1217 (2016). https://doi.org/10.1080/0951192X.2015.1067909,
https://doi.org/10.1080/0951192X.2015.1067909

10. Tavares, J.J.P.Z.D.S., Saraiva, T.A.: Elementary petri net inside rfid dis-
tributed database (pnrd). International Journal of Production Research
48(9), 2563–2582 (2010). https://doi.org/10.1080/00207540903564934,
https://doi.org/10.1080/00207540903564934

90 PNSE’19 – Petri Nets and Software Engineering


