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Abstract.Computational approach to predict effective drug combination can sig-

nificantly improve drug efficacy while reducing drug toxicity.  In this work, we 

employed a deep feature compression approach on gene expression data, pathway 

information and Ontology Fingerprints to improve the performance of a deep 

learning framework for effective drug combination. Our method indicates that 

the deep feature compression approach is an effective way to improve the perfor-

mance of drug combination prediction. 
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1 Introduction 

Combined use of drugs may have extra synergistic effect that could lead to the reduced 

drug dosage and hence the toxicity. Computational methodologies to predict the effec-

tive drug combination make it possible to discover extensive drug combinations with-

out expansive and time-consuming experiments. However, despite of our previous 

work to integrate ontology, literature and experimental data, the lack of experimental 

data for drug combination impeded the improvement of the accuracy of the computa-

tional methodologies for drug combination prediction, especially those methods based 

on deep learning approaches. 

The performance of deep learning methods relies on the use of large amount of high 

quality, annotated data generated specifically for a specific task. However, the quantity 

of high quality training data for a targeted problem is often limited in most of the cir-

cumstances such as for drug combination prediction. This issue has been explored in 

many ways. Transfer learning [1] is one of the approaches to deal with the lack of train-

ing case problem where deep models are trained with relevant training data that has 

been well-studied and are largely available and is then amended and re-trained for the 

targeted task with small amount of data. The prerequisite of the use of Transfer learning 

is the availability of large amount training data in the relevant field. Another method to 

enable the effective use of deep learning approach for small training dataset is deep 



 

feature compression [2-4]. By reducing the dimension of the inputs in the feature do-

main, feature compression decreases the number of weights that need to be trained for 

the deep model and thus the need of large amount of training data.  

Several machine learning methods have been applied for the detection of effective 

drug combination in the AstraZeneca-Sanger Drug Combination Prediction DREAM 

Challenge (www.synapse.org/#!Synapse:syn4231880, DREAM2015) [5, 6], including 

regression, decision trees, random forests, Gaussian processes, SVM, neural networks, 

text mining, mechanistic network-based and others. Preuer K. et al [7] designed a feed-

forward neural network with the integration of the heterogeneous resources as input to 

predict the drug synergy. Janizek J. introduced an extreme gradient boosted based ap-

proach, TreeCombo [8] to predict synergy of novel drug combinations. 

Built upon our previous work employing a Stacked Restricted Boltzmann Machine 

to predict effective drug combinations from ontology, literature and experimental data 

[6], we applied deep feature compression on the input features for this deep belief net-

work and significantly improved the performance of this model for the drug combina-

tion prediction. 

2 Methods and Data materials 

2.1 Data 

The data used in this project include Ontology Fingerprints derived from Gene On-

tology and literature, transcription profiling data and the drug sensitivity data, as de-

scribed in our previous work [6]. The training datasets from experiments we used in 

this project contains 2199 pairs of drugs for 83 cell lines, which is sourced from 

DREAM2015 (www.synapse.org/#!Synapse:syn4231880). The features are compiled 

with Ontology Fingerprints [9-13], KEGG pathways [14-17] and gene expression data 

provided by DREAM2015.  

2.2 Methods 

Feature compilation 

As described previously [6], features are compiled specifically for each cell line for 

effective genes. Each feature is a combination of the rank of the targeted gene for the 

cell line normalized with the minmax algorithm, the Ontology Fingerprint similarity 

[10-13, 18] and the inverse distance of the targeted genes in the extended KEGG path-

way measured with InfoMap [19]. 

http://www.synapse.org/#!Synapse:syn4231880


 

Feature compression and Deep learning with RBM 

The vectors for the drug combination in the feature domain are fed into a deep Au-

toencoder as shown in Fig 1. The output in the middle layer is then extracted as the 

representative feature.  These representative features are then used as the inputs to the 

Restricted Boltzmann Machine [20] for the drug combinations prediction. 

Experiment and Evaluation 

The model is trained and evaluated in 3 ways: 

1. One model for one cell line. 

2. One model for all cell lines with feature compressed independently for each cell line. 

3. One model for all cell lines. 

The datasets are evaluated using leave one out validation method. 

A typical combination of hyperparameters we used is: 

 

Fig. 1. A schematic diagram to show the workflow of employing deep feature compression to im-

prove the performance of drug combination prediction.  On the left is the three input data types: 

transcription profile (top), pathway (middle) and Ontology Fingerprints (bottom).  In the middle is 

the deep feature compression layers, which will provide input to the Restricted Boltzmann Machine 

on the right to predict effective drug combination. 
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For deep Autoencoder, three hidden layers were used. The size of each layer is one 

10th of the size of the previous layer. If the size of the layer is less than 10, then double 

it. The other parameters are all default values.  

For the Stacked RBM model we used 3 layer neural networks as well – the dimen-

sions are the input size, 60 and 1 respectively. The other parameters are Weight cost 

0.0001, Drop-out rate 0.5, Step ratio 0.01 Batch size 100. The SparseQ and 

SparseLambda may be slightly adjusted to balance the precision and recall. 

3 Results 

Comparing with the result we obtained previously [6]—precision 71.5%, recall 60.2%, 

f score 65.4%, as shown in table 1 the improved results are significantly better after 

applying deep feature compression.  For method I, the overall precision is 77.1%, recall 

is 68.0% and f score is 72.2%. The f scores for 43 out of 83 cell lines are greater than 

70% where we only had 32 out of 83 cell lines reported previously [6].  For method II, 

the overall precision is 73.3%, recall is 55.5% and f score is 63.2%.  For method III, 

the overall precision is 72.7%, recall is 58.3% and f score is 64.7%.  While the methods 

II and III show similar results as previously reported, we believe this is due to the shar-

ing of a single model for all 83 cell lines.  The diversity of these cell lines makes our 

approaches used in method II and III not very effective in prediction.  

Table 1. Comparison of the performance  

Methods Precision Recall F-Score 

Chen, Tsoi et al. 

2018 [6] 
71.5% 60.2% 65.4% 

Best in Round 1* 34% 71% 46% 

Best in Round 2* 38% 65% 48% 

Best in Round 3* 42% 55% 48% 

Method 1 77.1% 68.0% 72.2% 

Method 2 73.3% 55.5% 63.2% 

Method 3 72.7% 58.3% 64.7% 

* The best performer in DREAM2015  

4 Conclusions 

We applied deep feature compression for the purpose of predicting effective drug com-

bination. Our results indicate that reducing the dimension of the feature domain by deep 

feature compression can significantly improve the performance of the deep learning 

model we previously developed to predict effective drug combination [6]. 
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