
Petri Meta-Compiler — a Recursive Approach to

System Design and Development

Piotr Chrząstowski-Wachtel1, Michał Doleżek2,
Paweł Greipner2, and Tomasz Wójcicki2

1 Institute of Informatics, Warsaw University
pch@mimuw.edu.pl

2 Devroom, Poland
michal,pawel,tomek@devroom.pl

Abstract. We propose a framework for the definition of Petri Net mod-
els in the Petri net approach. All the components: places, transitions,
arcs are defined as Petri net objects. Assembled together they constitute
a method to design business systems compositionally. Transitions are
associated with a code, places contain data or are control places. Each
entity (process) has a place, which serves as an interface to the external
world (other processes).
The approach is implemented in such a way that it is possible to compile
the codes of the designed systems within one framework (the same in
which the model is defined). The approach enjoys the bootstrap com-
pilation, so the system can compile itself. We have developed a method
to make it in 3 phases. The first phase defines objects, the second one
makes the net structure and the third one generates the code of the
system itself.
The framework has been implemented and deployed in a few small and
medium size internal business database projects. It provided great pre-
dictability of impact of changes and added flexibility to the system de-
velopment. Characteristics of the resulting database structure with its
immutable history of transactions seem compatible with blockchain con-
cepts, thus we expect that such Petri Nets could become a convenient
language for smart contracts.

1 Basics

Business processes, being quite complex and run by software, seldom run on
reliable applications. To make application development manageable, the MVC
approach separates three aspects of software — model, view and controller. When
changes are made, the basic question is if the new environment is consistent
with the old one. In MVC approach, the documentation serves as a tool for
referencing and synchronizing the three aspects, but it is hard to maintain when
changes happen often and sometimes it is confusing. Our approach synchronizes
all the aspects of programming by using a common model for all of them. Such
synchronization makes the approach more uniform. We gain a common language

to talk about the control, the data and the view. The graphical charm of Petri
nets made us eager to use a version of this model to combine all these aspects.

Petri nets have been considered an important model for business processes
[5],[6]. They provide a scalable approach with well defined semantics. Also graph-
ical charm makes them easy to explain for non-mathematicians. Our approach
is based on the ideas of a hierarchical design and development of systems, raised
among others in [4]. We were inspired by the paper [2], where the idea of a
compiler that compiles itself was introduced.

We propose a language to define concurrent systems allowing hierarchical
design in a Petri-net-like manner. The basic notions, from which we build the
model are:

– Places
– Transitions
– Input arcs
– Output arcs
– Control places
– Processes

All of them satisfy normal Petri net assumptions. Places and transitions are
disjoint and finite sets, arcs connect places and transitions. Places contain data,
control places contain tokens. Processes are nets, which have been unfolded from
one single place by means of structural refinement.

Arcs can also connect processes with transitions through special kind of places
called handles. Transitions can change the state of the process they belong to,
but also trigger changes of states of external processes through handles.

2 The Model

In what follows we define notions in one uniform framework. All the elements
the system is built from (like places, transitions, arcs,. . .) will be defined in
the language of Petri nets. The definition will be highly recursive, allowing in
particular for bootstrap compilation.

A system is a set of processes S = {S1, . . . , Sn}. A process is a Petri net

Si = hPi, Ti, inarcsi, outarcsi, Ci, hii,

where Pi are places of Si, Ti are transitions of Si, Ci ⇢ Pi is the set of control
places, while hi 2 Pi is the process handle — a place, which contains process
id and which allows to communicate the interior of Si with the external world
allowing to use the data of Si by transitions from external processes. We assume
that places, which are neither control places nor handles contain the data of Si.
All elements of a process will be available through the dot notation by the id
of the process. Let H = {h1, . . . , hn} be the set of handles, P =

S
Pi be the

set of all places, and T =
S

Ti be the set of all transitions of the system. Let
Idn be the set of all identifiers of objects including an element ⌧ , which represents

110 PNSE’19 – Petri Nets and Software Engineering

no id. There is also a requirement that the sets Ti are not empty and each of
them contains at least one transition finali. This transition is run in particular
during the generation of objects — it puts then an identifier to the handle of
this process. Places of any process can be handles of other processes. They will
serve as links to external data.

