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Abstract 

The concept of software shell for interactive mathematical proof 
verification systems is presented. The underlying formal logical system, 
which is approximated to the mathematical practice of constructing 
proofs, and the mechanisms for its extension are considered. Languages 
for representation of bases of formalized mathematical knowledge and 
reasoning methods, as well as the general syntactic structure of proofs are 
described. 

1 Introduction 

Validation (verification) of intuitive proofs of theorems is one of the most important problems arising in 
mathematical research [1]. Proofs, which are published in the mathematical literature, are referred to as intuitive  
in the proof theory. Only a complete proof can be considered a correct one, when it is performed within the 
formal system, for which the following statement is true: if a proof can be constructed for a mathematical 
proposition, then the latter is true [2]. However, in mathematical practice, which is related to the manual 
theorem proof construction, such proofs are not constructed because of their cumbersomeness, as well as of the 
excessive complexity of this process. In 1994, the QED-manifesto [3] was published by anonymous authors, 
which sets forth ambitious goals – building a corpus of mechanically (automatically) verified mathematics, 
including the formalization of mathematical proofs, and checking of their correctness.  

To date, a promising direction in the use of computers for solving the problem of ensuring the correctness of 
intuitive proof is the development of software shells (or logical frameworks) for interactive theorem proof 
construction systems (interactive theorem provers – ITP) creation (PVS, Twelf, Coq, HOL Light, Isabelle/HOL, 
LCF, etc.) [4, 5]. In such software shells metalanguages are offered for the formalization of mathematical 
knowledge and deductive systems (calculi). As such metalanguages, programming languages are usually used, 
that are based on a functional-imperative paradigm, or on some variant of higher order predicate logic, or on 
some variant of a strictly typed -calculus with a polymorphic system of dependent types, standard syntax of 
arithmetic, set-theoretic and, possibly, other expressions. An advantage of the developed ITPs is that for their 
underlying formal systems it is true that the truth of a mathematical proposition results from the possibility of 
constructing its proof. Many of the modern ITPs have been successfully used to verify proofs of complex 
mathematical theorems [1]. 

However, the existing ITPs are still unclaimed by most mathematicians in their research. This was confirmed 
by a revised manifesto [6] published in 2007, in which, although the goals of the original manifesto were 
confirmed, it was also stated that during the time elapsed since its publication, no significant progress was made 
in achieving its goals. One of the main reasons for this state of affairs was also pointed out there: formalized 
mathematics is completely different from the real one. On this basis, it can be concluded that the main obstacle 
to the extensive use of ITPs is that they use formal logical systems that are far from the visions of 
mathematicians who perform such work. Performing formalization of mathematical theorems and their proofs is 
still hard, and there is still a steep learning curve that prevents the mathematical community from adopting this 
style of work with proofs [1]. 

In the series of works [7-9] the idea of approximating the formal model underlying the ITP to mathematical 
practice was expressed. This paper describes the concept of a software shell for interactive mathematical proof 
verification systems, and a formal logical system, which is approximated to the mathematical practice of 
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constructing proofs. The mechanisms for its extension that can be used as the basis for such a shell  are also 
described. 

2 Software Shell Concept 

As known, mathematical dialect and methods of mathematical reasoning are not only unfixed,  explicitly 
specified, but continue to evolve with the development of mathematics. Therefore, there is no possibility to 
construct such a fixed formal system that could be used as a basis for ITP, and which “projection” from the 
mathematical dialect language would not be extremely cumbersome and difficult to carry out for most 
mathematicians. In order to be able to approximate formal logical systems to mathematical practice, they must 
be extensible. The possibility of extending them should be provided not only by the developers of the ITP, but 
first of all by the users of such systems – members of the mathematical community. 

One of the ways to provide such an opportunity is to develop a software shell (an instrumental metasystem) 
for them that would allow creating applied ITPs, which are already based on the core of a formal system 
approximate to mathematical practice, and providing mechanisms for extending this system. The following 
components of formal systems should be extensible and changeable: the language for mathematical knowledge 
representation, which describes the axioms, theorems, lemmas, definitions, etc., and the set of formalized 
methods of reasoning, available for mathematicians for constructing theorem proofs. In order to achieve this, the 
methods of reasoning must be presented explicitly (in declarative form), and the language for formalized 
reasoning method representation must be extensible. Note that these languages are equivalent to the logical 
language of higher orders and do not support graphic images, geometric figures and interpretations of various 
constructions: commutative diagrams, Euler-Venn diagrams, etc. 

