
Semantic Web Service Offer Discovery

Jacek Kopecký, Elena Simperl, and Dieter Fensel

Digital Enterprise Research Institute (DERI)
Innsbruck, Austria

firstname.lastname@deri.at

Abstract. Semantic Web Services are a research effort to automate the usage of
Web services, a necessary component for the Semantic Web. Traditionally, Web
service discovery depends on detailed formal semantic descriptions of available
services. Since a complete detailed service description is not always feasible, the
client software cannot select the best service offer for a given user goal only
by using the static service descriptions. Therefore the client needs to interact
automatically with the discovered Web services to find information about the
available concrete offers, after which it can select the best offer that will fulfill
the user’s goal. This paper shows when and why complete semantic description
is unfeasible, it defines the role and position of offer discovery, and it suggests
how it can be implemented and evaluated.

1 Introduction

The Semantic Web is not only an extension of the current Web with more semantic
descriptions of data; it also needs to integrate services that can be used automatically
by the computer on behalf of its user. A major technology for publishing services on
the Web is the so-called Web services. Based on WWW standards HTTP and XML,
Web services are gaining significant adoption in areas of application integration, wide-
scale distributed computing, and business-to-business cooperation. Still, many tasks
commonly performed in service-oriented systems remain manual (performed by a hu-
man operator).

In order to make Web services part of the Semantic Web, the research area of Se-
mantic Web Services (SWS) aims to increase the level of automation of some of these
tasks, e.g. discovering the available services and composing them to provide more com-
plex functionalities. SWS automation is supported by machine-processible semantic
Web service descriptions. Current state of the art in non-semantic service description
is WSDL1, which can describe the messages accepted and produced by a Web service,
and the simple message exchanges (called operations) and all the necessary networking
details. In effect, WSDL specifies a limited syntactical contract that the service adheres
to. Semantic descriptions capture the important aspects of the meaning of operations
and messages, generally in a formal language based on logics.

SWS descriptions are processed by a semantic execution environment (SEE, for
instance WSMX [5]). A user can submit a concrete goal to the SEE, which then finds

1 Web Service Description Language, http://w3.org/TR/wsdl20

3

and uses the appropriate Web services to accomplish the goal. SWS research focuses
mainly on how the SEE “finds the appropriate Web service(s)”, as illustrated in Figure 1
with the first three SEE tasks.

In the figure, meant to be illustrative of the situation, rather than a real-world sce-
nario, the user decides to lead a healthier life and wants to buy 2kg of fruit. The SEE
will first discover any services that sell fruit (discarding the service that sells potatoes),
then it will filter depending on the user’s constraints and requirements (the user doesn’t
like peeling oranges), ranks the resulting services according to the user’s preferences
(the user is a student and so prefers the cheaper options) and selects the one service that
is invoked in the end. At any stage in the process, the user can be allowed to confirm
the results.

Discovery Filtering
buy fruit don’t want oranges

Ranking, selection
prefer the cheapest

Invocation
buy 2kg of apples

oranges
apples, peaches,

peaches
apples,

apples
User goal
"buy 2kg of fruit"

2kg apples, pleaselis
t s

er
vi

ce
s

Registry

descriptions
published

ap
pl

espe
ac

he
s

or
an

ge
s

po
ta

to
es

Web Services − concrete offers

Fig. 1. Semantic Web Services automation tasks

We’ve chosen the simple fruit-shops example here to illustrate the situation in easily
accessible terms, however, the general situation applies to any kinds of service: the
existing services will publish their descriptions in a registry; then the SEE will discover
the services applicable to the goal, filter and rank them according to any constraints and
preferences specified by the user, and invoke the selected service to achieve the user’s
goal.

The steps described above rely solely on the published Web service descriptions to
find the best service that matches the user’s goal. Alas, in many cases it is not feasible
to put all the relevant information in the service description, due to reasons detailed
later in this paper. For instance, a grocery shop service would not list all the kinds of
fruit they currently sell along with their up-to-date prices; instead, such a service would
be described as “selling groceries”. This limits the scope of discovery based on static
descriptions and introduces the need for an additional step, where the SEE will contact
the discovered Web services (or their providers) to find out more about the service’s
concrete offerings.

