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Abstract. At present, computer programming skills are essential in en-
gineering curricula and professional practice. In spite of this, and after
decades of research in programming pedagogy, academic success in intro-
ductory programming courses continues to be a challenge for many stu-
dents. In this research we explore the feasibility of predicting academic
results in a modular computer programming course in a Chilean uni-
versity (N=242), through measurement of psychometric variables linked
to implicit theories of intelligence, error orientation, and students at-
titudes towards programming. Coincidentally with other recent studies
conducted in Finland and Turkey, early measurement of implicit theories
of intelligence did not emerge as a predictor of academic performance in
the programming course. As for error orientation, students exhibiting
mild measures of an error strain construct did seem to perform better
than students with extreme measures. The variables with the highest
predictive potential were found to be students’ attitudes towards pro-
gramming; namely, their perceived value of programming skills, and per-
ception of programming self-efficacy. Substantial differences were noted
in both latter constructs among male and female students. We discuss
implications of our findings and future research prospects.

Keywords: Predictive Analytics · Computer Programming Course · En-
gineering Education · Psychometric Variables

1 Introduction

Programming skills are fundamental in virtually all branches of modern engi-
neering practice [1]. Therefore, an introductory computer programming course
is commonly taught early in engineering curricula, with the aim that students
become proficient in solving engineering problems with computational tools, in
specialty areas ranging from the most traditional, such as civil and mechani-
cal engineering, to those fully engaged with Information and Communication
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Technologies (ICTs), such as computer science and software engineering. Due to
their high relevance, ICTs in the training of engineers have been acknowledged
as the latest among five significant shifts in engineering education during the
last century [2].

In spite of the relevance of ICT-based tools in engineering education, high
failure rates and attrition are common in programming courses in engineering
schools. In countries such as Portugal and Brazil failure in introductory pro-
gramming courses has been reported to be as high as sixty percent [3]. The
possibility to anticipate which students could have greater learning difficulties
when first acquainted with this discipline, or on the contrary, those who could
be the most talented and successful, has prompted the interest of researchers
and pedagogues for more than four decades. The research community still has
no consensual response to this question.

In this research we explore the influence of various individual characteris-
tics in students’ academic achievement in a first programming course; namely,
Implicit Theories of Intelligence (ITI) [4], error orientation [5, 6], and attitudes
towards learning programming [7]. ITIs are known to influence students’ achieve-
ment particularly in challenging and demanding academic situations. On the
other hand, in learning a new complex skill such as programming, it is com-
mon for students to make mistakes frequently, and mistakes can be complex,
combining several sources of error. Hypothetically, learner’s behavioral response
to errors can influence their learning ability and possibilities to succeed in a
programming course. Lastly, students’ attitudes towards learning computer pro-
gramming can have an important role in shaping their learning experiences. We
set out to explore the predictive potential of these constructs in academic per-
formance, in the context of an introductory programming course for engineering
freshmen in a Chilean university.

2 Factors influencing academic achievement in an
introductory programming course

A fundamental research question of long standing is how best to predict a per-
son’s ability to master computer programming concepts. Attempts to resolve
this question have persisted for more than four decades. Predicting success in
an introductory programming course is difficult partly because of the lack of an
established list of essential programming concepts, and the nonexistence of any
robust instruments for assessing students programming proficiency [8]. Hence,
most researchers in the field relate their findings from diagnostic instruments to
the grades achieved by students in an introductory programming course. While
this can be functional to research goals in each specific educational context, it
hinders comparability among different studies, as well as the generalizability of
research conclusions.

Studies before 1975 tended to explore learners’ demographic background and
past high school achievement. Between 1975 and 1981, prediction attempts were
based on specific Programming Aptitude Tests (PATs), such as IBM’s PAT [9].
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Success with these performance measures was with mixed results. Studies using
linear regression models could not explain more than half of the variance, with
reported R-square values between 11 and 40 percent [10].

Cronan et al. [11] concluded that high school GPA, college GPA, sex, admis-
sions test score in math, music reading, video game playing, size of hometown,
and and prior computing classes in college variables could be used to classify
students into upper or lower performance groups with a high level of accuracy.
Rountree and his colleagues [12] determined the most reliable predictor of success
in a programming course was the grade that the student expected to achieve.

Watson et al. [13] presented an approach for predicting students performance
in a programming course, based upon analyzing directly logged data describing
various aspects of their ordinary programming behavior. The approach could ex-
plain 42.49% of the variance in coursework marks. In spite that these results are
comparable to linear regression models formulated in the 1970’s and 80’s, based
on programming aptitude tests and past school achievement, the convenience of
the log-based approach is that it can be administered in a non-invasive fashion,
through closely logging students’ actions in the programming environment.

