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Abstract 

Timely and accurate flash flood predictions are crucial for early warning of 
this costly and deadly natural hazard. There are many modeling approaches 
tackling hourly runoff formation mechanisms and utilizing different levels 
of computational complexity and requirements to an input data. However, 
to keep an efficient trade-off between speed, data availability, robustness 
and interpretability, the focus of operational runoff forecasting systems 
development often shifts to conceptual hydrological models. However, the 
developing field of deep learning provides us an opportunity to advance 
flash flood predictions using new data-driven technologies. In the present 
study, we extensively search for optimal structure and parameters and 
examine the predictive performance of the Long Short-Term Memory 
(LSTM) model for continuous runoff predictions at an hourly time step and 
compare results with the process-based hydrological model. Results 
highlight that the LSTM model provides reliable hourly runoff predictions. 
Yet, it demonstrates only comparable efficiency with a conceptual 
hydrological model, but with a significant computational overhead. 

1 Introduction 

Runoff predictions have a key importance in the field of hydrology for both practical and theoretical perspectives. 
From the theoretical side, runoff predictions accumulate and concentrate the knowledge about runoff formation 
processes at different spatiotemporal scales [1]. From the practical side, they create a basis for water management, an 
assessment of available water resources regarding different scenarios of a future climate and a development of early 
warning systems of natural hazards [2, 3]. Propagation of emerging technological breakthroughs and investigation of 
their impact on runoff predictions effectiveness and efficiency play a critical role in advancing the field of scientific 
methodology and hydrologic engineering [4, 5]. 

There is a myriad of hydrological models doing the best for runoff predictions [6]. Each model may relate to one of 
the three main types regarding system simplification [4, 7]: physically based, conceptual, and data-driven. Based on 
simplicity, high computational efficiency and low input data requirements, conceptual and data-driven models are the 
most widespread both in theoretical studies and practical applications [4, 5, 7]. While the development of conceptual 
models was the most active research field in the last decade, the intensively-emerging field of machine learning provides 
new techniques to be extensively evaluated as data-driven hydrological models for runoff predictions [4, 5]. 

Applications of ANNs for runoff predictions and forecasting are the most widespread across the field of data-driven 
model development in hydrology. The most prominent advantages of ANN which support that domination are their 
abilities to handle incomplete, noisy and ambiguous data and to learn and generalize complex systems of input-output 
relations [7, 8]. Feed-forward ANNs are of the most use in runoff modeling studies. According to the latest review 
paper [9], they share around 74% of used ANN architectures, but with significant decreasing trend in favor of using 
other architectures, in comparison with the share of feed-forward ANNs reported by Dawson and Wilby [7] of 98% as 
of 2001. One of these new architectures is the recurrent neural network (RNN) approach which takes into account the 
temporal nature of the input time series. Despite theoretical advances, there is no strong evidence that RNNs outperform 
feed-forward ANNs for runoff predictions: Kumar et al. [10] showed that RNNs better predict monthly runoff, but Hsu 
et al. [11] and Taver et al. [12] showed the opposite for daily predictions.  

The Long Short-Term Memory (LSTM) network introduced by Hochreiter and Schmidhuber [13] is a new type 
of RNN architecture that overcomes the limited memory capacity of RNNs and allows learning of long-term input-
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output dependencies. Recent studies show a high potential of LSTM models in hydrological modeling: it was shown 
that LSTM models can outperform both conventional feed-forward ANNs and conceptual hydrological models [14, 
15].  

The rapid growth of studies that involve modern deep learning architectures in the field of hydrology is ongoing 
right now, and many prospective studies are emerging [16]. The objective of this study is to investigate the capability 
of LSTM model reproduce rainfall-runoff process at an hourly temporal resolution and highlight its predictive potential, 
advances and shortcomings over the state-of-the-art conceptual hydrological model. 

2 Data and Methods 

2.1 Study Site and Hydrometeorological Data 

We use the Rimbaud River basin at Collobrières as the study site. It is located in the Maures highlands of southeastern 
France, close to the Mediterranean Sea coast and drains an area of 1.4 km². For a detailed description of the basin 
characteristics, such as elevation, vegetation, geology, climatology, and a hydrologic regime, please see the Supplement 
material of Thirel et al. [17] paper. 