This additional step is called offer discovery (as opposed to Web service discovery).
The objective of this step is to establish whether the discovered Web service can fulfill
the user’s concrete goal and under what conditions. In our fruit shopping example, the
SEE checks whether a grocery shop service carries any fruits, what sorts of fruits are
available and at what prices, as shown in Figure 2. In this paper, we detail when and why

4

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

static Web service discovery is not sufficient, we describe in detail what offer discovery
needs to accomplish and how offer discovery approaches should be evaluated. We do
not present a complete offer discovery solution in this paper, as our work is in an early
stage.

lis
t s

er
vi

ce
s

Registry

Filtering
don’t want oranges

Ranking, selection
prefer the cheapest

Invocation
buy 2kg of apples

G: apples $0.75S: peaches $0.99
G: apples $0.75

2kg apples, please

what fruits do you have?

Web Services

ha
rd

w
ar

e

su
pe

rm
kt

gr
oc

er
ie

s

buy fruit

Offer discovery

Supermarket (S)
Groceries (G)

S: peaches $0.99
S: oranges $0.69
G: apples $0.75

Service discovery

User goal
"buy 2kg of fruit"

buy fruit

published
descriptions

Fig. 2. Semantic Web Service offer discovery in SEE tasks

This paper is structured as follows: in Section 2 we detail the scenarios where offer
discovery is necessary. Section 3 defines SWS offer discovery and relates it to other
SEE tasks. Section 4 presents related work, both within Web services and in earlier
research areas. In Section 5, we sketch the envisioned solution. Section 6 describes our
expected evaluation methodology, and Section 7 contains concluding remarks.

2 Limitations of static Web service discovery

The best way to define service offer discovery is by describing the problems that it
aims to solve. First, let us review the distinguishable functions of a semantic execution
environment (SEE). The following steps are traditionally executed after a user submits
their goal “buy 2kg of fruit”, as shown in Figure 1.

1. Web service discovery2 — using published descriptions, find all the available Web
services that may sell fruits (the services may be more generic, like a supermarket
with all kinds of products, or more specific, like an owner of a cherry-tree orchard,
who naturally only offers cherries).

2. Filtering — filter out services that do not fit the user’s constraints (for instance a
service that sells oranges, because the user does not like them).

3. Ranking, selection — rank the remaining offers based on the user’s preferences,
for instance by price. The best-ranked service may be automatically selected, or the
ranking may be presented to the user.

4. Invocation — use the selected service to achieve the goal (in our case, purchase
the fruit).

2 Sometimes, the term discovery is used to mean all the steps leading from a user’s goal to a
service that can fulfill it, i.e. everything but invocation. We choose a narrower definition of
discovery which only does matchmaking on the available service descriptons.

5

There are also the additional steps of mediation and service composition, but they
are not particularly relevant to offer discovery, even though they may interact with it.

The task sequence above is fully adequate when the service descriptions carry all the
data relevant for the goal of the user. In a grid environment, a user might need processing
services and storage services, and the descriptions will contain such classifications.
In our fruit-buying scenario, the services need to advertise in their descriptions the
particular kinds of fruit they sell and at their prices (for ranking).

A vast majority of currently available public Web services3 provides only a limited
and fixed number of offers (products, services): a fax service from oneoutbox.com has
a single operation SendFax; the Amazon S3 service at amazonaws.com provides data
storage and retrieval (two offers); or the typical stock quote services provide one offer,
the current (delayed) price of any given stock. As they are described, the fax service
works globally for any fax number, the S3 service works with any size and kind of
data, and many stock quote services purport to know all stocks, therefore there are no
discoverable limitations. The offers of these services are simple and generic.

On the other hand, there are services whose discoverable offers are of a finer gran-
ularity. The Amazon E-Commerce Service, for instance, gives access to all products
sold on Amazon.com. Since Amazon cannot claim to sell all book and DVD titles, for
instance, each book and DVD title and any other product becomes a separate offer.
The service has operations for checking the availability or price of any given book title
etc. On a similar note, a broadband internet provider only serves certain areas, and it
provides operations to check availability at any given address.

Figure 3 illustrates how different kinds of services have widely different numbers
of offers4. From the left side, a temperature conversion service has two operations for
converting either way; a telephony service can have calling, voice mail, sms and a few
other operations; a currency exchange service can recognize tens or hundreds of cur-
rencies; and on the higher end a hotel reservation service can offer tens of rooms a year
ahead (each room on each day is an offer, making thousands of offers); and finally an
online store easily offers upwards of a million products.