Since the late 2000’s, researchers have studied the influence of implicit the-
ories of intelligence in learning programming, inpired by Dweck’s mindset re-
search [14]. Recently, Kaijanaho and Tirronen [15] conducted a study with a
sample of Finnish students, with measurements based on the standard mindset
instrument by Dweck. The authors found no correlation between the students’
mindsets and their course grades, thus concluding that the effects of mindset on
the results of the course are very small. Tek et al. [16], administered measure-
ments of generalized implicit theories and of specific domain in programming
along with measurements of self-efficacy. They constructed a multiple regression
model involving these four predictors. None of the predictors was significant and
the model failed to explain more than 10% of the variance in course grades.

3 Educational Context

The present research was conducted in the Faculty of Engineering and Applied
Sciences at Universidad de los Andes, Santiago, Chile. The freshmen cohort of
2018 enrolled 242 students, 78.1% male and 21.9% female. The Programming
course is compulsory for all engineering curricula, is delivered in face-to-face
format, and is taught for freshmen in the first semester of career study plan,
with a duration of 15 weeks. The course has a modular structure, that is, it
consists of four modules lasting three weeks each, and is organized in successive
time blocks with the same duration. By allocating five time blocks in a semester
it is possible for a student to fail a module in the semester, and in such condition
pass the course without having to re-enroll in the following semester. A student
who has failed to pass all four modules of the course in the first semester may
resume the course in the following semester, starting in the latest module he/she
has not passed. If in the second semester the student fails to pass the course,
he/she starts again from scratch with the freshmen cohort of the following year.
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Table 1. Programming course contents.

Module Topics

1
Introduction to computational problems and algorithms.
Algorithm representation and modeling with MIT Scratch [17].

2
Python: Conditional flow control (if).
Python: Iterative flow control (while).
Python: Functions.

3
Python: String manipulation.
Python: Lists, nested lists and slices.
Python: Looping over collections using indices and iterators (for).
Python: File access.

4
Python: Dictionaries.
Python: Numeric Python (NumPy) [18].
Python: Charts (Matplotlib package).
Python: Introduction to recursive algorithms.

Table 1 summarizes the contents of course modules. Each course module
comprises three weekly lectures, three weekly tutorial activities in the computer
lab, two graded lab assignments, an intensive two-day homework assignment,
and a final exam. The latter has 70% of the weight in the module average, while
lecture attendance, graded lab assignments, and homework account for 7.5%
weight each.

4 Method

4.1 Measurements

Three instruments were administered in the current study, all of which were
available in English and had to be adapted to Spanish. This was accomplished
by following a process encompassing three parallel translations by two profes-
sional translators and the main author of the current paper. The three versions
of the translated items were discussed by the three translators, which resulted
in a consensual Spanish version for each item. Next, each translated item was
back-translated to English and those items which presented inconsistencies were
revised in their Spanish form to better resemble their original meaning. After
the instruments were administered, Exploratory Factor Analysis (EFA) was con-
ducted for each, and internal consistency was computed for every scale. An R
programming environment based on RStudio 1.1 and R 3.4.1 was utilized in all
analyses.

Implicit Theories of Intelligence (ITI) The eight item Implicit Theories
of Intelligence Scale [14] was administered to measure students theories of in-
telligence. The scale comprises four incremental (INC) and four entity (ENT )
theory items and assesses general beliefs about the fixedness vs. malleability of
intelligence.
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Error Orientation (EOQ) The Error Orientation questionnaire by Rybowiak
et al. [5], was developed for measuring how individuals cope with and how they
think about errors at work. The instrument comprises eight subscales measuring
error competence, learning from errors, error risk taking, error strain, error an-
ticipation, covering up errors, communication about errors and thinking about
errors. Of these, only the subscales measuring error competence (ERRC), er-
ror strain (ERRS; i.e., being strained by making errors and therefore fearing
the occurrence of errors or reacting to errors with high emotion), learning from
errors (ERRL), error risk taking (ERRI), and thinking about errors (ERRT )
were adapted to Spanish language and to a general learning context.

Computing Attitudes Survey (CAS) Dorn and Tew [7] published an em-
pirical validation and application of the Computing Attitudes Survey (CAS), an
extension of the Colorado Learning Attitudes about Science Survey [20]. The
instrument measures novice to expert attitude shifts about the nature of knowl-
edge and problem solving in computer science. The fifth version of the instrument
comprises five factors: Problem Solving (Transfer), Problem Solving (Strategies),
Real-World Connections and Problem Solving (Fixed Mindset).

