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Abstract. Over the last four decades, the study of academic performance in 
higher education has increased its number of information sources to understand 
phenomena such as student achievement or dropout. The first econometric 
models in the field commonly used student characteristics, pre-college 
achievement, and college performance. Then, a large range of psychosocial the-
ories, with its respective instruments (typically questionnaires), added a new 
layer of analyses that complemented previous models. Recently, colleges and 
universities have dramatically expanded their capacity to capture student data 
through different systems. Such is the case of the learning management systems 
(LMS), which provide dynamic and a large amount of data about student online 
behavior. We are just beginning to explore how these layers of data come to-
gether to explain academic performance. In this study, we seek to understand 
and model these layers of data from a first year cohort at a large engineering 
school in Chile (784 students). First, we use support vector regressions to model 
second semester GPA on student characteristics, pre-college data, first semester 
grades, and online behavior. We then added to the model information extracted 
from the LEARN+ questionnaire, a psychosocial instrument that profiles differ-
ent learning approaches (i.e., surface, strategic, and deep) and environmental 
perceptions. The results indicate that both online behavior and LEARN+ data 
increase prediction power. In addition to first semester performance, the fea-
tures that seem to explaining academic achievement in the second semester to a 
significant extent are the LMS interaction distribution over the semester, per-
ception of applied knowledge, and the score in the science score in the national 
admission test. These results are important for first year engineering, since in 
this field first year performance has long lasting effects on future persistence 
and achievement. 

Keywords: Learning Analytics, First-year Engineering, Support Vector Ma-
chine, Learning Approaches, Online Behavior. 
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1 Introduction  

How students’ individual characteristics, behaviors, and previous academic perfor-
mance influence future achievement and other college outcomes is an old quest in 
higher education (Pascarella & Terenzini, 2005). Recently, this quest has become 
more comprehensive as management systems grow in complexity and the capacities 
for data analysis increase in colleges and universities. In this article we combine three 
types of datasets in order to explore how they complement to each other and how 
much information they add to our knowledge about student learning and achievement.    

Traditionally, research on academic achievement in higher education has fo-
cused on outcomes such as dropouts and retention rates (Pascarella & Terenzini, 
2005). This literature often discusses the impact of individual characteristics—e.g., 
gender, race, socioeconomic background—and institutional factors—school size, 
discipline, selectivity—(DesJardins, Ahlburg, & McCall, 1999) on persistence. Schol-
ars have also proposed multiple non-observable factors for analyzing dropout and 
retention. Among the most influential perspectives are the dropout model of Bean and 
the integration process of Tinto. Bean (1982), relying on studies of organizational 
rotation, found that intentions to leave, academic performance, and instrumental val-
ues are the most important factors in predicting dropout. Based on tribal studies, Tinto 
(1988) proposed that institutional integration—during the first year, in particular—is 
key to understanding persistence. Despite some recent criticism (e.g., Núñez, 2004) 
these theoretical frameworks continue to be widely used in the United States and in 
many other countries. Quantitative studies model these frameworks through econo-
metric techniques that use national and institutional data registered at an annual or 
semester base (e.g., DesJardins et al., 1999; Cabrera, Burkum, & La Nasa, 2005).  

As the “granularity” of student data gets smaller, practitioners and scholars 
have moved beyond dropout and retention to create early warning (e.g, Celis et al., 
2015) and recommendation systems to all students. Moreover, not only academic 
records are rapidly captured, but also a wide range of interactions with technology 
systems, from the now ubiquitous learning management systems (LMS) to college 
cards swiped around the campus to sensors and application logs located in labs or 
electronic textbooks. The research fields where many of these new analyses converge 
is called learning analytics. Learning analytics is a fairly new area of research that 
uses mathematical and computing tools to analyze educational data generated by the 
interaction between students and multiple platforms that universities use for support-
ing learning processes (Larusson & White, 2014; Romero et al., 2008). Among the 
learning analytics’ common tasks are classification, clustering, text mining, and visu-
alization (Romero & Ventura, 2010). What data platforms, and under what mathemat-
ical technique are key questions for explaining student academic achievement.  

