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Abstract. Several description frameworks to semantically describe and match
services on the one hand and service requests on the other have been presented
in the literature. Many of the current proposals for defining notions of match
between service advertisements and requests are based on subsumption check-
ing in more or less expressive Description Logics, thus providing boolean match
functions, rather than a fine-grained, numerical degree of match. By contrast,
concept similarity measures investigated in the DL literature explicitely include
such a quantitative notion. In this paper we try to take a step forward in this area
by means of an analysis of existing approaches from both semantic web service
matching and concept similarity, and provide preliminary ideas on how to com-
bine these two building blocks in a unified service selection framework.

1 Introduction

In the quest to provide the underpinnings for Service-Oriented Architectures, proper
methods to enable the automatic location and selection of suitable services in order to
solve a given task or user request are an essential ingredient. To this end, several de-
scription frameworks to semantically annotate provided services on the one hand and
express service requests on the other, both based on the same shared, formal ontologies,
have been presented in the literature. Complementarily, numerous proposals for defin-
ing notions of match between such semantic descriptions of service advertisements and
requests have been developed over the last few years.

Many of these are based on subsumption checking in more or less expressive De-
scription Logics, thus providing boolean match functions, but not a fine-grained, numer-
ical degree of match. On the contrary, concept similarity measures investigated in the
DL literature provide precisely this missing piece but their application to the concrete
domain of service matching is very limited. This is not as surprising as it may seem
because, as pointed out in this work, the combination of service matching notions and
concept similarity in a unified framework is not as straightforward as could be expected.

The objective of this paper is to take a step forward in this area by a systematical
analysis of existing approaches from both semantic web service matching and concept
similarity in order to combine these two building blocks into a unified service selection
framework.
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The rest of the paper is organized as follows. In section 2 we provide a review of
notions of concept similarity in ontologies. Then, we survey current approaches found
in literature to semantic service descriptions by means of ontologies and notions of
match between formally defined requests and service advertisements, and discuss how
concept similarity can be used to refine them. We provide also preliminary ideas where
concept similarity could be beneficial to refine the notions of service matchmaking,
aiming at a framework for a numerical notion of service match aimed at refineing the
notions defined in literature. We conclude with an outlook and future work.

2 Preliminaries

In order to enable semantic matchmaking, it is necessary that possible communica-
tion partners, say service providers and requesters, agree on a certain specification of
a conceptualization[13] of the domain, i.e. a shared, formal ontology. In the context
of the Semantic Web and Semantic Web Services, this term which originally sets from
Philosophy, is usually conceived by Computer Scientists as a logical theory defining
and axiomatizing the concepts and properties used to describe the domain. Common to
almost all ontology languages (like DAML+OIL[3] ,OWL [6], KIF [12], WSML [5],
Common Logic [7]) is that in principle they are based on first-order languages, usually
representing concepts as unary predicates and properties (i.e., relations between con-
cepts) as binary predicates. In such a language a subclass-hierarchy (or taxonomy) of
concepts can be expressed simply by a set of implications, where e.g.

∀xOnlineBankingService(x) → FinancialService(x) (1)

expresses that concept OnlineBankingService is a subclass of FinancialService
and simple facts like FinancialService(myDepotService) denote membership of
certain instances in classes. With these basic ingredients, it is already possible to de-
scribe simple taxonomies of concepts.

2.1 Description Logics

In the context of conceptual and ontological reasoning especially the Description Log-
ics (DL) fragments [1] of first order logics have gained momentum, due to their desir-
able features such as decidability of core reasoning tasks such as concept subsumption
and concept membership. Among these, especially SHIQ, SHIF, and SHOIN deserve
attention, being the logical foundations of DAML+OIL, OWL Light, and OWL DL, re-
spectively. As opposed to simple subclass hierarchies expressible with formula like (1),
DLs allow more sophisticated definitions of concept hierarchies by relating concepts by
roles (binary relations) and defining subclass relations via these roles. Roles may also
be viewed as object attributes or predicate-value pairs assigned to objects, respectively,
and are usually modelled via binary predicates, where e.g.