InarcsS are input arcs for transitions of S. Formally they are partial functions
(PS [H) ⇥ T ! Idn . If the value of inarcs(p, t) is not ⌧ (by which we mean
that the arc exists) it is the id that will allow the transition t to access the data
that flow through this arc during its firing. The only places, which can be inputs
for a transition t 2 TS are places from PS and handles of external processes. So
a transition cannot communicate with an external process by connecting to its
internal place. If any requirements are defined for data to run a transition, then
such requirements are stored as data within a process associated with the arc.

Similarly, outarcsS are output arcs for transitions of S. The only places which
can be an output arc for a transition t 2 TS are places of S and handles. So
outarc is a function from TS⇥(PS[H) ! Idn . If the value of an inarc or outarc
is ⌧ , we interpret it as no arc.

For the system S the underlying graph is a graph, whose nodes are elements
of

S
(TS [PS) and arcs connect pairs of nodes that are defined by inarcs or

outarcs.
We assume here that in the underlying graph of each process Si (so the

underlying graph of the system with nodes restricted to places and transitions
of Si), for each transition t in Ti there exists a path from t to the handle hi.

Every entity in a system (in particular all the objects created in any phase)
must have a unique identifier from the set Idn .

A marking in a process S is a function from the set of places PS to lists of
strings. In our implementation numbers will also be denoted by strings. Handles
can contain lists of identifiers only, while other places will use strings to denote
names, numbers, program codes, etc. We will not distinguish here between con-
trol and data places: control places will have unique 0 or 1 (no multiple zeroes
or ones), denoting a control token like in a simple Petri net.

The list of identifiers in a handle cannot be empty and once it is defined, we
call such a marking an object. The first element on a list of identifiers in the
handle must be unique in the whole system and is considered to be the object
identifier. The remaining identifiers in the handle are references to objects of the
same process. Usually some of the places of a process will be mandatory, so the
existence of id in its handle will guarantee the presence of non-null data in such
places. But in general an object can have missing data in some of its places.

A transition in S is enabled if there is a token on each control place connected
to this transition by an inarc. The transition can fire at any moment provided
it is enabled, but it must have a permission to do so. The permission can be
granted either by an internal decision based on some logical condition or by an
external action. One of the attributes of any transition will be its code. When a
transition fires, the code of the transition is run and tokens are consumed from
all input control places and, in the case of a proper termination of the code,

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 111

First Name

Last Name

E-mail

Contact

joe@doe.com

Object: 1

Doe

Object: 1

Joe

Object: 1

Doe_ID

Object: 1

To

Ann

Object: 3

Kent

Object: 3

Kent_ID

Object: 3

ann@joe.com

Object: 3

Subject

Body

Message

final

final

Doe_ID

Object: 1 Owner: 4

Greetings

Object: 4

Dear Joe Doe

Object: 4

Mail1_ID

Object: 4

Fig. 1. Message storing example

the transition puts tokens on all output control places. If, by any reasons, a
transition during its execution fails to be completed, the output control tokens
will not be generated and the input control tokens will be restored.

If a transition is not the last transition of a process, and completes its exe-
cution successfully, it will update the content of the output places according to
the code. Some of the output places can remain unchanged, if the code says so.
A transition does not modify the content of its internal input places — it can
only read their values. Similarly, a transition can only write on its output places
and it can both read and write, if a place is both an input and an output for
this transition.

Throughout the paper we adopt the following convention for the pictures.
Every item on any figure presented with a solid line is an object. When the line
is dashed or dotted it represents a notion; such items do not necessarily need to
be realized within the model — it is a technical issue and can be implemented
otherwise. We are defining our model within itself, so these items are compliant
with it.