110

210

410

510

610

103

010

Fahrenheit
to Celsius

telephony
service

currency
exchange

hotel
reservation

Amazon
ecommerce

number of offers

number of services

(estimate)

(approximate)

with similar complexity

complete description feasible
only roughly up to this point

Fig. 3. Numbers of offers of various types of Web services

3 Found through Web service registries http://seekda.com and http://xmethods.net
4 The figure is only illustrative, it is not based on any concrete quantitative analysis.

6

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

The figure also shows an estimated potential number of distinct services with the
indicated complexity (in terms of the number of offers). We can expect tens of online
stores with millions of products, but already for the complexity of thousands of offers
we can expect many more services — hotels and travel reservation services being prime
examples. The large projected numbers of services with lower complexity can be justi-
fied by the vast variety and complexity of the Web and its diverse domains of discourse;
nevertheless our uncertainty is higher on the left side of the curve of the potential num-
ber of services.

For simpler services, it is not a problem to publish all the relevant information in
the semantic descriptions. Complete description becomes unwieldy for services on the
right side of the graph: some currency exchange services do not bother to publish the
list of supported currencies, hotels only publish up-to-date room availability to their
close partners, and Amazon does not provide a “browse-all” functionality at all since it
would be highly impractical. The dashed vertical line is a rough threshold above which
complete description becomes infeasible.

The reasons against complete semantic description of all offers can be categorized
as follows:

Processing performance: for a larger online store, the full product catalogue would
make a Web service description impractical or impossible to process, considering
current reasoning performance.

Description updates: updating the description in a service registry upon every inven-
tory, availability or pricing change would lead to heavy resource utilization in the
registries.

Trade secrets: a full description of service offers could even reveal sensitive stategy
information or trade secrets.

While reasoning performance may improve, and registry updates can be optimized,
sensitive information and trade secrets will not go away. For instance, a bank service
description would have to detail all loan approval procedures in its complete offer de-
scription. For banks, the loan approval process with all its considerations is part of
what makes some banks successful and others bankrupt. And sensitive information is
not limited to such clear cases as banks. Even online retailers such as Amazon do not
want to publish all offers, including bundle discounts (e.g., get Harry Potter 7 cheaper
with other books in the series). Publishing all the prices and discounted offers in a sin-
gle, easily accessible place, would provide the competition with insights into Amazon’s
strategy, and lower Amazon’s competitive advantage.

In our experience, the complexity of complete service descriptions is a practical
barrier to adoption of SWS technologies within the Web services industry. The need
to maintain the complete descriptions, and to include possibly sensitive data, raises the
barrier even higher. In other words, service discovery based solely on complete static se-
mantic descriptions is of limited usefulness. On the other hand, less detailed “semantic-
light” descriptions (for instance, Amazon would be described as selling books, movie
DVDs, music CDs etc.) limit the SWS automation to simple but imprecise matchmak-
ing and ranking.

These limitations of static semantic Web service discovery affect adversely the
adoption of semantic technologies, and the lack of automation without semantics in turn

7

lowers the adoption of Web service technologies themselves. While it may seem from
Figure 3 that only a relative minority of Web services cannot be described completely,
these complex services represent a significant economical value among the (potentially)
available Web services.

3 Semantic Web Service offer discovery

As we have shown, static service discovery based on complete descriptions is, in many
important cases, not feasible. Therefore, we split the task of finding the most appropriate
offer from all the available Web services into static Web service discovery followed by
dynamic offer discovery. The static Web service discovery uses coarse-grained semantic
Web service descriptions to find services that potentially match the user’s goal, and the
dynamic offer discovery uses the semantic description of the Web service interface to
automatically find any appropriate offers. With offer discovery, the set of steps can be
rephrased as follows:

1. Web service discovery — find all the available Web services that may be able to
fulfill the user’s goal (i.e. discard those which, based on their description, cannot
fulfill the user’s goal).

2. Offer discovery — by interacting with the discovered services, find all their offers
relevant for the goal.

3. Filtering — filter out offers that do not fit the user’s constraints.
4. Ranking, selection — rank the remaining offers based on the user’s preferences,

and select one to be invoked.
5. Invocation — use the selected service.