∀x.CreditCardAccountService(x) → (∃y.input(x, y) → CredidCardNumber(y))
(2)
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expresses that the class of CreditCardAccountService is a subclass of the “ser-
vices which have a CreditCardNumber as input”, or, in other words that allCreditCard-
AccountServices have a CreditCardNumber as input. In order to express such
complex subclass relations, DLs provide an easier to read syntax to define complex
class descriptions as follows (we take here the syntactic constracts of SHOIN, the base
language of OWL DL, as a basic example), where C,D are class descriptions and R is a
role name:

DL Syntax First-order Syntax
C C(x)
∃R.C ∃y.R(x, y) ∧ C(y)
∀R.C ∀y.R(x, y) → C(y)
C uD C(x) ∧D(x)
C tD C(x) ∨D(x)
≥ nR ∃y1, y2, . . . yn.

V
1≤i≤n R(x, yn) ∧

V
i6= yi 6= yj

≤ nR ¬∃y1, y2, . . . yn+1.
V

1≤i≤n R(x, yn+1) ∧
V

i6= yi 6= yj

The above subclass statment (2) would then be written CreditCardAccountService
v ∃input.CreditCardNumber in DL notation. Now, if you had for instance addi-
tional information thatCreditCardNumber v PaymentCredential, and that every-
thing which has a payment credential as input, is in the class CommercialService, i.e.
∃input.PaymentCredential v CommercialService we could additionally infer
that CreditCardAccountService is a subclass of CommercialService, i.e. Credit-
CardAccountService v CommercialService Commercial Services are not nec-
essarily only ones dealing with credit card account management, another subclass of
CommercialService is for instance CarRentalService. Figure 1 shows a simple con-
cept hierarchy for the concepts mentioned here showing explicit (arrows) and some
inferred (dashed arrows) subclass relationships.

By complex concept definitions and inferred concepts, terms like least common sub-
sumer (lcs)3, depth or distance in the concept lattice, which are quite intuitive for simple
taxonomies, become a bit blurry. In fact, we can observe that literature which talks about
measures of distance in description logics such as [2] usually only consider very simple
description logics. We will get back to this point later on and leave the reader at the
moment with the question to intuitively try to assess whether CarRentalService is
more “similar” to CommercialService than CreditCardAccountService?

2.2 Concept Similarity

Getting back to our goal to find measures for “matches” we find several similarity mea-
sures having been proposed in the Literature. Some authors define the similarity while
others use distance. Both measures are inversely proportional and usually are taken as
the inverse of each other.

Simple (atomic) concepts In this section we describe some of the approaches proposed
in the literature to measure similarity between two simple concepts.

3 also known as the most specific ancestor (msa)
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Fig. 1. A simple concept hierarchy for services

One of the most well known distance measures between concepts is the length of
the shortest path between them in the taxonomy, proposed by Rada et al. [24]. As both
concepts might not be along the same branch of the taxonomy tree, it can be calculated
as the sum of the path length from each concept to their lcs.

dist(c1, c2) = depth(c1) + depth(c2)− 2× depth(lcs(c1, c2)) (3)

where depth(c) is the number of edges from c to the root concept.
Leacock & Chodorow [17] define the similarity between two terms as the related-

ness, which they define as the inverse of the semantic distance.

relatedness(t1, t2) = − log
dist(t1, t2)

2D
(4)

where dist(t1, t2) is the same as (3), and D is the maximum depth of the structure.
In their role-based4 service matchmaking approach Fernández et al. [11] consider

similarity (degree of match) as asymmetric. They consider some degree of similarity
between concepts if there is a subsumption relation between them in the taxonomy.
They define the following function, which is also based on the path length between
them.

sim(c1, c2) =



1 if c1 = c2

1
2 + 1

2·e‖c1,c2‖ if c2 subsumes c1

1
2 · e

‖c1,c2‖ if c1 subsumes c2

0 otherwise

(5)

4 Here we refer to roles of an actor or agent, as opposed to the roles related to ontologies that
we mentioned above.
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Here, ‖ ·, · ‖ is the distance (depth(c2)− depth(c1)) in the taxonomy tree.
The aforementioned measures (3) and (5) are independent of the absolute location

of concepts in the taxonomy tree. Other proposals further refine these approaches by
taking into account the depth of the concepts in the taxonomy. This makes sense
under the assumption that concepts at upper layers have more general semantics and less
similarity between them, while concepts at lower layers have more concrete semantics
and thus stronger similarity.