In addition to the systems that capture student achievement and behavior, 
higher education scholars have also used psychosocial models to explain different 
aspects of college learning. In this area, there is a wide spectrum of theoretical con-
structs, from those that consider psychological treats as grit or early attachment 
(Lavy, 2017) to those who are developed through academic experiences, such as self-
regulated learning (Zimmerman, 1990) and self-efficacy (Bandura, 1977) to those that 
are shaped through continuous interaction with the institutional environment such as 
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learning approaches (Marton & Saljo, 1976). Multiples studies have shown that these 
frameworks explain to some extent students’ academic achievement (e.g., Campbell 
& Cabrera, 2014). Although there are some recent efforts in this line (e.g., Ellis, Han, 
& Pardo, 2017), there is still much room for exploring how these theoretical lenses 
perform or improve student achievement models that includes big data analysis, such 
as those in LMS. In this study, we analyze how the learning approach framework 
(Marton & Saljo, 1976) informs a model based on individual characteristics and 
online behavior in the context of a large engineering school.    
  
1.1 First-Year Engineering  

Authors who focus on engineering programs have depicted how multiple individual 
characteristics influence academic achievement. In particular, previous academic 
achievement is frequently reported as a significant predictor of future performance 
(French, Immekus, & Oakes, 2005). However, in some engineering schools, its pre-
dictive capacity is rather modest (Besterfield-Sacre, Atman, & Shuman, 1997). More-
over, as discussed before, the increasing need for early warning systems and accurate 
models for predicting performance have pushed the exploration for additional sources 
of information. Therefore, other factors have been closely investigated. Blumner and 
Richards (1997) collected study habits data from first-year students at a selective 
engineering school. Taking into account previous academic abilities, they found that 
students with greater GPA declared more inquisitiveness (i.e., deep learning strate-
gies) and less distractibility (i.e., low concentration when working on a task) than 
their less successful peers.  

Another venue of intense research is non-cognitive traits, with mixed results. 
French et al. (2005) found no difference between students’ motivation and institution-
al integration on cumulative GPA. On the other hand, Vogt (2008) found a positive 
correlation between self-efficacy and engineering students’ GPA. Scholars have also 
asked for the influence of race and gender. Interestingly, despite the fact women are 
underrepresented in engineering, they often report greater GPA than men (French et 
al., 2005). Vogt, Hocevar, and Hagedorn (2007) found that women in engineering 
exerted more effort and were more likely to ask for academic help than men. 

In engineering and other STEM fields, the first year is particular important. 
For instance, academic achievement has a greater effect on persistence in first year 
than in the subsequent ones (Pascarella & Terenzini, 2005). Similarly, factors such as 
self-efficacy and approaches to learning are strongly shaped in the first-year of studies 
(Felder, Felder, Mauney, Hamrin, & Dietz, 1995; Marra, Rodgers, Shen, & Bogue, 
2009; Meyer & Marx, 2014). Thus, institutional and research efforts for understand-
ing how different factors influence first-year academic achievement in engineering 
are key for increasing persistence and better outcomes for future engineers and other 
STEM workers. Our study focuses precisely on first-year engineering at a large and 
selective school in Chile. 
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2 Conceptual Framework 

In the previous section, we discussed literature on the influence of individual charac-
teristics, online behavior, and psychosocial treats on academic achievement. In this 
study, we explore these three areas on the particular setting of first-year engineering. 
Next, we describe the key variables in each of these areas, presenting how they have 
been conceptualized by previous research.   

2.1 Personal Characteristics and Academic Achievement 

In engineering and other STEM fields, student previous academic achievement is the 
most significant factor for explaining future ones (Pascarella & Terenzini, 2005). 
Previous achievement can be divided in two kinds: precollege achievement and ac-
cumulated GPA during college. In Chile, pre-college achievement is usually meas-
ured by the national admission test scores (PSU in Spanish for Prueba de Selección 
Universitaria) and high school GPA and Ranking. During college, the grades in any 
semester are the best predictor for the following one.  
 Another important factor for predicting academic success and in particular 
persistent is student socioeconomic background (DesJardins et al., 1999). Students 
from less advantages families or environments often have a harder time socializing 
and creating future perspective on professional engineering. For instance, in Chile, 
Celis et al. (2015) found that among the students with risk of falling on probation, 
those coming from private or subsidized schools had greater chance of overcoming 
this risk than their counterparts from public high schools. In the Chilean highly segre-
gated school system, school character is a good proxy for socioeconomic background, 
with public school serving the less advantaged population. Finally, another important 
aspect in engineering schools is gender, since this corresponds to a traditionally male 
dominated field (Marra et al., 2009). Even though women are usually underrepresent-
ed in engineering fields, those who persists show a certain academic advantage over 
their male counterparts (Celis et al., 2015). 

