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Abstract
The stochastic multi-armed bandit problem is a
well-known model for studying the exploration-
exploitation trade-off. It has significant possible ap-
plications in adaptive clinical trials, which allow for
a dynamic change of patient allocation ratios. How-
ever, most bandit learning algorithms are designed
with the goal of minimizing the expected regret.
While this approach is useful in many areas, in clin-
ical trials, it can be sensitive to outlier data espe-
cially when the sample size is small. In this article,
we propose a modification of the BESA algorithm
[Baransi, Maillard, and Mannor, 2014] which takes
into account the variance in the action outcomes in
addition to the mean. We present a regret bound for
our approach and evaluate it empirically both on
synthetic problems as well as on a dataset form the
clinical trial literature. Our approach compares fa-
vorably to a suite of standard bandit algorithms.

Introduction
The multi-armed bandit is a standard model for researchers
to investigate the exploration-exploitation trade-off, see
e.g [Baransi, Maillard, and Mannor, 2014; Auer, Cesa-
Bianchi, and Fischer, 2002; Sani, Lazaric, and Munos, 2012a;
Chapelle and Li, 2011; Sutton and Barto, 1998] . Unlike
fully sequential decision-making problems, multi-armed ban-
dit problems are simple enough to allow for theoretical stud-
ies.

The multi-armed bandit problem consists of a set of arms,
each of which generates a stochastic reward from a fixed but
unknown distribution associated to it. The standard goal in
this setting is to find the arm ? which has the maximum ex-
pected reward µ? (or equivalently, minimum expected regret).
The expected regret RT is defined as the sum of the expected
difference between the mean reward of the chosen arm at and
the optimal arm until t = T :

RT = E

[
T∑
t=1

(µ? − µat)

]
∗hossein.aboutalebi@mail.mcgill.ca

While this objective is very popular, there are practi-
cal applications, for example in medical research and AI
safety [Garcıa and Fernández, 2015] where maximizing ex-
pected value is not sufficient, and it would be better to have
an algorithm sensitive also to the variability of the outcomes
of a given arm. For example, consider multi-arm clinical tri-
als where the objective is to find the most promising treatment
among a pool of available treatments. Due to heterogeneity in
patients’ treatment responses, considering only the expected
mean may not be of interest [Austin, 2011]. Specifically, as
the mean is usually sensitive to outliers and does not provide
information about the dispersion of individual responses, the
expected reward has only limited value in achieving a clinical
trial’s objective. This is especially true if some outcomes are
very bad for the patients. Due to this issue, analysis of vari-
ance approaches for studying the effectiveness of the treat-
ments were recently propose [Corbin-Berrigan et al., 2018].
In other studies like [Carandini, 2004], the variance itself is
the source of interest. Also, the consistency of treatment ef-
fects among patients is essential, with the ideal treatment usu-
ally defined as the one which has a high positive response rate
while showing low variability in response among patients.

In this paper, we tackle the problem of designing bandit
algorithms that reflect both the mean and variability of the
arms, by extending one of the recent algorithms in the ban-
dit literature called BESA (Best Empirical Sampled Aver-
age) [Baransi, Maillard, and Mannor, 2014]. One of the main
advantage of BESA compared to other existing bandit algo-
rithms is that it is a non-parametric learning algorithm. This
is especially useful when one does not have any prior knowl-
edge or has insufficient prior knowledge about the different
arms in the beginning. We establish regret bounds for the pro-
posed algorithm, and we show that this new algorithm is su-
perior to some of the past risk-averse learning algorithms like
MV-LCB and ExpExp [Sani, Lazaric, and Munos, 2012a] in
both simulated tasks as well as in some clinical trial tasks.