The frames with rounded corners are processes. The name of such process
is at the bottom, outside the frame. Each of the processes has its handle on
the right-hand side. Circles with bold borders are handles, normal borders mean
data places, grey-filled circles are control places and rectangles are transitions.
The names of items are located under the items and the names of arcs — over
them.

112 PNSE’19 – Petri Nets and Software Engineering

We show a simple example of a message storing application on Fig.1. The
application consists of 2 processes which illustrate how data is stored and how
processes and their objects can be linked.

Contact is a process which stores contact information. It consists of 3 places
for contact’s first name, last name and e-mail address, a transition and a handle
for contact IDs of stored contacts. Adding a new contact is done by filling data
in the 3 places and firing the transition. The transition has no code to run, but
it can’t be fired without data in the input places. It automatically generates a
new object’s ID upon successful firing and places it in the Contact handle. All
data tokens of this object remain in their places and are automatically tagged
with this object’s ID. We can build a contact database by running this process
repeatedly with different contact’s data.

Message is a process that stores the actual message. Apart from similar places
for data, transition and handle for message IDs, it has an arc that links Con-
tact’s handle to Message’s transition and names it ’To’. That link means that
a message’s recipient is one of contacts stored in the Contact process and the
information about which contact is linked to a message will be stored in that
process’ handle place, but attributed to Message’s object.

On Fig.2-7 basic bricks, from which we construct nets, are described. Bold
circles on the frames are handles, bold circles inside the frames are links to the
external processes. Normal circles and boxes are internal places and transitions.
If, for instance, a bold place Transition is inside the frame Process, such place
will be identified with the handle of a process Transition. The identifiers, which
reside in such a place denote the currently generated objects of the process
Transition.

Below we describe the bricks from which every process is built. Mind that
a common shape of all the Petri net components: places, transitions, arcs will
be described in the same framework, and since all of them communicate with
external world through the handle, and the handle is a place, you can find in the

Place

Name final

name place

Place { "p" : 4, "o" : 10,
"d2" : ["Name"] }

In_Arc { "p" : 7, "o" : 11,
"d2" : ["name"], "l5" : [10] }

Out_Arc { "p" : 8, "o" : 12,
"d2" : ["place"], "l6" : [14] }

Transition { "p" : 9, "o" : 13,
"d2" : ["final"], "d3" : [" ... //code// ..."],
"l7" : [11], "l8" : [12] }

Process { "p" : 6, "o" : 14,
"d2" : ["Place"], "l9" : [13] }

Fig. 2. Basic brick: place together with its JSON description

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 113

Control_Place

final

control_place

Fig. 3. Basic brick: control place

final

name

Name

Transition

Code

In_Arc

Out_Arc

code

in_arc

out_arc

transition

Fig. 4. Basic brick: transition

following diagrams places called “transition” or “arc”, which can be considered
bizarre, but is necessary to keep a uniform model for all the building bricks.

– The frame Place (Fig.2) describes a place (let’s call it p) in the same frame-
work. So a Place is a process consisting of one internal place with its name,
one transition final, whose main aim is generating the identifier of this place
in its handle. This transition will be fired during the every creation of a place
object by the place process.

– Control place (Fig.3) need not have a name — it will not contain any data,
only the control tokens, so no one will require any data access. In fact the
identification of the control place will be done by the attribute name in the
arc it is adjacent to.

– The frame Transition(Fig.4). We assume that transitions have attributes:
name, code, inarcs, outarcs. We use inarcs and outarcs to match the transi-
tions with neighbour places. The code will be run during transition firing.

– The frame Inarc (resp. Outarc)(Fig.5, resp. Fig.6) has Name, Control place,
Place and Process attributes. Since an Inarc connects exactly one place to a
transition, we require here that in order to enable the transition final exactly

114 PNSE’19 – Petri Nets and Software Engineering

In_Arc

Name

final

name

Place

Process

place

process

in_arc

Control_Place

control_place

Fig. 5. Basic brick: inarc

Out_Arc

Name

final

name

Place

Process

place

process

out_arc

Control_Place

control_place

Fig. 6. Basic brick: outarc

one of these places must have data to make it being enabled together with
the place name.