Offer discovery can be seen as information retrieval (search) or as negotiation, as
discussed in Section 4. Semantic offer discovery should be able to communicate with
any Web service and find information about offers relevant to the user’s goal. For com-
municating with the Web services, the offer discovery engine needs a description of the
service interface (what operations it contains that can be used to gather offer informa-
tion) and a description of the exchanged data, to understand the offers and be able to
compare it with the goal. In other words, offer discovery needs different semantic de-
scription than Web service discovery; the latter needs to know what the service offers,
whereas offer discovery needs to know how to talk to the service to get the information.

Seen as a black box, an offer discovery engine has as its inputs the user goal and the
set of discovered Web services, and the output is the set of offers which should be of the
same granularity as the user goal, even though the semantic description of the service
is on a higher level of abstraction (more coarse-grained). For instance, the semantic
description for the Amazon e-commerce service could say “this service sells books”.
For a concrete user goal “buy the last Harry Potter book”, the offers could be “Harry
Potter 7, Hardback, $12.99” and “Harry Potter 7, Paperback, $8.99”.

Offer discovery complements Web service discovery in situations where the latter
alone is not feasible. Our main hypothesis is that the semantic description necessary for
automated offer discovery is significantly easier to create and manage (and more ac-
ceptable) than the complete semantic description of all the offers. A further hypothesis

8

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

is that the process of offer discovery is more efficient or on par with the processes of
managing the complete descripton and reasoning with it in Web service discovery. The
terms “easy”, “acceptable” and “efficient” are defined more clearly in Section 6, where
we propose evaluation criteria for offer discovery solutions.

We should note that what we call offer discovery is elsewhere in literature (e.g. [6])
called service discovery, making the distinction between a Web service and the ser-
vice it actually provides. We prefer the term “offer” to avoid causing confusion due to
overloading of the common word “service”.

4 Related work

Semantic Web service offer discovery, as defined in the preceding section, is related to
earlier research in automated negotiation, and to the related areas of query processing
and information gathering.

The term negotiation has been used for different purposes in a variety of computer
science fields, e.g. electronic commerce, grid computing, distributed artificial intelli-
gence and multi-agent systems. In electronic commerce, Beam and Segev [2] define
negotiation as “the process by which two or more parties multilaterally bargain re-
sources for mutual intended gain”. There are several different types of negotiations in
e-commerce: auctions (multiple buyers bid for price), double auctions (both buyers and
sellers bid for price, e.g. stock exchanges), one-to-one bargaining, and even catalogue
provision (price fixed by seller). Offer discovery is similar to catalogue provision (offer
discovery accesses and retrieves the relevant parts of the offer catalogue), but it could
be extended in the direction of bargaining as well.

Research in query answering and information retrieval has dealt, among others, with
using multiple information sources to gather the requested (or relevant) information
(cf. [7]), based on a user query. In Semantic Web services, a user goal can be seen as
a form of query, and the discovered Web services (or their individual operations) as
information sources. The particular problem in SWS offer discovery is the description
of the services and their operations so that information retrieval techniques would be
applicable.

We can see that offer discovery is not a problem specific to SWS. However, earlier
efforts on similar automation (e.g. in multi-agent systems) have generally presumed
a controlled environment with a predefined set of interaction protocols for various tasks;
for instance, a marketplace would dictate a bargaining and auctioning protocol. Such an
approach can be applied to Web services, however, a bargaining/auctioning protocol or
a common query language would need to be standardized and adopted by most service
providers. Any SWS offer discovery mechanism, together with any necessary semantic
annotations mechanisms, would be different and novel because SWS offer discovery
aims to be generic, independent of the domain of the service offers. Indeed, the se-
mantic annotations should make the offer discovery algorithm adapt to any available
negotiation or query protocol.

Apart from related work described above, we know of only one published attempt
that involves dynamic offer discovery in Semantic Web Services: Zaremba et al. [10,
11] talk about a so-called “contracting interface” with a described choreography. In

9

their case, the SEE client follows the predefined choreography to find out the concrete
price offered by a discovered Web service. The contracting interface can be likened to
a prescribed protocol for offer discovery.