In this line, Wu & Palmer [28] use the terminology score to define the similarity
between two terms:

score(t1, t2) =
2N3

N1 +N2 + 2N3
(6)

Where N1 and N2 are the length sof the shortest path from t1 and t2 (respectively)
to the lcs, and N3 is the length of the shortest path from the lcs to the root.

Li et al. [19] define the similarity between two concepts as:

sim(c1, c2) =

{
e−αl · e

βh−e−βh

eβh+e−βh si c1 6= c2
1 otherwise

(7)

where α ≥ 0 and β ≥ 0 are parameters scaling the contribution of the shortest path
length (l) between the two concepts and the depth of the lcs (h) in the concept hierarchy,
respectively.

Other authors do not base concept similarity on the distance between the concepts
in the taxonomy.

Tversky [27] proposes an approach in which a concept C is characterized by a set
of features, ftrs(C). He introduces two kind of measures:

1. contrast model

contrast(C, D) = θf(ftrs(C)∩ftrs(D))−αf(ftrs(C)\ftrs(D))−βf(ftrs(D)\ftrs(C))
(8)

where \ is set difference, θ, α and β are non-negative constants, and f(·) is usually
the count of features in the set. That is, the number of common minus the number
of non-common features.

2. ratio model

sim(C, D) =
f(ftrs(C) ∩ ftrs(D))

f(ftrs(C) ∩ ftrs(D)) + αf(ftrs(C)\ftrs(D)) + βf(ftrs(D)\ftrs(C))
(9)

When asymmetry of similarity is not desired, α = β = 0.5 can be chosen, and
under the assumption that f is distributive over disjoint sets (f(V ∪W ) = f(V ) +
f(W )), similarity is commonly taken as:

dist(C,D) =
2× f(ftrs(C) ∩ ftrs(D))
f(ftrs(C)) + f(ftrs(D))

(10)
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Resnik [25] proposes an information-content based model in which there are infor-
mation about the probability of an individual being described by a specific concept C
(pr(C)). He uses the lcs(c1, c2) as the representative of the similarity of c1 and c2, and
proposes the information content as similarity measure:

sim(c1, c2) = IC(lcs(c1, c2)) = − log pr(lcs(c1, c2)) (11)

This approach has the advantage of not being transparent to changes in the hierar-
chy.

Jiang & Conrath [14] refine Resnick’s measure:

sim(c1, c2) = IC(c1) + IC(c2)− 2× IC(lcs(c1, c2)) (12)

Lin [20] proposes:

sim(c1, c2) =
2× IC(lcs(c1, c2))
IC(c1) + IC(c2)

(13)

Borgida et al. [2] apply some of the previous approaches to a very simple DL (A),
involving only conjunctions. Di Noia and colleagues [22] focus on DL and propose a
ranking function for what they call potential match (some requests in demandD are not
specified in supply S). The ranking function rankPotential(S,D) counts:

– the number of concepts names in D not in S,
– the number of number restrictions of D not implied by those of S,
– add recursively rankPotential for each universal role quantification in D,

assuming 0 to be the best ranking.
Fanizzi & d’Amato [9] define a similarity measure between concepts in ALN DL.

They decompose the normal form of the concept descriptions and measure the similarity
of the subconcepts:

– Primitive concepts: ratio of the number of common individuals with respect to the
number of individuals belonging to either conjunct.

– Value restrictions: computed recursively, the average value is taken.
– Numeric restrictions: ratio of overlap between the two intervals and the larger in-

terval (whose extremes are minimum and maximum), the average value is taken.

In the OWLS-MX [15] semantic Web service matching approach, logic-based rea-
soning is complemented by IR (Information Retrieval) based similarity computation.
In particular, they allow four different token-based string metrics: the cosine, the loss
of information, the extended Jacquard and the Jensen-Shannon information divergence
similarity metrics. This metrics are applied to unfolded concepts, e.g. the unfolded ex-
pression (and C (and B (and A))) corresponds to the concept C (C v B v A).

Table 1 summarizes the different approaches to concept similarity described in this
section.