– The frame Process (Fig.7) has attributes: name, and a set of transitions,
which reside in the place Transition.

We will describe the process of creating the framework for building systems
in our approach. The overall scheme of the generation is depicted on Fig.16.
It will consist of three phases. The first two are preparatory ones: they form
atoms and molecules, from which we will next animate them to let them be
alive and responsive. They are described in the next chapter and correspond to
boxes appropriately labeled by 1 and 2 on Fig.16. The last phase — runtime —
is described in another chapter and is depicted by the final loop in Fig.16. It
allows for bootstrapping the whole system.

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 115

Process

finalTransition

name

process

Name

transition

Fig. 7. Basic brick: process

pd

{ "p" : 0, "o" : 0 } { "p" : 1, "o" : 1 }

Fig. 8. Proto-atoms

3 Initial Loading and Generating

We start with defining the distinction between handles and normal data places.
The proto-atoms (schemes) represented on Fig.8 do this. Places have an identi-
fier 0, while handles have identifier 1, which is represented in the JSON notation.
The JSON notation uses two additional fields to make it easier to read, we will
use two mandatory fields: "o" to represent object’s ID and "p" to represent the
ID of handle where the object’s ID is stored. Since object is a marking of a
process, the id of this process can be treated as its type. So the type of object
is explicitly indicated by the field "p" and its ID is in field "o" instead of being
the first on the list in the handle indicated by "p".

Having distinction between places and handles, we define proto-types for our
atoms: Name and Code (Fig. 9), having type 1 and having identifiers 2 and 3.
Since they contain data they will be used in later phases as normal Petri net
places and denoted on pictures by normal border. The next 6 items (Fig.10) are
also of type 1 and have assigned consecutive integers — their identifiers will be
used as handles. These are handles representing proto-types of the atoms, from
which the net will be built.

The 8 circles from Fig.9 and 10 are data structures. To make their JSON
notation easier to read, we will add a letter "d" to IDs of places, which contain
lists of data tokens, and a letter "l" to IDs of handles which contain lists of
references to objects, also referred to as links.

Once we define objects, which are parts of the net, we must initialize the
computer memory to run the system. For this we need two phases.

3.1 Phase 1

We start with defining proto-class H, whose objects are proto-types of the atoms.
The atoms themselves will be created in phase 2. The class H has 4 attributes,

116 PNSE’19 – Petri Nets and Software Engineering

Name Code

{ "p" : 1, "o" : 3,
 "d0" : ["Code"] }

{ "p" : 1, "o" : 2,
 "d0" : ["Name"] }

Fig. 9. Atoms

Place

{ "p" : 1, "o" : 4,
 "l1" : [2], "d0" : ["Place"] }

{ "p" : 1, "o" : 6,
 "l1" : [2,9], "d0" : ["Process"] }

{ "p" : 1, "o" : 9,
 "l1" : [2,3,7,8], "d0" : ["Transition"] }

{ "p" : 1, "o" : 5,
 "d0" : ["Control_Place"] }

{ "p" : 1, "o" : 7,
 "l1" : [2,4,5,6], "d0" : ["In_Arc"] }

{ "p" : 1, "o" : 8,
 "l1" : [2,4,5,6], "d0" : ["Out_Arc"] }

Process Transition

Control_Place

In_Arc

Out_Arc

Fig. 10. JSON description of atoms

as in Fig.8–10. The basic brick is a list of JSON pairs (key, value). This can be
done in any object oriented language. We have chosen C++ as our language of
implementation.

In the first phase we define all the basic entities (Fig.9 � 10). We enumer-
ate them as indicated in the figures. They are encoded in a JSON format and
correspond to objects from Fig.2. We decided to use JSON just to facilitate read-
ability of the object properties by humans. We begin with defining the primitives.
There will be 8 basic bricks: Name, Code, Place, Control Place, Inarc, Outarc,
Transition and Process.