Hourly precipitation data (P) was obtained from three different sources: two nearby rain gauges located outside the 
basin and the SAFRAN reanalysis [18]. When precipitation observations at a specific time were available on both rain 
gauges, we took an average value of both, if one of two observations was missing we took the measured one. In the 
situation no observations from any of the gauges were available, we took a precipitation estimation from the nearest 
SAFRAN reanalysis grid cell. Hourly potential evapotranspiration data (PE) were obtained from the SAFRAN 
reanalysis which utilizes the Penman-Monteith formulation to calculate PE. Discharge data at hourly time resolution 
were obtained from Irstea, France. Data is available from 1 January 1968 to 31 December 2004 and has no missing 
values for meteorological forcing (P and PE) and around 1% missing values for discharge. 

2.2 Hydrological Model 

In the present study we use GR4H – the process-based, lumped, conceptual hydrological model, which was 
developed for runoff predictions at an hourly temporal resolution [19]. GR4H has four free parameters which are 
calibrated by optimizing the Nash-Sutcliffe efficiency criteria (NS, see Sect. 2.5) using the differential evolution 
algorithm [20]. To initialize the GR4H model states we use a warm-up period that copies the period under consideration. 

2.3 LSTM Model 

In the present study, the chosen LSTM model is the ANN constructed from two types of calculation layers – 
LSTM and fully-connected (Dense) – to map meteorological forcing (input layer) to runoff (output layer) data (Fig. 
1). For a detailed description of the whole workflow of implementing LSTM networks for runoff predictions, we 
recommend referring to Kratzert et al. [14]. 

Figure 1: The LSTM model architecture 

Objective guidelines for designing an appropriate structure of ANN and its hyperparameters for a specific modeling 
task remain elusive [7-9]. In most cases, researchers rely on trial-and-error techniques, and provide only the most 
effective and efficient architecture and hyperparameters, but do not provide information about their failures that could 
help researchers to avoid such failures, or investigate the reasons of the detected failures. In this study, we use grid 
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search – a computationally-inefficient, but at the same time one of the most informative methods for finding a quasi-
optimal setting of model architecture and related parameters in discrete space of parameters. 

We constrained the hyperparameter space by considering only six important LSTM model hyperparameters, 
investigated separately for two variants of forcing data (precipitation and potential evapotranspiration; precipitation 
only) (see Fig. 2): 

1. The input history length (hours), which is the length of the input sequence of meteorological forcing to be 
considered as a predictor for runoff. We use 25 candidates: from 48 to 1200 hours with a step of 48 hours. 

2. The number of LSTM layers, which goes from one to three consecutive layers; 
3. The number of LSTM units (# neurons), which is the length of hidden/cell states of LSTM layers. We use 

candidate values of 16, 32, and 64. 
4. The regular dropout rate of the LSTM layer. We use two options: 0 and 0.2. 
5. The recurrent dropout rate of the LSTM layer. We use two options: 0 and 0.5. 
6. The number of Dense layers. We use the following candidates: one layer with one hidden neuron; two 

consecutive layers with 32 neutrons on the first and with one neuron on the second layer; three consecutive 
layers with 64, 32, and one neuron, correspondingly. 

Figure 2: The LSTM model architecture. The optimal hyperparameters are shown in red boxes 

For every candidate configuration, we trained the LSTM model and evaluate its corresponding performance on two 
independent periods: training and validation. For the validation period, we randomly reserve 4 years of available data 
(~12%), and the remaining data of 30 years has been used for the training period (88%). We used the early stopping 
technique to interrupt the training while there is no improvement for model performance on the validation period for 5 
epochs (1 epoch is the time when each training sample has been entirely used for model optimization), and then save 
only the best model variant in terms of efficiency regarding the validation period. For model training, we use the 
RMSprop optimization algorithm with default hyperparameters and the mean squared error as a loss function. 

2.4 Benchmark Setting 

For the benchmark setting, we slightly adapted the standard split-sample test methodology proposed by Klemeš [21], 
which is widely used in many hydrological studies (Fig. 3). There are two major modifications:  

1. We add an independent validation period (VP) which is isolated from the period for model calibration and 
testing.  
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2. In addition to a standard splitting of available data on two periods (P1 and P2) for model calibration 
(training) and testing, we also propose to augment these periods by the full period (FP). 

Figure 3: Modified standard split-sample test as a benchmark setting 

The main goal of the proposed benchmark setting is to try to reach at some extent genericity for choosing a 
hydrological model of any type: for a fair comparison, we have to estimate GR4H and LSTM model performances 
under the same testing conditions. 