Performance Score (PSCORE) The Performance Score (PSCORE) is a cu-
mulative performance indicator that permits objectively comparing and analyz-
ing students’ progress in the modular course, as in a given time block several
modules can be simultaneously taught. At the end of time block i, and for each
student j, PSCOREij is computed considering the last examination grade EG
obtained by the student j in module k, i.e., EGjk, k = 1...5, with EGjk = 0 if
student j has not yet studied module k, and EGj5 = 1 if the student has passed
all modules (zero otherwise), intended as a score reward. Finally, PSCOREij is
computed as follows:

PSCOREij = log

5∑
k=1

(10k ∗ EGjk

7
)

As the grading system is based on a continuous 1.0 to 7.0 scale, examination
grades are divided by 7.0 in PSCORE calculation to transform them to the
[0, 1] interval. The powers of 10 that multiply this quotient correspond to each
of the modules, and this along with the logarithm applied to the sum ensures
that PSCOREs from students in different modules in a given time block do not
overlap, e.g., we avoid scores from high achievers in module 2 overlapping with
low performers in module 3. We chose to construct the indicator solely relying on
module examination grades, as exams are summative assessments that account
for 70% of the final grade of each module.

4.2 Administration

The ITI and EOQ instruments having a general orientation were administered
in paper format during the first week of freshmen classes. The CAS instrument
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was administered one week after the start of time block 2 (week 4). The number
of responses collected per instrument was 185 for RITI, 185 for EOQ, and 176
for CAS.

5 Results

Implicit Theories of Intelligence (ITI) With EFA for the ITI instrument
the factor structure of the original instrument was preserved, as all items had
factor loadings above 0.4 with varimax rotation. High internal consistency for
found for both ENT (Cronbach’s α = 0.91) and INC (α = 0.86) factors. Items
in the ITI instrument had 5-point Likert scoring, and scores for INC and ENT
were computed as the average of their respective items. Out of 185 students,
11 were found to be entity theorists (i.e., ENT ≥ 4.0 and INC ≤ 2.0, on a
1-5 scale), while 104 were found to be incremental theorists (i.e., INC ≥ 4.0
and ENT ≤ 2.0). The remaining 70 students could not be classified in either
group. Intercorrelations among INC and ENT variables and PSCOREs were
found negligible and non-significant. However, correlation between ENC and
INC was −0.841, which is consistent with the hypothesized relation between
these constructs. Kolmogorov-Smirnov tests indicated no gender differences in
distributions for both INC and ENT constructs (D = 0.089, p > 0.05 and
D = 0.208, p > 0.05, respectively). Finally, multiple regression models were
built with each PSCORE as response variable, and both INC and ENT as
predictors. The regression’s R-squared values were close to zero in all cases, and
regression coefficients were found non-significant.

Error Orientation Questionnaire (EOQ) With regard to the EOQ in-
strument, the EFA resulted in a factor structure in which ERRS (Cronbach’s
α = 0.80), ERRL (Cronbach’s α = 0.81), and ERRI (α = 0.70) constructs
could be identified with the same items as in the original instrument. A fourth
factor combining items from ERRC and ERRT was identified, however, with
low internal consistency (α = 0.65). As in the original instrument, scoring was
computed as the item average for each construct. All items had 5-point Likert
scales.

Correlations among ERRS, ERRL, ERRI and PSCOREs were found to be
negligible, i.e., all very close to zero, and non-significant. However, we did observe
a slight academic performance advantage in students belonging to the second
quartile (Q2) of the ERRS distribution (see Fig. 1). This is apparent specially in
time blocks 4 and 5. In time block 5, 26% of students in Q2 had passed the course,
compared to 16% in Q1 and Q4, and 15% in Q3. However, Kruskal-Wallis tests
did not yield any statistically significant difference in PSCOREs among the four
ERRS quartiles. A Wilcoxon rank sum test indicated that difference in ERRS is
a statistically significant (W = 3640.5, p < 0.05) between male (M = 3.30, SD =
0.72,Median = 3.4) and female (M = 3.89, SD = 0.78,Median = 4.1) students.
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Fig. 1. PSCORE distributions ERRS quartile (left). ERRS by gender (right).