The first characteristic determines whether a taxonomy tree based (structural) model,
a feature based model, or a DL based model is applied (including the DL language
used).
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Approach focus symmetry distance depth measure range
Rada et al. structural concept yes yes no distance 0..2H

Leacock-Chodorow structural concept yes yes no similarity 0..∞
Fernndez et al. structural concept no yes no similarity 0..1

Wu-Palmer structural concept yes yes yes similarity 0..1
Li et al. structural concept yes yes yes similarity 0..1

OWLS-MX structural concept yes yes* yes* similarity 0..1
Tversky-contrast feature concept yes no no similarity 0..N

Tversky-ratio feature concept yes/no no no similarity 0..1
Resnick structural instance yes no no similarity 0..∞

Jiang-Conrad structural instance yes no no distance 0..∞
Lin structural instance yes no no similarity 0..1

Borgida et al.-feature DL A concept yes no no similarity 0..1(N)
Borgida at al.-struct. DL A concept yes yes no distance 0..2H

Borgida et al.-IC DL A instance yes no no distance/sim 0..∞(1)
Di Noia et al. DL concept no no no distance ≥ 0

Fanizzi-d’Amato DL ALN concept yes no no similarity 0..1
Table 1. Summary of concept similarity approaches

Most approaches described here make use of concept definitions but others base
their similarity measures on the number of instances of concepts, which are less affected
by changes in the taxonomy.

Although symmetry has been defined by several authors as a desirable property of
similarity functions, not all approaches readily comply with it. Consider, for instance,
a semantic service matching scenario where it is important whether an input concept
in the query subsumes or is subsumed by an input concept of an advertised service
(this determines if the service can, at least, be invoked). Note that the Tversky-ratio
approach allows both, symmetric and asymmetric options, depending on the values of
some parameters in its similarity function.

Distance between concepts in the taxonomy is the main parameter used by structural
approaches (including the Borgida et al. DL based on Rada’s function). This measure
makes sense under the assumption of equally distributed instances over concepts; other-
wise pairs of concepts in a fine grained part of the taxonomy would be ranked with lower
similarity than concepts at the same distance in another part. In the case of DL, dis-
tance is difficult to be used unless some kind of “canonical representation” is adopted.
However, as we illustrated by the example of Figure 1, such a canonical representa-
tion is hard to find for expressive DLs. Common DL reasoners allow to “pre-classify”
the TBox of an ontology, thus computing all subclass relations of named concepts. One
could take the spanning tree of such a pre-classification, removing all transitive edges as
a starting point for distance measures, but would miss the difference then for concepts
defined by restrictions. Another possible way to circumvent this and maybe arriving at
a more precise canonical representation would be to recursively introduce new atomic
concept names for all atomic restrictions ∃R.C, ∀R.C, such that R is a role and C is
an atomic concept occurring in the TBox and use these as well in the pre-classification.
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DLs allowing disjunction (t) are hard to grasp by such approaches, we will mention
more on complex compound concepts below.

As for assumptions, we mentioned above that often one assumes that in a taxon-
omy tree, higher nodes represent more general concepts (less similar semantically),
while lower levels contain more specific concepts. For this reason, some approaches
also take into account the depth of the concepts in the taxonomy. However, we note that
this assumption only makes sense if we additionally assume equal distribution among
instances among subclasses in the ontology in the general case.

Note that, the way OWLS-MX applies IR techniques by unfolding concept names,
indirectly uses the distance and depth of concepts, but could also be viewed as kind of
feature-based similarity measure mentioned above.

We also detail whether they define a similarity function or a distance function. Al-
though both measures can be easily obtained from each other (e.g. sim = 1

dist ) we
prefer keeping their original definition, as they vary on the range of the returned value
(last column). A unified range of values is convenient in order to make it easier to
combine/aggregate similarity values in case of complex expressions involving several
concepts.

Complex (compound) concepts Rada et al. also extend the definition of distance to
handle compound concepts represented by a set of concepts. Concepts in those sets can
be interpreted as conjunctions or disjunctions. In the case of a disjunction of concepts
the distance is defined as:

dist(C1 t . . . t Ck, C) = minidist(Ci, C) (14)

where Ci and C represent concepts (elementary or compound). When C itself is a
disjunctive concept, the same function (dist(Ci, C)) is in turn applied.

The distance between conjunctive concepts is defined as:

dist(V1, V2) =


0 if V1 = V2

1
|V1||V2|

∑
u∈V1

∑
v∈V2

dist(u, v) otherwise
(15)

where V1 and V2 are sets representing compound concepts consisting of a conjunc-
tion (u) of its elements, | · | is set cardinality, and dist(u, v) is the shortest path length
between nodes u and v.