2.5 Evaluation Metrics 

The simulated runoff of the models was evaluated with widely-used criteria: the Nash-Sutcliffe efficiency (NS, [22]), 
the Kling-Gupta efficiency (KGE, [23]) and the absolute percentage of Bias [24]. NS and KGE are optimal with a value 
of 1 and are positively oriented, while Bias is optimal with a value of 0 and is negatively oriented. 

3 Results and Discussion 

3.1 Do We Need Deep Data-Driven Models for Runoff Predictions at Hourly Time Scale? 

Interestingly, deep data-driven models might not be necessarily required. Results of the implemented extensive grid 
search procedure (Fig. 2) show that the development of a reliable LSTM model for hourly runoff predictions does not 
require deep architectures that utilize many sequential LSTM and Dense layers. In the context of runoff predictions, it 
is in our case a better strategy to build a shallow model with one, but wide, LSTM layer (with a high number of neurons) 
with consequent one and narrow (with the one neuron) Dense layer, and the high rate of recurrent regularization. 
Obtained results are consistent with the earlier study by Zhang et al. [15] who showed that a model with one LSTM 
layer outperforms a model with two sequential LSTM layers. Our results also underline the importance of using any 
structured algorithm for an extensive search for the best possible LSTM-based architecture and its corresponding 
hyperparameters in the defined parameter space, rather than poorly documented trial-and-error experiments [14, 15]. 
This search can not only improve the identification of suitable model structures, but also provide insights into modeling 
system features (e.g. relationships between available input data and model hyperparameters), and serves as a guidance 
for further studies in the field of machine learning in hydrology. 

3.2 How Do GR4H and LSTM Models Perform? 

Results reveal clear differences in efficiency patterns between GR4H and LSTMs (Fig. 4). For calibration and testing 
periods (P1, P2, FP) GR4H has a more uniform spread of efficiency metrics disregarding which data was used for 
model calibration and validation: NS ranges between 0.69 and 0.77, KGE ranges between 0.71 and 0.84 and Bias ranges 
between 0 and 14 percent. For LSTM_PPE, these intervals are 0.62-0.84 (NS), 0.65-0.9 (KGE) and 1.5-12 (Bias). For 
LSTM_P, these intervals are 0.55-0.8, 0.61-0.87 and 2.6-22, correspondingly. In contrast to GR4H, identified patterns 
in LSTMs efficiencies highlight the strong natural dependency of data-driven models efficiency and robustness to the 
training data (as also observed in [25]). Results also show the clear model outperformance on P1 (1968-1984) over P2 
(1985-2001) period, that reflects the change of basin natural conditions driven by the severe wildfire in 1990, when 
over 84% of the basin was burnt [17]. 
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Figure 4: Model performance evaluation results 

On the independent validation period (VP, 2002-2004) all models show a substantial drop of efficiency disregarding 
which data was used for model calibration/training. Both LSTM models trained on a full calibration period (FP, 1968-
2001) outperform the GR4H model: LSTMs have a higher NS (0.61 and 0.58 for LSTMs in comparison with 0.52 for 
GR4H) and a lower Bias (1.2 and 7.8 for LSTMs in comparison with 14 for GR4H). However, an additional use of the 
KGE shows a reverse situation where GR4H outperforms both LSTMs (KGE is 0.73 for GR4H in comparison with 
0.65 and 0.67 for LSTMs). Further decomposition of KGE into separate components that describe the contribution of 
correlation, variance, and bias clearly shows that the reason for this behavior is the higher contribution of variance 
component for both LSTMs. Visual inspection of simulated hydrographs shows that LSTMs do not capture small runoff 
peaks. 

Results show that a split-sample test is a helpful tool for model efficiency and robustness analysis, but in case of 
implementing rainfall-runoff models for operational use in real setting it is better to use all available data for model 
calibration/training disregarding results of split-sample test: all models show better results when calibrated/trained on 
a full period. Thus, our findings also confirm the same conclusion which was provided in [26]. The gain of using a full 
period for model calibration/training is higher for data-driven (LSTM) models. 

Using confined forcing (only precipitation time series) to drive LSTM models shows a good potential in the light of 
further integration of LSTM-based model into operational setting driven by the only precipitation data obtained from 
weather radars. Trained on a full period, the LSTM_P model shows comparable results with the LSTM_PPE model: 
the former has a lower NS and higher Bias, but also a lower variance. The lower variance of LSTM_P model shows its 
best performance for small runoff peaks (where runoff is under 1 mm/hour). This behavior proves higher and faster 
response of LSTM_P model to precipitation signal in comparison with the more inert LSTM_PPE model, which does 
additionally utilize potential evapotranspiration signal. 
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3.3 To What Extent Are Flash Floods Predictions Benefiting From Using LSTM Models? 