Background and Notation
We consider the standard bandit setting with action (arm)
set A, where each action a ∈ A is characterized by a reward
distribution ra bounded in the interval [0, 1]. The distribution
for action a has mean µa and variance σ2

a. Let Xa,i ∼ ra
denote the i-th reward sampled from the distribution of ac-
tion a. All actions and samples are independent. The bandit
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problem is described as an iterative game where, on each step
(round) t, the player (an algorithm) selects action (arm) at and
observes sample Xa,Na,t

, where Na,t =
∑t
s=1 I{as = a}

denotes the number of samples observed for action a up to
time t (inclusively). A policy is a distribution over A. In gen-
eral, stochastic distributions are necessary during the learning
stage, in order to identify the best arm. We discuss the exact
notion of “best” below.

We define IS(m, j) as the set obtained by sub-sampling
without replacement j elements form the set S of size m.
Let Xa,t denote the history of observations (records) obtained
from action (arm) a up to time t (inclusively), such that
|Xa,t| = Na,t. The notation Xa,t(I) indicates the set of sub-
samples from Xa,t, where sub-sample I ⊂ {1, 2, . . . , Na,t}.

The multi-armed bandit was first presented in the sem-
inal work of Robbins [Robbins, 1985]. It has been shown
that under certain conditions [Burnetas and Katehakis, 1996;
Lai and Robbins, 1985], a policy can have logarithmic cumu-
lative regret:

lim
t→∞

inf
Rt

log(t)
>

∑
a:µa<µ?

µ? − µa
Kinf(ra; r?)

where Kinf(ra; r?) is the Kullback-Leibler divergence be-
tween the reward distributions of the respective arms. Policies
for which this bound holds are called admissible.

Several algorithms have been shown to produce admissi-
ble policies, including UCB1 [Auer, Cesa-Bianchi, and Fis-
cher, 2002], Thompson sampling [Chapelle and Li, 2011;
Agrawal and Goyal, 2013] and BESA [Baransi, Maillard, and
Mannor, 2014]. However, theoretical bounds are not always
matched by empirical results. For example, it has been shown
in [Kuleshov and Precup, 2014] that two algorithms which do
not produce admissible policies, ε-greedy and Boltzmann ex-
ploration [Sutton and Barto, 1998], behave better than UCB1
on certain problems. Both BESA and Thompson sampling
were shown to have comparable performance with Softmax
and ε-greedy.

While the expected regret is a natural and popular measure
of performance which allows the development of theoretical
results, recently, some papers have explored other definitions
for regret. For example, [Sani, Lazaric, and Munos, 2012b]
consider a linear combination of variance and mean as the
definition of regret for a learning algorithm A:

M̂V t(A) = σ̂2
t (A)− ρµ̂t(A),

where µ̂t is the estimate of the average of observed rewards
up to time step t and σ̂t is a biased estimate of the variance of
rewards up to time step t. The regret is then defined as:

Rt(A) = M̂V t(A)− M̂V ?,t(A),

where ? is the optimal arm. According to [Maillard, 2013],
however, this definition is going to penalize the algorithm if it
switches between optimal arms. Instead, in [Maillard, 2013],
the authors devise a new definition of regret which controls
the lower tail of the reward distribution. However, the algo-
rithm to solve the corresponding objective function seems
time-consuming, and the optimization to be performed may
be intricate. Finally, in [Galichet, Sebag, and Teytaud, 2013],
the authors use the notion of conditional value at risk in order
to define the regret.

Measure of regret
In this section, we will present our definition of regret which
considers both the expected value and the variability of the re-
ward of arms, but unlike [Sani, Lazaric, and Munos, 2012b],
it does not penalize the algorithm if it switches between opti-
mal arms.

Definition 0.1. Optimal arm (action): ? is an optimal arm if
it maximizes the trade-off between the expected outcome and
the variance:

? ∈ arg max
a∈A

(µa − ρσ2
a), (1)

for some fixed ρ > 0.

Definition 0.2. Consistency-aware regret: The consistency-
aware regret for a bandit algorithm B is defined as:

RBT (ρ) =
∑
a∈A

(µ? − ρσ2
? − µa + ρσ2

a)E[Na,T ] (2)

Note that when ρ = 0, the consistency-aware regret corre-
sponds to the well-known expected regret.