To ensure the extensibility of formal systems at their development stage, an approach based on context -
dependent grammars and ontologies is used. Extensibility is achieved by the fact that context-dependent 
grammars of the abstract syntax for the languages of mathematical knowledge representation and formalized 
reasoning methods have an explicit declarative representation specified in accordance with the metamodel [10, 
11]. Due to this, firstly, the reasoning methods have an explicit declarative representation in the ITP, and, 
therefore, users can change their set, as well as the reasoning methods themselves; secondly, users  have the 
opportunity to include new rules into the grammar of the language for mathematical knowledge presentation or 
modify existing ones. The same goes for context conditions. Note that when the bases of the formalized 
reasoning methods are open to mathematicians for modification and, accordingly, the calculus is extensible, 
then the question concerning the theorem on the consequence of the truth of a mathematical proposition from its 
provability remains open. It is obvious that for such a formal logical  system, the validity of this theorem is not 
guaranteed (moreover, it turns out to be inapplicable to this formal system). However, this problem can be 
addressed to specialists in mathematical logic, whose task is to study and verify the reasoning methods proposed 
by mathematicians. 

The rest of the paper is devoted to a brief description of the core and the extension mechanisms of the formal 
system, which can be used as a theoretical basis for applied ITPs created with the use of the shell. Like any 
formal-logical model, the described formal system defines a formal language for the mathematical knowledge 
representation – axioms, definitions, theorems, lemmas and other mathematical statements; and the calculus 
(consistent with this language), in which the correct complete proofs should be constructed. The description of 
calculus includes the definition of methods for proving mathematical statements; the reasoning methods 
available to mathematicians in the process of constructing theorem proofs, and the formal language for their 
representation; proof ontology model – a structure for representing a complete proof. 

Finally, it is important to note that the reasoning practice of modern mathematics, which is based on the 
principle of structuralism, as well as the concepts of isomorphism, equivalence (identity) of mathematical 
objects [12], is beyond the scope of the work. 

3 Ontology Model of Mathematical Knowledge Base 

For the purpose of structured storage and accumulation of mathematical knowledge, this section introduces an 
ontology model that specifies the network structure of various mathematical sections and knowledge bases. 

Each section of mathematics has its own name and may contain the following: a set of definitions allowing to 
introduce new ones to refer to defined concepts, as well as set meanings of these definitions; a set of axioms; a set 
of theorems and lemmas, each of which can have a set of corollaries; a set of named subsections (Figure 1). 
Hereinafter, the notation of the labeling of vertices and arcs for the digraphs shown in the figures coincides with 
the notation used in [10, 12], where its semantics is described in detail. 
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Figure 1: Structure specification for sections of mathematics 

4 The Language for Mathematical Knowledge Representation 

Figure 2 shows a fragment of a generative graph grammar describing the abstract syntax of the language for 
mathematical statement representation. Each mathematical statement is represented by the vertex of the grammar 
digraph “Statement” and has the form: (v1: t1) … (vn: tn) f. Here f – a mathematical formula containing occurrences of 
object variables v1, …, vn, and (vi: ti) (i = 0, …, n) – a description of the object variable vi, ti – a mathematical term 
whose value is the set (the range of possible values of the variable vi). Mathematical statement models the sentence of 
a mathematical dialect: «for any values of v1 from t1, …, vn from tn – f is a correct formula». 

The following types of terms are distinguished: terms representing arithmetic expressions; various types of 
intervals, as well as the sets that they form; quantified terms (with finite and infinite ranges of possible values of 
variables); terms representing set operations, as well as labeling of some predetermined sets; terms representing 
mappings; conditional term which models a sentence of mathematical dialect: «if f1, then t1, … if fn, then tn». 

The language for mathematical statement representation contains the following context conditions. 
Context conditions for object variables. 
1. For each using occurrence of a variable in the body of a statement or of some quantified construction, there is a 

defining occurrence of this variable in the prefix of this statement or this quantifier construction. 
2. For each defining occurrence of a variable in the prefix of a statement or some quantified construction, there 

exists a using occurrence of this variable in the body of this statement or the body of this quantified construction. 
3. A term, which is a range of possible values of a defined variable, cannot contain occurrences of the same 

variable. 
Context conditions for matching the number of formal and actual parameters. 
1. If the predicate application has the form (t1, …, tm), then: 
- if  is a definition, then the definitions set of some section of mathematical knowledge must contain a definition 

of the form   (v1 : tt1) … (vm : ttm) f, where f – a formula, which contains occurrences of object variables v1, …, vm, 
m  1; 

- else if  is a variable, then its declaration must have a form  : tt1 … ttm → set of logical values, if m  1, or  : 
tt1 → set of logical values, if m = 1. 