Ehrig et al. [8] analyze three layers on which similarity between concepts can be
measured: data, ontology and context layer. We are interested on the ontology level.
They use the function proposed by Li et al. in case of similarity between concepts.
They also propose the following formula (cosine) to calculate the similarity between
two sets of concepts:

sim(E,F ) =

∑
e∈E

e ·
∑
f∈F

f∣∣∣∣ ∑
e∈E

e

∣∣∣∣ ·
∣∣∣∣∣ ∑
f∈F

f

∣∣∣∣∣
(16)
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withE = {e1, e2, . . .}, e = (sim(e, e1), sim(e, e2), . . . , sim(e, f1), sim(e, f2), . . .),
and the analogously for F and f , respectively.

Sierra & Debenham [26] define the semantic similarity between two logical for-
mulas as the maxmin similarity between the sets of concepts (O(·)) that appear in the
formulas:

sim(ϕ,ψ) = max
ci∈O(ϕ)

min
cj∈O(ψ)

{sim(ci, cj)} (17)

In total, it seems that combinations of these approaches could be beneficial. Espe-
cially feature-set approaches seem to be worthwhile to be combined with approaches
handling compound, complex DL expressions in order to get to more precise overall
measures.

3 Matching Semantic Web Services

When having a closer look at current proposals to effectively annotating Web Services
with Semantic descriptions, we can identify the following “hooks” for adding such
annotations referring to ontologies as discussed so far. We focus here on components
of semantic Web Service descriptions for which concepts in a taxonomy or complex
ontology can be used for annotating them.

Service Taxonomies The entirety of the functionality offered by a Web Service can be
described by a taxonomy, grouping service instances hierarchically, such as for instance
the CarRentalService or CreditCardAccountService mentioned in Figure 1.

Operations When searching for a certain functionality, one often searches for a particu-
lar operation to execute, rather than the entirety of service functionality. Thus, most de-
scription frameworks support assigning offered operations to a taxonomy of operations
in a service. Such an Operation could for instance be RequestCreditCardBalance,
BookRentalCar, or all operations having a payment credential as input – which could
be modeled by something like WSDLOperation u ∃input.PaymentCredential –
etc., all of which again may be grouped in a taxonomy/ontological hierarchy.

Inputs/Outputs Input values or output values of web services or certain service oper-
ations might be bound to a certain concept in an ontology. The problem of relating a
concrete input or output message format (as for instance described in a WSDL file) is
often referred to as lifting/lowering [16] problem and solved slightly different in the
various Semantic Web service description approaches.

Preconditions/Postconditions Frameworks like OWL-S and WSMO offer functionality
to annotate services and/or operations with pre- and postconditions, i.e. logical formulae
expressing conditions over the state of the world. Since these conditions can usually not
be expressed in a taxonomy or ontological hierarchy, rather more complex formalisms
than Description Logics or OWL are proposed to describe these, like WSML logical ex-
pression in WSMO or SWRL rule bodies, expressing conjunctive queries on the “state
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space” in OWL-S. Our focus in the current paper is on applying concept similarity to
service matching and we are not aware of service matching approaches which practi-
cally exploit pre-/postcondition matching at the moment. In summary, it seems to be
not entirely clear, how pre-/postcondition matching can be done at all in open service
environments, which might also be a reason why they have not been considered e.g. in
SAWSDL.

Summarizing, we will try to take into account those parts of the service descrip-
tion which allow for a conceptualication in a formal ontology, namely inputs/outputs,
overall service functionality, and operations. Moreover, we deem useful to assume the
following attributes/roles:

– hasInput: domain: Service tOperation, range: Input
– hasOutput: domain: Service tOperation, range: Output
– hasOperation: domain: Service, range: Operation

Services or Operations might have additional attributes assigned, e.g. describing non-
functional properties which likewise might be useful for precise matchmaking, but
which we consider out of scope for the current paper being focused on matchmaking
by concept similarity.