RBT =
∑
a∈A

(µ? − µa)E[Na,T ]. (3)

Note that when the context is clear, we will just use RT .
It is clear that computing the consistency-aware regret is

not feasible in a real environment, as we do not have access
to the underlying distributions of arms. Hence, we define the
following empirical mean and variance which will be used to
estimate this regret in our algorithm:

Definition 0.3. Empirical mean and variance: For an algo-
rithm B, the empirical mean and empirical variance of arm a
up to time t is:

µ̂a,t =
1

Na,t

Na,t∑
i=1

ra,i (4)

σ̂2
a,t =

1

Na,t − 1

Na,t∑
i=1

(ra,i − µ̂a,t)2 (5)

where ra,i is the ith reward obtained from pulling arm a.

Note that unlike in [Sani, Lazaric, and Munos, 2012b], the
empirical estimation of the variance of an arm here is unbi-
ased. We will exploit this feature later in our proofs.

For ease of notation, we define the value function for the
set of records of an arm as follows:

Definition 0.4. Consistency-aware value function: For a
given record set Xa,t(I) of an arm a up to time step t, the
corresponding value function is defined as:

v̂(Xa,t(I)) = µ̂(Xa,t(I))− ρσ̂2(Xa,t(Ia,t)). (6)

In the next section, we are going to develop an algorithm
which optimizes the consistency-aware regret using the quan-
tities defined above in its estimation.
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Proposed Algorithm
In order to optimize the consistency-aware regret, we build on
the BESA algorithm, which we will now briefly review. As
discussed in [Baransi, Maillard, and Mannor, 2014], BESA
is a non-parametric approach for finding the optimal arm ac-
cording to the expected mean regret criterion. Consider a two-
armed bandit with actions a and ? ,where µ? > µa, and as-
sume that Na,t < N?,t at time step t. In order to select the
next arm for time step t + 1, BESA first sub-samples s? =
I?(N?,t, Na,t) from the observation history (records) of the
arm ? and similarly sub-sample sa = Ia(Na,t, Na,t) = Xa,t
from the records the arm a. If µ̂sa > µ̂s? , BESA chooses arm
a, otherwise it chooses arm ?.

The main reason behind the sub-sampling is that it gives
a similar opportunity to both arms. Consequently, the effect
of having a small sample size, which may cause bias in the
estimates, diminishes. When there are more than two arms,
BESA runs a tournament algorithm on the arms [Baransi,
Maillard, and Mannor, 2014].

Finally, it is worth mentioning that the proof of the regret
bound of BESA uses a non-trivial lemma for which authors
did not provide any formal proof. In this paper, we will avoid
using this lemma to prove the soundness of our proposed al-
gorithm.

We are now ready to outline our proposed approach, which
we call BESA+. As in [Baransi, Maillard, and Mannor, 2014],
we focus on the two-arm bandit. For more than two arms, a
tournament can be set up in our case as well.

Algorithm BESA+ two action case
Parameters: current time step t, actions a and b. Initially
Na,0 = 0, Nb,0 = 0
Shuffle the arms a and b with a functionM to get a′, b′.

1: if Na′,t−1 = 0 ∨Na′,t−1 < log(t) then
2: at = a′

3: else if Nb′,t−1 = 0 ∨Nb′,t−1 < log(t) then
4: at = b′

5: else
6: nt−1 = min{Na′,t−1, Nb′,t−1}
7: Ia′,t−1 ← Ia′(Na′,t−1, nt−1)
8: Ib′,t−1 ← Ib′(Nb′,t−1, nt−1)
9: Calculate ṽa′,t = v̂(Xa′,t−1(Ia′,t−1)) and ṽb′,t =

v̂(Xb′,t−1(Ib′,t−1))
10: at = arg maxi∈{a′,b′} ṽi,t (break ties by choosing arm

with fewer tries)
11: end if
12: return M−1(at)

The first major difference between BESA+ and BESA is
the use of the consistency-aware value function instead of the
simple regret. A second important change is that BESA+ se-
lects the arm which has been tried less up to time step t if
the arm has been chosen less than log(t) times up to t. Es-
sentially, this change in the algorithm is negligible in terms
of establishing the total expected regret, as we cannot achieve
any better bound than log(T ), as shown in Robbins’ lemma
[Lai and Robbins, 1985]. This tweak also turns out to be vital

in proving that the expected regret of the BESA+ algorithm
is bounded by log(T ) (a result which we present shortly).