2. If function application has a form (t1, …, tm), then: 
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- if  is a definition, then the definitions set of some section of mathematical knowledge must contain a definition 
of the form   (v1 : tt1) … (vm : ttm) t, where t – a term, which contains occurrences of object variables v1, …, vm, 
m  1; 

- else if  is a variable, then its declaration must have the form  : tt1 … ttm → tt, if m  1, of  : tt1 → tt, 
if m = 1. 
 

Figure 2: Fragment of generative graph grammar describing the abstract syntax of the language for mathematical 
statement representation 

The extension of the language for mathematical statement representation is provided by the addition of new types 
of terms and formulas. It consists of adding a new construct to the grammar digraph of the language, describing the 
abstract syntax of this new construct, adding the necessary rules to the text grammar of the language, and possibly 
describing the context conditions associated with the new construct. 

The mathematical knowledge base is formed in accordance with its ontology model. Extension of the mathematical 
knowledge base is to add new mathematical knowledge – definitions, axioms, theorems and lemmas (as well as their 
corollaries) to existing sections of mathematics; and to create new sections / subsections of mathematics and filling 
them with relevant mathematical knowledge.  

5 Proof Methods 

Calculus, within which a proof is constructed, includes methods of proving goals based on three rules. Before 
describing the rules themselves, we define the concept of a goal and a true statement. A goal is a pair: mathematical 
statement and a possibly empty list of assumptions – a set of mathematical statements, which truth results in the truth 
of this statement. 

By a true statement we mean a mathematical axiom, a definition, a theorem/lemma (as well as its corollary), for 
which a proof has already been constructed, or a method of reasoning (see section 6 for more details). Definitions and 
axioms are considered correct by agreement between members of the mathematical community. 

Next, we describe the inference rules of the calculus. 
1. The rule of implication (natural deduction). It allows to reduce the proving of the goal, for which the 

mathematical statement has the form of implication f1 & … & fk  f, and a list of assumptions is p1, …, pn (n  0), to 
the proving of a goal which mathematical statement is the consequent of this implication – f, and a list of assumptions 
is p1, …, pn, f1, … , fk. 

2. Matching rule. If  is a true statement, and there is a substitution of  instead of variables in , such that the 
result of applying this substitution to  coincides with the mathematical statement f of the goal being proved or is 
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syntactically equivalent to f, then f is true (f is a concretization of ). The list of assumptions for the goal is empty in 
this case. It should be noted that the matching is a unidirectional version of unification [13]. 

3. Modus ponens. It is used to decompose a goal, decompose some assumption from the list of assumptions of a 
goal, or to perform inference. 

3.1. Goal decomposition. If it is necessary to prove a goal which list of assumptions is p1, …, pn, (n  0), and 
mathematical statement f can be matched with the consequent of a true statement, having the form of 1 & … & m  
, and  – is the most general unifier of f and , then this proving is reduced to proving of goals, which mathematical 
statements f1, …, fm are respectively the results of applying the substitution  to statements in the antecedent of this f1 
= 1, …, fm = m, and a list of assumptions of each goal is p1, …, pn. 

3.2. Assumption decomposition. If it is necessary to prove a goal which mathematical statement is f, and a list of 
assumptions is p1, …, pi, …, pn (n  1), and assumption pi can be matched with the RHS of the equivalence  of the 
true statement, which has a form of 1 | … | m   (1  …  m  ), (m  2), and  is the most general unifier of 
pi and , then this proving is reduced to proving of m goals, which mathematical statement is f, and lists of 
assumptions are p1, …, pp1, …, pn, where pp1 is the result of applying the substitution  to 1; …; p1, …, ppm, …, pn, 
where ppm is the result of applying the substitution  to m. 

3.3. Inference, which is a sequence of inference steps. 
An inference step is the following. Let the mathematical statement fi (i = 1, …, m) be either an axiom, or a 

definition, or a proven theorem/lemma (or its proven corollary), or a statement from the list of assumptions of the 
goal being proved, or the result of one of the previous inference steps. Then if the statement f1 & … & fm can be 
matched with the antecedent of a true statement that has the form 1 & … & m  , and  is the most general unifier 
for f1 & … & fm and 1 & … & m, then the statement f is true, which is the result of applying the substitution  to  
(inference step result). The goal is considered proven if the result of the last inference step of the conclusion is a 
statement that coincides with the mathematical statement of the goal, or is syntactically equivalent to it. 