For instance the Place has only one field name and Process two fields Name,
Transition. The other basic classes are generated analogously.

final

object_id

object_body

Object

Fig. 11. Wrapper: Object

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 117

final

object_id

Lock

Lock

Fig. 12. Wrapper: Lock

finalnext_object_id

GenID

Fig. 13. Wrapper: GenID

3.2 Phase 2

Since we have decided to use C++, we generate in Phase 1 header files, which
correspond to the the basic classes. After having generated the header files, we
have tools for defining 6 basic processes (atoms) corresponding to components
of a Petri net.

Below we present an example of defining process Place using tools which we
made in Phase 1. As we can see on Fig.2 process Place consists of 5 objects:
the handle (thick place), place "Name", transition "final", In Arc "name" and
Out Arc "Place"(handle).

Under the net we present its JSON notation.

3.3 API examples

All the codes of phase 2 create objects necessary to generate the processes of
phase 3. The JSON description of the objects provides full information neces-
sary to build the atoms and molecules of the system. For example the process
Place (Fig.2) consists of 5 objects: Place(Name), Inarc(name), Outarc(place),
Transition(final) and Process(place). Similarily other 5 processes (Control place,
Process, Inarc, Outarc, Transition) will have got the JSON code as a result of
executing phase 2.

Phase 3 will be the normal run of a system. We need a process which will
animate the processes.

118 PNSE’19 – Petri Nets and Software Engineering

The next step will be defining a process to run the transitions. We will call
this process Kernel (Fig.14).

Each process in our model (excluding Kernel), in particular the 6 basic bricks,
can be animated with the help of the process Kernel (Fig.14). In the API it means
that we can call not only the transitions defined inside the process, but also the
transitions of the Kernel (in C++ we exploit the inheritance).

For example the process Place has transitions (methods), which have not been
yet defined (edit, set, destroy. . .). They do not belong to the process Place, but
to the process Kernel. which is the central concept of the whole approach. This
process will be executing the transitions, so running the whole system, being the
sentinel of the whole model.

Each process of phase 3 in its API inherits from the class Kernel. We construct
the process Kernel analogously to other processes, satisfying the structure from
Fig.14.

The process Kernel, mentioned above, contains the life cycle of every ob-
ject, which is an effect of process activity. The Kernel starts its execution by
recognizing the process by its name taken from the place process name, whose
name resides in the place Name of the process. It executes the transition start,
which just initiates the whole run. Start has two outcomes. The first of them is
creating a token to activate the transition close. In general there will be many
such transitions, allowing closing the run at any moment. The second one is
activation of the transition create or get. Transition create makes an empty
object of the chosen process.

On Fig.11 we have a process of accessing objects with given id. The transition
final copies the content of its place object id to its handle. The Kernel will be
able to copy the content of place object body of the process Object to the place
object body being an output place of the transition get.

The transition get in Kernel has object id as input and has an access to the
database of objects. It finds in the database an object whose identifier (object id)
is in its handle Object and the content of this found object (object body) is
deposited on its place object body, as in Fig.11. The transition get of the
process Kernel copies the content of the place object body from the process
Object to the place object body in Kernel.

Analogously the database functions Lock and GenID (Fig.12 and 13) will
be implemented. The first of them locking the object for editing, and GenID
generating a unique identifier.

– All its transitions are written using API of the phase 3 and describe the
behaviour consistent with the model defined before.

– Dashed handle place means that the objects of the process Kernel are never
stored (they are temporary) and disappear once the process is finished.

– Filled (grey) places are control places (ControlPlace)
– Double-sided arrows mean inarc and outarc connecting a place and a tran-

sition.