To better understand why this modification is necessary,
consider a two arms scenario. The first arm gives a determin-
istic reward of r ∈ [0, 0.5) and the second arm has a uniform
distribution in the interval [0,1] with the expected reward of
0.5. If we are only interested in the expected reward (ρ = 0),
the algorithm should ultimately favor the second arm. On the
other hand, there exists a probability of r that the BESA al-
gorithm is going to constantly choose the first arm if the sec-
ond arm gives a value less than r on its first pull. In contrast,
BESA+ evades this problem by letting the second arm be se-
lected enough times such that it eventually becomes distin-
guishable from the first arm.

We are now ready to state the main theoretical result of our
proposed algorithm.

Theorem 0.1. Let A = {a, ?} be a two-armed bandit with
bounded rewards ∈ [0, 1], and the value gap ∆ = v? − va.
Given the value ρ, the expected consistency-aware regret of
the Algorithm BESA+ up to time T is upper bounded as fol-
lows:

RT = C∆,ρ +O(log(T )) (7)

where in (7), C∆,ρ is a constant which is dependent on the
value of ρ,∆.

Interested reader can visit here to see the full proof.

Empirical results
Empirical comparison of BESA and BESA+
As discussed in the previous section, BESA+ has some ad-
vantages over BESA. We illustrate the example we discussed
in the previous section through the results in Figures 1-6, for
r ∈ {0.2, 0.3, 0.4}. Each experiment has been repeated 200
times. Note that while BESA has an almost a linear regret
behavior, BESA+ can learn the optimal arm within the given
the time horizon and its expected accumulated regret is up-
per bounded by a log function. It is also easy to notice that
BESA+ has a faster convergence rate compared with BESA.
As r gets closer to 0.5, the problem becomes harder. This
phenomenon is a direct illustration of our theoretical result.

Statistical dispersion estimate via sub-sampling
without replacement
In this subsection, we are going to explore the effect of sam-
ple size and sub-sample size on the consistency-aware value
function error of BESA+. We have studied different distribu-
tions to find out their effect on consistency-aware value func-
tion error as well. Average results and standard error bars are
computed over 200 independent experiments in all graphs.

Based on our experiments, changing the ρ value in the
consistency-aware value function definition does not have
much impact on the convergence rate. Moreover, as one
would expect, the distribution type does not have a noticeable
influence on the convergence rate either, although some small
differences can be observed. Due to the space limit, we only
included two figures (figures 7, 8) to illustrate our claim. As
it can be seen in both figures, as we increase the sub-sample
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Figure 1: Result of expected regret per step for r = 0.4, ρ = 0
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Figure 2: Result of accumulated expected regret for r =
0.4, ρ = 0
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Figure 3: Result of expected regret per step for r = 0.3, ρ = 0
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Figure 4: Result of accumulated expected regret for r =
0.3, ρ = 0

size, the expected error decreases significantly. It is also in-
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Figure 5: Result of expected regret per step for r = 0.2, ρ = 0
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Figure 6: Result of accumulated expected regret for r =
0.2, ρ = 0

teresting to note that the expected error is almost independent
of the sample size given the sub-sample size.