Computing Attitudes Survey (CAS) With the CAS instrument EFA was
conducted utilizing polychoric correlations computed with WLSMV estimator [7].
The EFA with oblimin rotation yielded a factor structure different to the original
instrument. Only 14 out of 25 items had factor loadings greater than 0.4, and
these loaded into only three factors. The factors were interpreted by the cur-
rent authors as Perceived Value (PV ), i.e., students’ perceived value of course
skills and knowledge, Perceived Self-Efficacy (PSE), and Endorsement of Inef-
fective Study Strategies (EISS) in learning programming. Internal consistency
for the three factors was computed as ordinal alpha [19], which for PV was
0.86, PSE 0.87, and EISS 0.77. Statistically significant intercorrelations were
found among PSCOREs, PV and PSE. Correlations among PSCOREs and
PSE ranged between 0.28 (with PSCORE5) and 0.45 (with PSCORE1). In
the case of PV , correlations ranged between 0.20 (with PSCORE5) and 0.30
with (with PSCORE3). In addition, statistically significant differences among
male and female students were found in PV (W = 2372, p < 0.001) and PSE
(W = 2317.5, p < 0.001) (see Figure 2).
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As the CAS instrument was administered after the conclusion of time block
1, we only considered students who passed module 1 in our analyses based on
CAS, as the effects of failure in module 1 likely exert a negative bias on CAS
measurements. Both PSE and PV distributions comprising the 140 students
who passed module 1 and responded the CAS questionnaire were found highly
asymmetric, with negative skewness (−1.29 and −1.36, respectively) and high
kurtosis (3.78 and 4.57, respectively) (see Figure 2). Even though the distribu-
tions appear alike, correlation among PSE and PV is 0.44, thus arguably these
indicators contribute complementary information. In both distributions we la-
beled students scoring above percentile 50 as having High PSE and High PV ,
students in between percentiles 25 and 50 were labeled as Mid PSE and Mid
PV , and students below percentile 25 were labeled as Low PSE and Low PV .

Multiple regression models were built with each PSCORE as response vari-
able, and both PV and PSE as predictors. The regression R-squared values
ranged between 0.0 and 0.1, and regression coefficients were found non-significant.
In spite of this, we observed that students with High PV and High SE had a no-
table academic performance advantage in time block 3, i.e., the module with the
highest failure rate in the entire course, over students below that mark (see Fig-
ure 3). In time block 3, students in module 3 with Low PSE (i.e., 17) had a pass

Fig. 3. Density plots for PSE (left) and PV (right) groups, vs PSCORE3. Dashed
lines show the cut PSCOREs of students passing modules 2 and 3.

rate of 0.118. Constrastingly, students with Mid PSE (i.e., 21) had a pass rate of
0.238 and students with High PSE (i.e., 40) had a pass rate of 0.525. The chance
of failing was 48% greater in students below percentile 50 than those above it.
A Kruskal-Wallis test for differences in mean PSCORE3 among PSE groups
in module 3 yielded a statistically significant result (χ2(2) = 11.298, p < 0.01).
In time block 2, differences among groups were found to be not as substantial,
as students with High PSE, Mid PSE and Low PSE had a pass rates of 0.77,
.75 and .721, respectively. With PV , results in modules 2 and 3 were similar
to those considering PSE, that is, students with High PV in time block 3 and
module 3, had a pass rate of 0.439, compared to students with Low PV , who
had a pass rate of 0.105.



Predicting academic results in a modular computer programming course 9

6 Conclusions and Future Work

In this research we explored the feasibility of predicting academic performance
in an introductory programming course, based on indicators derived from im-
plicit theories of intelligence, error orientation, and student attitudes towards
computer programming.

An early measurement of constructs linked to general self-theories of intelli-
gence did not correlate with academic results, nor it offered meaningful informa-
tion for prediction. This is a similar result to that of recent studies conducted
with cohorts of Finnish and Turkish students [15, 16]. Around fifty six percent of
students in our sample were found to be markedly incremental theorists, while
only six percent of students are entity theorists. In our study there is no evidence
that the latter were at a disadvantage in the course against the former.

According to the error strain measurement conducted, female students are
likely to have stronger emotional reactions than men (e.g., frustration, displea-
sure) when making mistakes when learning. Although we did not find a clear
relationship between this variable and academic performance in programming,
it can be argued that measures of error strain in both extremes may be linked
to maladaptive behaviors in presence of programming errors. A low error strain
may imply a careless behavior, whereas a high error strain may lead to anxiety
and frustration.

The measures of perceived self-efficacy and perceived value at the beginning
of module 2 allow us to anticipate which students may have greater difficulties (or
aptitude) in module 3. This prompts us to devise interventions to boost students’
value perceptions and self-efficacy beliefs early in the course, and to help them
sustain and strengthen positive beliefs as the course complexity progresses.

In our future work, we will investigate in a larger, cross-institutional sample
of engineering freshmen, and with repeated measures, the predictive potential of
variables related to self-regulation and metacognition in introductory program-
ming courses, while also including the perceived self-efficacy and perceived value
constructs presented in the current study.
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