2.2 Online Behavior 

Currently, most colleges and universities support courses by means of digital online 
resources, such as: delivery of electronic educational resources, support of interactive 
environment, and LMS (Cavus & Zabadi, 2014; Graham, 2006). As a result, a large 
amount of student data has become available (De Freitas et al., 2015; Ferguson, 2012). 
Regarding LMS, researches have used different techniques for estimating online activ-
ity, such as frequency measures, like total count on each type of LMS interaction; 
measure of student’s distribution related to the amount of interactions on each online 
activity, like the mean, median, standard deviation, center mass or skewness; time 
spent on a particular action; time of first log-in; time on-task, among others (Jo, Kim, 
& Yoon, 2015; Joksimović, Gašević, Loughin, Kovanović, & Hatala, 2015; 
Kovanović et al., 2015b, 2015a; Michinov, Brunot, Le Bohec, Juhel, & Delaval, 2011; 
You, 2016) 
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Another way to examine distributions of online activities is entropy measures. 
Among this type of variables, there exists the Shannon entropy, the Gini coefficient or 
the Atkinson’s index (Harris et al., 2009; Kelleher, Mac Namee, & D’Arcy, 2015; 
Pena-Ayala, 2017). Thus, in order to capture different types of online activity patterns 
by a particular student, it is possible to include more understandable entropy estima-
tors. These are: the participation ratio (RP), which gives a rough estimate of the num-
ber of the effective weeks in which the student’s online interactions differ markedly 
from zero (Kramer & Mackinnon, 1993); and the compact index (Skokos, Krimer, 
Komineas, & Flach, 2009) which measures the sparseness of a particular online activi-
ty distribution over the semester. 

Finally, researches has found that certain students’ behaviors in a LMS can be 
associated with academic achievement (Asarta & Schmidt, 2013; Fritz, 2011; 
Michinov et al., 2011; Strang, 2017) and student engagement (Hart & Ganley, 2017; 
Howard, Meehan, & Parnell, 2018). In general, these studies found that those students 
who have higher levels of online activity are more likely to present higher course 
grades, whereas students who have lower levels of online activities are more likely to 
present lower course grades with respect to their peers. 

2.3  Learning Approaches   

The approaches to learning theory (Marton & Säljö, 1976) is among the most influen-
tial framework in the field of student learning research. This framework (developed 
latter by multiples researchers such as Ramsden, 1979) suggests that students ap-
proach learning in three distinctive ways: surface, strategic, and deep. These learning 
approaches are shaped in each student according to his or her personal characteristics 
and interactions with the institutional context, such as peers and teaching.  Surface 
learning is associated with memorizing and repeating content and with studying for 
the test. Deep learning refers to understand the meaning of the subject matters, relat-
ing them with previous knowledge, and associating theory with practice. Strategic 
learning occurs when students organize their effort (between surface and deep ap-
proaches) in order to obtain the best possible grade. 
  Usually, these approaches are obtained through self-reported questionnaires. 
Previous research is mixed regarding the learning approached effects on academic 
achievement. Some scholars have found that surface and deep approaches are related 
to poor performance and to high achievement, respectively (Matthew, Ellis, & Taylor, 
2011; Rytkonen et al., 2012). In the same way, Campbell and Cabrera (2014) found 
that surface learning is not necessarily related to better academic achievement.  