Algorithm BESA+ performance
We also evaluated the performance of BESA+ with
consistency-aware regret in a simulated environment. Our
work here is similar to the work [Sani, Lazaric, and Munos,
2012b] in which the authors depicted the performance of MV-
LCB and ExpExp with a synthetic environment. Here, we
considered a two-arm environment with arm 1 having mean 1
and variance in the range [0.1, 1] and arm 2 having the mean
in the range [0.1, 1] and variance 1. It is clear that under any
positive value of ρ, arm 1 should be preferred over arm 2. We
have examined different values of ρ and studied their corre-
sponding effects on the expected consistency-aware regret of
the Algorithm BESA+. (figures 9, 10, 11). In the figures, n
stands for time step. These figures uncover three important
aspects of BESA+. First, we can observe the kind of prob-
lems which are difficult for BESA+. It appears that as the
difference between the mean or variance of two arms shrinks,
BESA+ usually suffers a higher amount of regret. This fact
can also be inferred from Theorem 0.1. Second, we can see
the importance of ρ value in diminishing the effect of vari-
ance or mean. In figure 9, where ρ = 1, we can observe a
bump near the squares where both mean and variance gaps
are small. In figure 10, when ρ = 10, the effect of the mean
gap almost vanishes and we see that as we go from figure 9
to figure 10, the regret graph orients itself toward the smaller
variance gap. The same thing happens as we go from figure
10 to 11. In this regard, in figure 11 (when ρ = 0.1), the
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Figure 7: Result of expected error for normal distribution
(µ = 0 and σ = 1)
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Figure 8: Result of expected error for uniform distribution of
the interval [0, 1]

regret graph has oriented itself toward the smaller mean gap
size. Finally, these figures depict the speed of convergence
of BESA+ Algorithm which seems faster than MV-LCB and
ExpExp.

Real Clinical Trial Dataset
Finally, we examined the performance of BESA+ against
other methods (BESA, UCB1 , Thompson sampling, MV-
LCB, and ExpExp) based on a real clinical dataset. This
dataset includes the survival times of patients who were suf-
fering from lung cancer [Ripley et al., 2013]. Two different
kinds of treatments (standard treatment and test treatment)
were applied to them and the results are based on the number
of days the patient survived after receiving one of the treat-
ments. For the purpose of illustration and simplicity, we as-
sumed non-informative censoring and equal follow-up times
in both treatment groups. As the experiment has already been
conducted, to apply bandit algorithms, each time a treatment
is selected by a bandit algorithm, we sampled uniformly from
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Figure 9: Case: ρ = 1, Top figure: n = 20. Middle figure:
n = 200. Bottom figure: n = 2000.

the recorded results of the patients whom received that se-
lected treatment and used the survival time as the reward sig-
nal. Figure 12 shows the distribution of treatment 1 and 2. We
categorized the survival time into ten categories (category 1
showing the minimum survival time). It is interesting to no-
tice that while treatment 2 has a higher mean than treatment
1 due to the effect of outliers, it has a higher level of variance
compared to treatment 1. From figure 12 it is easy to deduce
that treatment 1 has a more consistent behavior than treatment
2 and a higher number of patients who received treatment 2
died early. That is why treatment 1 may be preferred over
treatment 2 if we use the consistency-aware regret. In this
regard, by setting ρ = 1, treatment 1 has less expected mean-
variance regret than treatment 2, and it should be ultimately
favored by the learning algorithm. Figure 13 illustrates the
performance of different bandit algorithms. It is easy to no-
tice that BESA+ has relatively better performance than all the
other ones.
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Figure 10: Case: ρ = 10, Top figure:n = 20. Middle figure:
n = 200. Bottom figure: n = 2000.

Conclusion and future work
In this paper, we developed a new definition of regret (called
consistency-aware regret) which is sensitive to the variability
in rewards of the different arms by considering the variance of
the rewards. We extended and modified the BESA algorithm
to optimize consistency-aware regret and provided a bound
on its performance. Finally, we illustrated the utility of our
proposed algorithm on a real clinical dataset and studied its
behaviour on some synthetic datasets.

We believe still there exist a noticeable gap between clin-
ical trial problems, which inspired our work, and the nature
of multi-armed bandit problems. Considering other ways to
incorporate reward variability and providing some bounds on
the confidence interval of the arm chosen by a bandit learn-
ing algorithm are promising for the future studies. It is also
interesting to extend other bandit algorithms like Thompson
sampling to consistency-aware regret and study their proper-
ties. Finally, utilizing BESA+ in the acquisition of real data
would be an important future validation step.
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Figure 11: Case: ρ = 0.1, Top figure: n = 20. Middle figure:
n = 200. Bottom figure: n = 2000.
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