Results do not provide a clear answer to that question. We highlight six events where the peak runoff is above 2 
mm/hour for testing the models’ efficiency for flash floods predictions on the validation period (Fig. 5). For three of 
them (Fig. 5, events B, C, D) LSTM_PPE shows better results than GR4H, for two events there is a tie (Fig. 5, events 
A, E), and only for one event (Fig. 5, event F) GR4H is better. Results of LSTM_P model is worse: it is better for runoff 
predictions than GR4H for one event only (Fig. 5, event B), there is almost no difference between models for two events 
(Fig. 5, events D, F), and GR4H outperforms LSTM_P for the remaining three events (Fig. 5, events A, C, E). 

 

Figure 5: Simulated runoff timeseries for flash floods during the validation period 

Flash floods predictions are not in the particular focus of this study, which strives to show the performance of 
different types of models in general. However, the LSTM_PPE model shows a great potential for flash floods 
predictions with results that are at least comparable with the process-based GR4H model. Unfortunately, for bigger 
flash floods (where the peak runoff is above 2 mm/hour), LSTM_P shows limited reliability. For the events with 
duration longer than one hour it is critical to include potential evapotranspiration time series in LSTM model forcing, 
which indirectly represents inert basin state. This finding contrasts with Toth and Brath results [25], which identified 
no improvement of accounting for potential evapotranspiration time series in comparison with the use of precipitation 
data alone. However, in contrast to Toth and Brath [25], we do not assimilate antecedent runoff observations, which 
can hold the most of valid information for runoff modeling due to the high runoff autocorrelation. In comparison with 
the hard-coded structure of GR4H, LSTM models have a potential to focus on a particular type of events using an 
oversampling technique – when during the training we feed to neural network not only one realization of the event per 
epoch but several identical realizations. This way, data-driven models acquire additional flexibility for runoff modeling 
studies. 

4 Summary and Conclusions 

One hydrological and two LSTM models were extensively evaluated for runoff predictions at an hourly temporal 
resolution on the small basin in France with the Mediterranean climate using an updated split-sample test and multiple 
efficiency criteria. The main findings of the present work can be summarized as the following: 
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1. Deep learning belongs to the groundbreaking technologies that are revolutionizing many fields of scientific 
research by setting up the new level of predictability [16]. However, at the moment its applications for 
runoff predictions show comparable results with conventional process-based hydrological models [14]. Our 
study suggest that new data-driven models (e.g. LSTM models) are not necessarily a new breakthrough in 
runoff modeling, but reliable members in the family of hydrological models with their own advantages and 
disadvantages. 

2. In contrast to deep learning as the name of a group for the new data-driven methods, these models do not 
necessarily have to be deep. In our study, we show that shallower and more regularized models provide 
better results. 

3. We show the critical importance of implementing two techniques for exploratory analysis of hydrological 
models that are often ignored in hydrological studies: a grid search and model performance assessment 
using multiple evaluation metrics. Grid search not only helps us to objectively identify the quasi-optimal 
LSTM models, but also reveals differences among optimal LSTM models, which have a hydrological 
meaning. Using multiple statistical criteria for assessing model performance helps not to miss important 
details in model behavior and identify their possible sources. 

4. In contrast to GR4H, the performance of LSTM models strongly depends on training data. There are two 
following practical implications. In case little data of observed runoff is available for model calibration, it 
is better to use a process-based hydrological model (e.g. GR4H). 

5. More calibration data – better performance on an independent period. That result was obtained disregarding 
the model we use for predictions and also has an important practical implication: if the final goal is 
providing modeling solutions to be implemented in operational use or decision making, it is a better strategy 
to use all the data available for optimizing proposed models. 

6. We do not consistently advance flash floods predictions using LSTMs. Tackling this problem, we have to 
programmatically shift the model’s focus to flash floods using techniques for learning patterns from 
imbalanced datasets (e.g. oversampling).  

 
A review of previous research studies in the field of data-driven hydrology leaves us feeling that we as a community 

are walking in a circle. Despite extensive guidelines how to organize research in a sustainable way and push it further 
[7-9], we still choose directions of least resistance and risk. The possible way to leave this flat circle is to synthesize 
dialog between two different research communities (from the side of hydrology, and from machine learning) and benefit 
from their common expertise, e.g. by running new model intercomparison projects that will pursue the most challenging 
research directions. 
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