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 119

Ke
rn
el

fin
al

fir
e

ed
it

se
t

Pr
oc
es
s

Tr
an
sit
io
n

pa
ra
m
s1

ob
je
ct
_b
od
y

cr
ea
te

de
st
ro
y

st
ar
t

ge
t

ob
je
ct
_i
d

pa
ra
m
s2

sa
ve

O
bj
ec
t

Lo
ck

Ge
nI
D

cl
os
e

cl
os
e

cl
os
e

cl
os
e

cl
os
e

re
st
ar
t

Fig. 14. Kernel

120 PNSE’19 – Petri Nets and Software Engineering

– Special processes are
• Object — wrapper for database access with the key object id and place
object body, in which we keep the body of the object in JSON format.

• Lock — wrapper for a blocking mechanism, which locks an object with
given object id for editing.

• GenId — wrapper for generation of unique identifiers, being consecutive
integer of a number kept in the place next object id.

The transitions get and create are mutually exclusive. The transition create

uses GenID to generate a unique identifier. It gets the process identifier and
writes the JSON header (the properties “o” and “p”) to being properties o to
object body. So far only these two header values are known for this process.
All these wrappers can be implemented in any way, because only Kernel uses
them. They are rather technical details. In the following we refer to phase
3, which will be defined in the next chapter. The recursive nature of the
bootstrap requires the assumption of existence of a working engine, which is
currently being defined.

– The codes of transitions are texts written as if the phase 3 has already been
compiled.

– We assume that the system processes (like Kernel) are generated differently
than all the other ones. They are not run by Kernel and keep data directly
in the C++ variables. When the object is completed, they disappear. The
codes of transitions of such processes are just copied to the generated APIs.
Our 6 basic objects in phase 3 will inherit the properties from Kernel.

– The process Process has an API generator in its code. Basing on the name of
a process it decides, whether the API code should be generated or inherited
from the class Kernel. All the processes except Kernel, will inherit from
Kernel.

4 Phase 3

We come to the phase, which will become later a normal system behaviour (the
loop in Fig.16). We are now in a model, which can compile itself. On Fig.15 we
have an interpreter of the system. The header files of the 6 basic molecules (solid
places) and Kernel are ready to use.

4.1 Bootstrap

Although the final code of the system could be created independently, so result-
ing in the final loop of Fig.16, we decided to create it step by step, using the two
phases in order to comply with the model itself. We believe that such approach
gives additional confidence that the result is compliant with the model and no
logical errors has been introduced.

Whenever we wish to update the system and extend it adding some new
properties, and changing its design, we need to be sure that it is consistent. Our
solution is the bootstrap, so we will compile the system itself. The phases of the
bootstrap are:

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 121

Engine

interpreter

In_Arc Out_Arc

TransitionProcess

Control_Place

Place

Kernel

Fig. 15. Engine

– When the process Engine (Fig.15) is run, we substitute the folder with header
files by a new one — initially empty — to let Engine create itself from the
scratch. The new files *.h will be stored there.

– The script (with the desired changes) containing instructions building the
system (almost the same as in phase 2, except that the transitions final are
executable codes) is given as input. We assume here that a new version of
the system is generated. It will differ from the previous version because the
changes made, but yet another run of the same script will produce identical
output.

– The newly generated header files *.h are stored in the new folder.
– The system is recompiled and restarted using the new header files
– The same script is provided for input once again.
– If the header files are identical as the ones just generated in the new folder,

it means that we have successfully introduced the changes and our system
is a Quine [3] (a self-reproducing program).

The basic advantage of bootstrap is that it verifies the model itself. Once it
produces itself as an output, we have a certificate that no internal error has been
introduced.

The other advantage is that we can use the methodology of that model by
means of bootstrap in any Turing complete language or machine (not necessarily
being C++, as it is in our case) e.g. Solidity on Ethereum Virtual Machine [9].
The only change will be seen in the language in which the low-level final code
and API shape would be different but the framework will be identical.