3 Methods 

3.1 The Setting 

The School of Engineering and Science at the Universidad de Chile (FCFM) is a se-
lective academic unit, which receives the best students in the nation. FCFM has nine 
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engineering and three science undergraduate programs, as well as a geology program, 
and about 5,000 undergraduate students. Each year, FCFM receives an entry cohort of 
approximately 800 students. All FCFM students enroll in a common core program in 
their first two years of school and take the same courses in the first semester: intro-
ductions to calculus, algebra, Newtonian physics, engineering, chemistry, and compu-
ting tools for engineering and science. Approximately 30% of first-year students fail 
at least one course. In the last two decades, FCFM has implemented several strategies 
and actions for improving students’ retention and academic performance. For in-
stance, promoting active learning, improving infrastructure for student life, and 
launching specialized units to support students’ academic achievement and wellbeing. 
Currently, first year’s retention rates are close to 95%. 

3.2 Data Collection and Sampling 

Among the vast types of LMS—such as Moodle, Sakai, Desire2Learn or Can-
vas—this study addresses a particular one, namely, U-Cursos. This LMS was devel-
oped and launched at the Universidad de Chile in the 1990s. At first, it aimed to sup-
port engineer students, and now, it has expanded across other schools and Chilean 
institutions. Regarding U-Cursos usage, there are many online activities recorded in 
its log files. These U-Cursos activities reflect different types of students’ operation: 
download files, upload files, assessments tasks, forum topic response, message read, 
to mention a few. These activities create a pattern of usage that might change as a 
student advances through the semester. So, in order to account for differences in in-
structional conditions across courses, general LMS categories are needed to be deter-
mined before data are merged (Gašević, Dawson, Rogers, & Gasevic, 2016). We en-
capsulate the large amount of U-Cursos online activity into five categories. Student 
activity related to accessing course contents are encoded as Academic Content. Simi-
larly, Administrative Content refers to students’ access to information related to sylla-
bus or other course’s rules. On the other hand, Read and Write Comment categories 
focus on both reading communications and writing or filling out information through 
the LSM, respectively. Finally, activities that involve operations to access to online 
test/questionnaires within the LMS are related to Test category. In this study we used 
the log files of the entire 2017 first-year entry cohort. 

The data corresponds to students who in 2017 took first year courses (e.g., 
calculus, linear algebra, and physics), bringing 1,090 in the first semester and 871 in 
the second. In order to incorporate academic performance in the model, we are going 
to analyze students with information in both semesters. For this study, we define a 
normalized GPA (z-score) as the academic achievement variable. We predict second 
semester z-score, considering the first semester z-core as previous achievement and 
the variables defined above (see conceptual framework section). Then, the students 
who answered the LEARN+ questionnaire—built to measure learning approaches—
are 478 from where 296 did it their second semester. The final dataset corresponds to 
the subset of these 296 students. Below, Table 1 and Table 2 show the descriptive 
statistics between the original dataset and the subset for categorical and continuous 
variables, respectively.  
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Table 1. Descriptive statistics for categorical variables. The first dataset corresponds to all the 
students and the subset to those who completed the LEARN+ questionnaire.1 Regular admis-

sion refers to those admitted via PSU test. The admission types for students who were admitted 
through a different via (e.g., sport, equity access) were classified as Boundary or Special if they 

either had similar or lower scores in the PSU test than the regular ones, respectively. 

Category: Gender Dataset (%) 
(N=827) 

Subset (%) 
(N=296) 

Male 71.38 66.78 
Female 28.62 33.22 
Category: Admission Type1   
Regular 88.80 85.71 
Boundary 7.59 9.30 
Special 3.62 4.98 
Category: School Type   
Private 41.56 40.20 
Subsidized 34.44 32.56 
Public 23.99 27.24 

  

Table 2. Statistics for continuous variables. The 1 dataset corresponds to the full dataset (all 
students) and the 2 to the Subset of those who completed the LEARN+ questionnaire. The 

means and SD reported for the LMS variables represent the means and SD of each estimator 
based on students’ weekly interaction distributions.    