In the case of goal decomposition (3.1) and inference (3.3), the Modus ponens application can be generalized to 
the case when the implication is replaced by equivalence. 

6 Formalized Reasoning Methods 

Methods of reasoning, which are used in the methods of proof, are divided into two classes: 
- based on propositional tautologies underlying logical reasoning; 
- based on mathematical principles and statements about syntactic transformations of mathematical expressions. 
These methods of reasoning are represented explicitly by propositional formulas, which are tautologies, and 

metamathematical statements, respectively. Metamathematical statements are considered correct if their validity is 
established on the basis of an intuitive or conventional (as a result of an agreement between members of the 
mathematical community) criterion. Thus, the proof is considered correct if the validity of all metamathematical 
statements used in it is accepted. 

Each propositional tautology has the form: v1 … vn pf, where pf is a propositional formula containing the 
occurrences of propositional variables v1, … vn, and vi (i = 1, …, n) is the description of the propositional variable vi, 
n  1. The value of a propositional variable can be one of the logical constants – true or false. 

There are the following context conditions for propositional variables. 
1. For each using occurrence of a variable in a propositional formula, there is a defining occurrence of this variable 

in the prefix of this formula. 
2. For each defining occurrence of a variable in the prefix of a formula, there exists a using occurrence of this 

variable in the body of this formula. 
The generative graph grammar, which describes the abstract syntax of the language for metamathematical 

statement representation (metalanguage), is shown in figure 3. Each metamathematical statement is represented by a 
vertex of the graph grammar «Mathematical statement» and has a form: (v1: t1) … (vn: tn) t1 … tk f1 … fs i1 … ip r1 … rq 
f. Here f – a mathematical formula, containing occurrences of object variables v1, …, vn, as well as occurrences of 
syntactic variables t1, …, tk of type t, syntactic variables f1, …, fs of type f, syntactic variables i1, …, ip of type i and 
syntactic variables r1, …, rq of type r. Herein (vi: ti) (i = 0, …, n) is a description of the object variable vi, ti is a 
mathematical term, which value is a set (range of possible values of the object variable vi); t1 … tk are descriptions of 
syntactic variables of type t (k  0), which values are terms; f1 … fs are descriptions of syntactic variables of type f (s 
 0), which values are formulas; i1 … ip are descriptions of syntactic variables of type i (p  0), which values are 
integer constants; r1 … rq are descriptions of syntactic variables of type r (q  0), which values are real constants; 
where k + s + p + q  0.  

The metalanguage is a superstructure on the language for mathematical statement representation and is obtained by 
extending the «Formula» and the «Term» constructions of this language. The «Formula» construction is extended by 
adding two alternatives: «Syntactic variable of type f» and «Modified syntactic variable of type f». The «Term» 
construction is extended by adding four alternatives: «Syntactic variable of type i», «Syntactic variable of type r», 
«Syntactic variable of type t», and «Modified syntactic variable of type t». 

The modified syntactic variable contains a modifier in addition to the name. The variable is a term or formula 
depending on its type. The modifier consists of modifier elements, each of which is a term or a formula. The value of 
such a syntactic variable is a syntactic construction, which corresponds to the variable’s type, and contains formal 
parameters. Each modifier element corresponds to its own formal parameter, which can be included in the value of 
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the syntactic variable one or more times. Modifier elements with the same sequence number in different occurrences 
of the modified syntactic variable in the same metamathematical statement correspond to the same formal parameter. 
The modifier elements themselves are the actual parameters. The value of the occurrence of the modified syntax 
variable in the metamathematical statement is the value of this syntax variable, in which all formal parameters are 
replaced by the actual ones. 
 

Figure 3: Generative graph grammar describing the abstract syntax of the language for mathematical statement 
representation 

Metamathematical statements are considered valid for any legal values of syntactic (including modified) variables. 
For the language for metamathematical statement representation, the following context conditions for syntactic 

variables are formulated: 
1. each metamathematical statement must include at least one syntactic variable; 
2. for each using occurrence of a syntactic variable in a term or a formula of a metamathematical statement, there 

is a defining occurrence of this variable in the prefix of this statement; 
3. for each defining occurrence of a syntactic variable in the prefix of a metamathematical statement, there is a 

using occurrence of this variable in the term or formula of this statement; 
4. a modifier of a modified syntactic variable cannot contain both direct and indirect occurrences of the same 

syntactic variable; 
5. a syntactic variable can be included in a metamathematical statement either unmodified or modified (but not in 

both ways); 
6. if a syntactic variable is modified, then it must be included in the metamathematical statement at least two times; 
7. the number of modifier elements in all occurrences of the same modified syntactic variable in the 

metamathematical statement is the same, and at appropriate places in the modifier there must be either terms or 
formulas. 