122 PNSE’19 – Petri Nets and Software Engineering

1.1 definition of class H

1.2 instantiation of 8 basic bricks

1.3 generator of the C++ code,
 definitions of API of Phase 2

C++ Interpreter 2.1 API of Phase 2

2.2 construction of 6 basic processes

2.3 construction of the process Kernel

2.4 generator of the C++ code,
 definitions of API of Phase 3

C++ Interpreter

3.1 API of Phase 3

3.2 generator of the C++ code,
 definitions of API of Phase 3

using API of Phase 3 (firing transitions)

C++ Interpreter

BOOTSTRAP

Fig. 16. General scheme

5 Our Experience with the Model

The first version of the model described informally was presented in [1] in the
form of DCN (Directed Control Net). We have successfully deployed a few inter-
nal business systems based on the prototype of our approach. The prototype —
though not completely bootstrapped — fully implements the described model.
It allowed us to test its practical properties and confirm the most important
advantages.

5.1 Positive experience

An application developed using this model is well structured. It is easy to see the
relationships between processes and it’s easy to understand the structure and

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 123

intended purpose of a process. The code is limited in scope to its transition’s
inputs and outputs. This makes returning to old processes and transition codes
easier for maintainers. It also facilitates introduction of new programmers to the
project, as they have good overview of the structure and simple pieces of code
to work with.

The structure of an application made using the presented model and the
fact that data is kept in places following its structure, allows for simple SQL
modification that navigates the data structure using dot notation instead of
joining tables. This in turn enables programmers to focus on the structure of the
process and avoid expressing relationships between data structures using SQL
notation. Having metadata implemented with the same model, makes it easy
to use the same modified SQL queries to find properties of the application. We
can for instance specify, using the net structure, which processes are mutually
dependent, or which transitions are allowed to edit objects of the given process.
This provides detailed information on the impact that a change made to a process
has in the whole application, thus allowing for changes to the application to be
made quickly and safely.

What makes our approach useful is the bootstrap, which allows transferring
any software written in our system to other platforms. It suffices to encode the
phases 1 and 2, and the rest of the system complies itself. These two first phases
are indeed very simple and programming them should consume very little time.

The fact that data is kept in places and relationships between processes
are readily visible makes finding the origin of object data straightforward. The
data can only be written as an effect of running the process that contains the
places and that process can only be run according to the model. On top of that,
versioning of objects provides a change log that, combined with the model, allows
to precisely retrace steps taken by the user to write the resulting objects. This
is very helpful in tracking down errors in the application which result in writing
data that is flawed from a user’s perspective but not excluded by the application.
In such cases we can see the whole process that leads to writing of unwanted
data and can explain it, so that the solution is agreed upon by the client. This
method of finding the origin of object data is also useful for finding out that the
flawed data was entered by a user, which usually means there is a need for some
optimization in the user’s interface so that they are able to better understand
it.

The most natural database structure compatible with the model we found
was simple ORM (Object Relational Mapping) with support for versioning. Pro-
cesses are represented with Tables which contain objects with data in Places rep-
resented with Fields and few special Fields like object id and version id. Every
table containing objects and all corresponding versions constitute an immutable
history of the system including the evolution of its metadata.

Characteristics of the resulting database structure with its immutable history
of objects appear compatible with the concepts like LevelDB, MVCC (Multi Ver-
sion Concurrency Control), WAL (Write Ahead Logging) and blockchain [7],[8].

124 PNSE’19 – Petri Nets and Software Engineering

5.2 Future Work

During our journey with the deployment of a few internal business systems we
have observed the rise of a strange idea called "blockchain". It was first popu-
larized at scale by the Bitcoin project which was the world’s first decentralized
crypto-currency and a system which successfully introduces a concept of Byzan-
tine Fault Tolerant Consensus. It means that the Bitcoin system by its protocol
produces one version of history of transactions which every participant in the
Bitcoin network agreed upon.

Bitcoin transactions are more then just an entry in distributed ledger. They
contain simple programs written in a special programming language called Script,
which is not Turing complete. This limitation is made on purpose because simple
system provide better level of security. Early developers of Bitcoin soon real-
ized, that this limitation is bad, because it limits very important applications of
Blockchain technology in ex. financial markets.