5 Envisioned solution components

While we do not have a working solution at this time, we can describe the major com-
ponents necessary for any solution for semantic Web service offer discovery. Offer dis-
covery takes a number of discovered Web services (or their descriptions, to be more
precise) together with a user goal and returns a set of offers from these Web services.
Any of the discovered Web services can provide any number of relevant offers, or none
at all, and at least initially we can assume that offers from different services are indepen-
dent. Therefore, we describe offer discovery in terms of dealing with a single service;
if multiple services have come from Web service discovery, we can deal with each one
of them separately. Offer discovery can be seen as a three-step process:

1. selecting the “offer-inquiry” operations from among all the operations of the dis-
covered Web service;

2. planning the execution of some or all of these operations, based on what data is
available in the user’s goal and what data the operations return;

3. invocation of the selected operations according to the plan, translating the appro-
priate goal data into the appropriate XML messages.

The first step is necessary because we cannot assume that all the operations of any
Web service can be used in offer discovery. Indeed, Web service interfaces often in-
termix operations for offer inquiry with operations that actually provide the resulting
product or service, for instance a hotel service would mix the availability inquiry oper-
ations with the operations for booking rooms. For purpose of automatic invocation, we
must select operations that are safe in the same sense in which the Web architecture [1]
defines “safe interactions”:

A safe interaction is one where the agent does not incur any obligation beyond
the interaction. An agent may incur an obligation through other means (such
as by signing a contract). If an agent does not have an obligation before a safe
interaction, it does not have that obligation afterwards.5

To recognize the “offer-inquiry” operations, we need semantic annotations about
the nature of operations. In step with the Web architecture, WSDL 2.0 has a mechanism
for annotating Web service operations as safe; it is unclear whether more information
would be necessary for selecting “offer-inquiry” operations; if so, they can be added

5 A canonical example of a safe interaction is information retrieval — the client may query
a service about the availability of a hotel room, yet by issuing the query the client makes no
commitment to book the room. Note that safety is not the same as idempotency: safe operations
are generally idempotent, but idempotent operations need not be safe — for example a delete
operation on a data store is idempotent but not safe.

10

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

using SAWSDL6 (Semantic Annotations for WSDL and XML Schema), a specification
from the W3C; specifically using modelReference on WSDL operations. It remains to
be seen whether all safe operations can be seen as “offer-inquiry” operations, but due
to their safety, there is no harm in invoking such operations even if they do not actually
help get information about the service offers.

When we have selected the suitable operations, we can use information gathering
and planning techniques in the second step to plan an execution that will return rele-
vant information about the offers pertinent to the user’s goal. We do not have a firm
definition of relevant at the moment, and we expect that this process can even involve
some heuristics for optimizing the interactions with the Web service. Retrieving too
little information will give us an incomplete view of the offers, whereas retrieving too
much information would be overhead and a potential performance problem. This step
requires semantic annotations of the operation inputs and outputs; in other words, what
parameters the operations require and what kind of information they return. Such an-
notations can be added as SAWSDL modelReferences on the XML schema elements
that are the input and output messages of the Web service operations.

The third step actually executes the plan and invokes the operations. Its role is
to ground the goal data (presumably in a Semantic Web language, e.g. RDF or in
WSML [4]) to the XML messages expected by the operations, and interpret the re-
turned XML messages as semantic data about offers. This step can probably be imple-
mented with simple reuse of some automatic Semantic Web service invocation mecha-
nism that implements the grounding (cf. [8]), and it needs annotations that specify the
data grounding transformations.

6 Evaluating SWS offer discovery approaches

The expected end contribution of our work is an efficient approach to automatic offer
discovery that complements Web service discovery based on static descriptions. Even
though we do not yet have a concrete solution, we can sketch the ways in which we
expect to evaluate it. The evaluation criteria listed below are independent of the details
of any proposed solution.

The efficiency of an offer discovery approach is evaluated in two dimensions: vol-
ume and complexity of the necessary semantic description, and the performance and
scalability of the discovery process, as described below. The offer discovery engine will
form a part of a semantic execution environment (SEE). The use cases for a SEE include
the common scenarios of electronic shopping and travel scheduling7, but also existing
real-world applications such as e-Government Emergency Planning, as described in [3],
and any such use cases should be helpful in testing offer discovery.