Variables  Mean 1* Mean 2* SD 1* SD 2* 
GPA  6.519  6.528  0.217  0.228  
GPA Ranking 775.764  779.811  64.688  60.720  
PSU: Maths 737.851  742.814  117.317  109.091  
PSU: Language 666.956  673.066  115.379  108.816  
PSU: Sciences 697.030  704.907  113.472  107.516  
Enrolled credits   21.613  23.023  4.767  2.372  
Failed credits  4.447  4.286  5.793  5.719  
LMS: academic content  318.042  319.789  204.980  180.542  
LMS: administrative content 7.896  7.595  9.401  8.497  
LMS: write comment  32.589  34.505  28.460  29.203  
LMS: read comment  598.486  654.140  396.869  374.057  
LMS: Mass Center  -0.085  -0.093  0.129  0.095  
LMS: Skewness  0.469  0.335  0.642  0.435  
LMS: Mean  48.055  50.918  25.678  23.051  
LMS: Standard deviation   34.969  36.219  15.809  14.430  
LMS: Compact Index  0.811  0.865  0.402  0.362  
LMS: RP  0.417  0.442  0.121  0.095  
z-score (2nd semester) 0.000  0.216  1.214  0.990  
z-score (1st semester) 0.191  0.411  1.443  1.241  
 



8 

3.3 Analysis  

Support vector machines are a family of algorithms for classification, regression and 
outliers detection developed in the nineties at AT&T Bell laboratories by Vapnik and 
co-workers (Smola & Schölkopf, 2003). These algorithms have some advantages over 
linear regression, for example they are memory efficient, effective in high dimension-
al spaces and when the number of dimensions is greater than the number of samples, 
and also when there are issues of multicollinearity, among others. In the case of re-
gression (SVR) the mathematical formulation corresponds to an optimization problem 
of find 𝛼 and 𝛼∗.  

Maximize   − !
!

𝛼! − 𝛼!∗ 𝛼! − 𝛼!∗ 𝑘 𝑥! , 𝑥!!
!,!!! − 𝜀 𝛼! + 𝛼!∗ + 𝑦! 𝛼! − 𝛼!∗  !

!!!
!
!!!  

Subject to    𝛼! − 𝛼!∗!
!!! = 0    and     𝛼! ,𝛼!∗ ∈ [0,𝐶]     (1) 

Where each x, y contain the students attributes and output variable respectively. These 
algorithms have also the versatility to use different kernel functions k, which is ideal 
for nonlinear problems. The parameters ε and C are from the model and define respec-
tively the soft margin of the loss function and the trade-off between the flatness of the 
model and the amount up to which deviations larger than ε are tolerated. Finally, the 
model can be obtained with equation (2). Where 𝑏 is the interception of the model.  

 𝑓 𝑥 = 𝛼! − 𝛼!∗ 𝑘 𝑥! , 𝑥 + 𝑏!
!!!  (2)  

In our analysis the SVR determines the second semester z-score to under-
stand the student academic performance at the end of the first year. We used SVR 
instead of linear regression because of two reasons. First, since some of the data can 
be contaminated with human error, a model with a soft margin in the loss function can 
be an improvement to avoid noise. Second, the data was collected without an experi-
mental design and there could be strong correlations between variables that enter in 
the regression bringing issues of multicollinearity, which does not arise in SVR. Since 
we want a first approach to understand the academic performance, which mostly de-
pends linearly on the variables, we are going to use a linear kernel. We used Scikit 
Learn, a Python library, for the implementation of SVR. 

4 Results 

We computed three SVR models to understand how each block of data adds explana-
tory power in predicting first year academic performance (See Table 3). In general, 
we found that including LMS online behavior data improves explanatory power, con-
siderably. However, when we add the LEARN+ variables the contribution is minimal. 
In all models past performance, 1st semester z-score, is the best predictor for first year 
GPA. Student’s high school GPA ranking has also relative importance. Interestingly, 
this influence decreases as we include LMS variables.  On the contrary, the influence 
of PSU Science increases. Regarding LMS activity, LMS standard deviation, which is 
base on weekly activity, and center mass have the most significant influence in the 
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models. The former indicates that the more variation in weekly activity (e.g., weeks of 
intense work and other with low activity), the more likely to achieve a better grade at 
the end of the year. The latter has a negative sign, which indicate that the larger the 
center mass is, the less likely to obtain a better grade. Center mass is based on the 
semester activity, and a large value indicates a students that concentrate activity to-
wards the end of the semester. Also, LMS mean has some significance. This variables 
indicates that the more students connects in a weekly based, the best for their grades. 
Finally, LMS read comments and write comments show no significant impact. Of 
note, it is the fact that those students with a higher value on a strategic approach to 
learning are more likely to achieve a successful academic performance than those 
with higher scores on the deep or surface learning. 