This was the beginning of the Ethereum Platform which run programs called
Smart Contracts in a decentralized way like in Bitcoin protocol, but the language
in which they are written is Turing Complete.

Assuming that we have found the right model for the implementation of
internal database systems using workflows and observing the fact that the re-
sulting database is very similar to ones used in blockchain platforms we expect
that our model could be very useful for smart contracts programming. At the
time of writing the most popular blockchain platform using Smart Contracts is
Ethereum [9].

We can establish hypothetical mapping between the presented model and the
one used by Ethereum platform:

– System = DApp (Decentralised Application),
– Process = Smart Contract,
– Object = Transaction,
– Transition = Method of Smart Contract,

Places and Arcs limit the data access of Methods and define partial order of
their execution.

We can translate our model by means of bootstrap to any Turing complete
language or machine e.g. Solidity on Ethereum Virtual Machine. Systems consist-
ing of SmartContracts written in compliance with the Model can be formally an-
alyzed by known Petri Net methods. It can significantly improve quality of Smart
Contract code and eliminate many errors which in the domain of Ethereum plat-
form, can cost large amounts of money. In his book [8] Andreas M. Antonopoulos
diagnoses a fundamental problem with the Ethereum platform: “One of the big
challenges facing developers in Ethereum is the inherent contradiction between
deploying code to an immutable system and a development platform that is still
evolving. You can’t simply "upgrade" your smart contracts. You must be pre-
pared to deploy new ones, migrate users, apps, and funds, and start over.[. . .]
Ironically, this also means that the goal of building systems with more autonomy

Chrząstowski-Wachtel et.al.: Petri Meta-Compiler - a Recursive Approach 125

and less centralized control is still not fully realized.” We suspect that the prob-
lem is unsolvable without a right model directing expressive power of a Turing
Machine in a productive way. We believe that the model proposed in this pub-
lication is fitting for Smart Contracts and can get traction in the future along
with growing importance of Smart Contracts and Blockchains platforms.

6 Acknowledgements

The authors express gratefulness to an anonymous referee, whose comments
helped to improve the paper substantially.

References

1. T. Wójcicki, M. Doleżek "System and method for specifying and implementing IT
systems" United States Patent US8423580B2 Apr. 16, 2013

2. Schorre, D. V. [1964]. "Meta-II: a syntax-oriented compiler writing language" Proc.
19th ACM National Conf., D1.3-1 - D1.3-11, [1964].

3. David Madore "Quines (self-replicating programs)" [online]
http://web.archive.org/web/20190102192930/
http://www.madore.org:80/⇠david/computers/quine.html

4. Piotr Chrząstowski-Wachtel, Boualem Benatallah, Rachid Hamadi, Milton O’Dell,
Adi Susanto: A Top-Down Petri Net-Based Approach for Dynamic Workflow Mod-
eling. Business Process Management 2003: 336-353 [2003]

5. van der Aalst,W., van Hee, K.,Workflow Management: Models, Methods, and Sys-
tems, MIT Press [2004]

6. Jan Mendling, Hajo A. Reijers, Marcello La Rosa, Marlon Dumas, Fundamentals
of Business Process Management, Springer Verlag [2013]

7. Nakamoto, Satoshi (31 October 2008). "Bitcoin: A Peer-to-Peer Elec-
tronic Cash System". [online] http://web.archive.org/web/20100704213649/
http://www.bitcoin.org/bitcoin.pdf [2008]

8. Andreas M. Antonopoulos "Mastering Bitcoin" O’Reilly Media, Inc. 2014-12-01
First release, [2014]

9. Buterin. V. "A Next-Generation Smart Contract and Decentralized Applica-
tion Platform" https://web.archive.org/web/20140723210954/www.ethereum.org/
pdfs/EthereumWhitePaper.pdf [online] [2014]

10. Andreas M. Antonopoulos "Mastering Ethereum" O’Reilly Media, Inc. 2018-11-13
First release, [2018]

126 PNSE’19 – Petri Nets and Software Engineering