The major benefit of the presence of offer discovery in a SEE is that the semantic de-
scriptions of Web services need not be complete and detailed (e.g. the whole catalogue
of an online store). This guides the first evaluation criterion: the semantic description
necessary to enable automated offer discovery must be significantly simpler than a com-
plete and detailed static semantic description of the service. The relative simplicity of

6 http://w3.org/TR/sawsdl
7 See http://sws-challenge.org/

11

the semantic descriptions can be tested using reasoning performance comparisons, and
user evaluations of the process of creating and managing the full static description vs.
the descriptions necessary for automatic offer discovery. As these evaluations require
experts, instead of a simple survey with many participants who may not be so expert,
we suggest to use the Delphi method [9] which is shown to have good results with fewer
participants, even though the process is more time consuming.

Apart from the complexity of the semantic descriptions, offer discovery requires
interaction with the Web services, whereas static service discovery based on complete
semantic-heavy descriptions requires that the service provider updates the description
on every change. Therefore, the second evaluation criterion is: the reasoning and net-
worked interaction during offer discovery should have better performance and scala-
bility than the combination of reasoning with complete descriptions and network inter-
actions for description updates. Performance can be compared on specific test cases,
and scalability needs to evaluate how the approaches can deal with many services and
many service offers. Further, the comparison combines reasoning tasks with network
interactions; therefore it is crucial to evaluate different settings of reasoning power vs.
networking setup.

In short, the evaluation of SWS offer discovery approaches is in comparison to static
service discovery with complete descriptions (complete enough to get comparable re-
sults), and it involves experiments in controlled environments for comparing the perfor-
mance, and expert surveys for comparing the relative simplicity and maintainability of
the involved semantic descriptions.

7 Conclusions

Since Web service discovery cannot always be based on complete and detailed semantic
description, it needs to be complemented with automatic offer discovery. In this paper,
we have described the problem, sketched the components of a solution and the evalua-
tion methodology. Eventually, we intend to develop an approach to SWS offer discovery
that will significantly simplify the needed semantic descriptions and thus help ease the
adoption of SWS technologies in the industry.

Any offer discovery approach needs to answer the following major questions: how
should the user goal and concrete offers be modeled semantically to enable a generic
algorithm for offer discovery; and how to select Web service operations that can be used
for retrieving information about concrete offers pertaining to the user goal, plus how to
sequence the invocations of these operations. There are two concrete steps ahead of us
now: we intend first to work on a prototype whose function will help us understand and
formalize offers and goals; when these terms are formalized, we can proceed to specify
and evaluate a concrete fully-fledged approach to offer discovery.

References

1. Architecture of the World Wide Web. Recommendation, W3C, December 2004. Available
at http://www.w3.org/TR/webarch/.

12

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

2. C. Beam and A. Segev. Automated negotiations: A survey of the state of the art. Wirtschafts-
informatik, 39(3):263–268, 1997.

3. R. Davies. Summative report on potential applications of SWS in eGovernment, 2006. De-
liverable D9.16, project DIP (FP6 - 507483), available at http://dip.semanticweb.org/
documents/D916SummativeRpt potentialAppssSWS EGov final.pdf.

4. J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web Service Modeling Language
WSML: An Overview. In Proceedings of the 3rd European Semantic Web Conference
(ESWC 2006), volume 4011 of Lecture Notes in Computer Science, LNCS. Springer, 6 2006.

5. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX – A Semantic Service-
Oriented Architecture. International Conference on Web Services (ICWS 2005), July 2005.

6. U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in the WSMO
Framework. In J. Cardoses, editor, Semantic Web: Theory, Tools and Applications. Idea
Publishing Group, 2006.

7. C. A. Knoblock. Planning, executing, sensing, and replanning for information gathering. In
Proc. of the 14th Int’l Joint Conference on Artificial Intelligence, pages 1686–1693, 1995.

8. J. Kopecký, D. Roman, M. Moran, and D. Fensel. Semantic Web Services Grounding. In
Proc. of the Int’l Conference on Internet and Web Applications and Services (ICIW’06),
Guadeloupe, February 2006.

9. H. A. Linstone and M. Turoff, editors. Delphi Method: Techniques and Applications.
Addison-Wesley, 1975.

10. T. Vitvar, M. Zaremba, and M. Moran. Dynamic service discovery through meta-interactions
with service providers. In E. Franconi, M. Kifer, and W. May, editors, ESWC, volume 4519
of Lecture Notes in Computer Science, pages 84–98. Springer, 2007.

11. M. Zaremba, T. Vitvar, M. Moran, and T. Hasselwanter. WSMX Discovery for SWS Chal-
lenge. SWS Challenge Workshop, Athens, Georgia, USA, November 2006.

13