The definition of a metalanguage as a superstructure on the language for mathematical statement representation 
(that is, as its extended language) is a sufficient condition for the metalanguage to extend automatically when the 
language for mathematical knowledge representation extends. This is true due to the method of defining the 
«Formula» and the «Term» metalanguage constructions through the same constructions of the mathematical 
knowledge representation language, which are extended by the corresponding syntax variables (see figure 3), and also 
by adhering the context condition 1 for the syntactic variables. Thus, the extension of these two languages occurs 
simultaneously.  



Mathematical Modeling in Physics and Technology 

______________________________________________________________________________________ 

159 

The base of formalized reasoning methods consists of a variety of those, modeled by propositional tautologies, and 
a variety of those, modeled by metamathematical statements. Extension of the base of formalized reasoning methods 
is in extending the set of propositional tautologies and/or the set of metamathematical statements. The set of 
propositional tautologies is extensible due to the possibility of formulating new propositional formulas, which, in case 
of successful automatic verification of their validity, are added to this set. The set of metamathematical statements is 
extensible due to the possibility of formulating new statements that are included in this set. In particular, it should be 
noted that if new quantifiers are added to the language for mathematical knowledge representation, it becomes 
necessary to add metamathematical statements about the properties of these quantifiers. 

7 Proof Model 

The complete proof is a syntactic structure, which is a set of related goals. The first goal is the theorem/lemma 
being proved, for which there is no list of assumptions. Each goal has a proof method, associated with it. The set of 
admissible methods for proving a goal is an improper subset of the set of methods described in Section 5. The number 
of methods can vary from three to five – depending on the syntactic form of the goal’s mathematical statement 
(whether it has the form of implication or not) and the presence or absence of its assumptions. The syntactic structure 
of each proof method is based on its semantics (see Section 5). In the case of using the Modus ponens rule for goal 
decomposition or inference, the following is taken into account: the form of true statement (implication or 
equivalence) and the rules for choosing values for the premises. A premise is conjunct from the implication 
antecedent or from the equivalence side, which is considered to be an antecedent. 

In the case of goal decomposition, the values for the premises can be chosen from the statements stored in the 
mathematical knowledge base, in the set of proven statements, and in the list of assumptions of the goal being proved 
(if it has assumptions). 

In the case of inference, the values for premises can be selected from all three sets of statements mentioned above, 
and from statements that are results of already performed inference steps (if at least one inference step has been 
performed). 

8 Conclusion 

The paper presents the concept of a software shell for systems of intuitive mathematical proof verification. The 
core of the formal logical system, which is approximated to the mathematical practice of constructing intuitive 
mathematical proofs, is specified, and the mechanisms for its extension are considered. This formal system can be 
used as the basis for proposed shell. The declarative specifications of extensible languages for representation of 
mathematical knowledge and formalized methods of reasoning, as well as model of complete proofs, have been 
developed. The language for formalized reasoning method representation consists of two sublanguages: the language 
for propositional tautology representation and the metalanguage. 

Only the language for mathematical knowledge representation has mechanisms of extension. The metalanguage, 
by the method of definition, extends automatically as the former is extended. The extensibility of the language for 
mathematical knowledge representation is provided by the extensibility of the set of definitions, allowing to introduce 
new ones to designate the defined concepts, as well as the extensibility of its grammar. The latter is achieved through 
the aids for describing the syntax of new constructions of the language for mathematical statement representation, as 
well as, if necessary, context conditions. The calculus, within which proof is constructed, is presented explicitly and is 
extensible. 

The solution for the problem of the consequence of the mathematical proposition truth from its provability may be 
entrusted to specialists in mathematical logic. Their task in this case is to verify the methods of reasoning specified by 
mathematicians on the metalanguage. As a result of the analysis a class of axioms can be distinguished among the 
metamathematical statements, and the rest are classified either as requiring proof or as incorrect. Thus, proofs that use 
incorrect or unproved metamathematical statements cannot be considered true. 

The results obtained in this research can be used in a project for the development of a QED-system as well as in 
projects for the development of controlled ITPs, which are approximations to such project.  
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