Table 3. Results for the importance of each variable in three SVR models, using the subset 
(296 students). Model 1 incorporates pre-college and first semester academic performance 

variables. Model 2 adds online behavior variables. Model 3 adds LEARN+ variables.  

Type Variables  Model 1  Model 2  Model 3  
 z-score (1st semester) 2.196  1.792  1.765  
 PSU: Sciences 0.257  0.492  0.538  
 PSU: Language 0.179  0.041  0.353  
 Enrolled credits 0.348  0.337  0.315  
 Ranking GPA (High School) 0.708  0.288  0.289  
 School Type: Partially Subsidized 0.060  0.064  0.100  
 Admission Type: Regular 0.077  0.095  0.062  
Pre-College & Gender: Male 0.029  0.048  0.046  
1st Semester Admission Type: Boundary -0.077  0.004  0.012  

Grades School Type: Public 0.004  0.016  -0.007  
 Gender: Female -0.029  -0.048  -0.046  
 Admission Type: Special 0.000  -0.098  -0.074  
 School Type: Private -0.065  -0.080  -0.093  
 High School GPA -0.263  -0.010  -0.132  
 PSU: Maths -0.024  -0.051  -0.192  
 Ratio of failed credits (1st semester) -1.126  -0.961  -0.945  
 Standard Deviation     0.590  0.556  
 Mean    0.370  0.279  
 Administrative Content     0.076  0.158  
 RP    0.114  0.141  

LMS Compact Index    0.211  0.017  
 Read Comment   -0.123  0.013  
 Write Comment   0.043  -0.006  
 Skewness    -0.135  -0.031  
 Academic Content   -0.037  -0.242  
 Center Mass    -0.546  -0.507  
 Learning Approach: Strategic    0.312  
 Professor’s teaching    0.293  
 Learning Approach: Deep    0.239  
 Academic freedom    0.225  
 Distance to university      0.151  
 Peer support    0.059  
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 Constructive feedback      0.059  
LEARN+ Learning Approach: Surface     0.007  

Questionnaire First member of the family in the university    -0.017  
 Family support      -0.076  
 Cultural activities    -0.090  
 Learning resources      -0.106  
 E-learning     -0.115  
 Workload     -0.297  
 Age     -0.356  
 Skills     -0.384  
 Mean Squared Error 0.672 0.615 0.607 
 Coefficient of determination 0.320 0.378 0.386 

5  Discussion and Conclusions   

Our findings suggest that student LMS online activity is a relevant factor to explain 
variances in engineering first year student performance. To some extent, student 
online activity works as a sign of perseverance, study methods, and engagement. In-
deed, according to our results, when and how much activity a student had is more 
important than what kind of activity he or she did in the LMS. The LMS variables are 
also useful to understand the enduring relevance of pre-college characteristics. For 
instance, it is interesting to observe the increase of the PSU science (biology, chemis-
try, and physics) relevance in the model. This indicates that when controlling for LMS 
activity and other characteristics, the PSU science score stands out. In the Chilean 
systems, there is large variation in the science content among high schools. Perhaps, 
this part of the PSU test indicates a knowledge base that gives advantages to students 
when controlling for everything else. 
 The LEARN+ variables did not add much information when using LMS 
variables. An overlap between online activity and the psychosocial traits captured by 
LEARN+ might explain this small effect. Nevertheless, the results are consistent 
among them. For instance, the strategic approach is consistent with the LMS stand-
ard deviation. At FCFM, to engage in periods of intense academic activity seems to 
be more beneficial than pure perseverance and constant study work. We can also ob-
serve that the strategic and deep approaches show relatively close prediction power 
as compared to surface approach, which is also consistent with the literature [12]. 
The domain specific subject of the sample might also explain the LEARN+ small 
effect. Engineering students do engage more in online activity. We have some evi-
dence that LEARN+ is significant in other disciplines with less frequency of online 
behavior.  
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