SWS frameworks In the following table, let us briefly analyse if and how the afore-
mentioned components are supported by three of the most common Semantic Web Ser-
vice Description Frameworks5, namely, OWL-S [21], WSMO [4] and SAWSDL [10],
which has just reached the status of a proposed recommendation within W3C. We note

Service Operation Input/Output Pre/Postcondition
OWL-S yes OWL-S service models OWL-S service models OWL-S service models
WSMO yes WSMO capabilities WSMO choreography model WSMO capabilities

SAWSDL modelReference in
wsdl:interface

modelReference in
wsdl:operation

modelReference in
xsd:element

no

Table 2. Where SWS approaches allow annotations by concepts from given ontologies

that while SAWSDL is in general to be viewed a simpler framework than the other two,
it offers useful features in comparison to its predecessors, e.g. having sophisticated sup-
port to annotate inputs and output messages; SAWSDL allows to add annotations on the
level of single XML Schema elements directly within XML Schema, describing parts
of the allowed input/output messages, whereas OWL-S and WSDL concepts can be
assigned only per input and tying to a particular XML Schema describing the concrete
message format has to be defined in the so-called grounding, typically via an XSL trans-
formation. We mention this, because at the time being, the main development effort and
activity, as well as chance of making it through to becoming a standard is on SAWSDL.

5 (in order of “appearance”)
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3.1 Notions of match

In the following, we will try to analyze how existing approaches for service matching
cater for ranking and make suggestions where concept similarity measured could be
plugged to refine the proposed notions of match.

Paolucci [23] Many of the current approaches to semantic web services matching,
particularly those based on OWL-S, started from the work of Paolucci et al. [23]. This
approach proposes a matching algorithm that takes into account inputs and outputs of
advertised and requested services. An output matches iff for each output of the request
there is a matching output in the service description. The authors differentiate four
(ranked) degrees of match (OUTS and OUTR correspond to outputs of the advertised
and requested services, respectively)6:

– exact: if OUTR
.= OUTS ; or OUTR is a direct subclass of OUTS under the assumption

that by advertising OUTS the provider commits to provide outputs consistent with
every immediate subtype of OUTS .

– plug-in: if OUTS � OUTR, that is, OUTS could be plugged in place of OUTR.
– subsumes: if OUTR � OUTS .
– fail: no subsumption relation between OUTS and OUTR exists.

If there are several outputs with different degree of match, the minimum degree is
used. The same algorithm is used to compute the matching between inputs, but with the
order of request and advertisement reversed. Finally, the set of service advertisements
is sorted by comparing output matches first, if equally scored, considering the input
matches.

Applying concept similarity In Paolucci’s approach services are sorted according to
their degree of match, being exact > plug − in > subsumes > fail. However,
services falling into the same category (e.g. plugin) have the same priority. A concept
similarity approach can be used to refine the ranking of services inside each degree of
match category. In particular, only plug-in and subsumes should be refined. As they base
their classification on the subsumption relation between concepts in a taxonomy tree,
one of the structural (path length based) similarity approaches might be adequate. In
case of several inputs (or outputs), they consider the minimum among their degrees of
match. In the same line, the minimum value can also be used to compare their similarity
measures.

OWLS-MX The OWLS-MX matchmaker [15] performs hybrid semantic matching
that complements logic based reasoning with syntactic IR based similarity metrics. The
first three degrees of match are logic based only and, although using the same naming
as Paolucci, they are defined differently (e.g. in OWLS-MX inputs of the advertisement
always must at least subsume the ones in the request, so the service can be invoked).7

6 .
= and � terminological concept equivalence and subsumption, respectively.

7 LSC(C) (set of least specific concepts (direct children) of C), LGC(C) (set of least generic
concepts (direct parents) of C), SimIR(A, B) ∈ [0, 1] the numeric degree of syntactic simi-
larity between strings A and B according to chosen IR metric IR
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– exact: iff ∀ INS ∃ INR: INS
.= INR ∧ ∀ OUTR ∃ OUTS : OUTR

.= OUTS .
– plug-in: ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : OUTS ∈ LSC(OUTR). S is

expected to return more specific output data whose logically defined semantics is
exactly the same or very close to the requested by the user.

– subsumes ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : OUTR � OUTS . This relaxes
the constraint of immediate output concept subsumption.

– subsumed-by ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : (OUTS
.= OUTR ∨ OUTS

∈ LGC(OUTR)) ∧ SIMIR(S, R) ≥ α. Output data is more general than requested.
It is focused on direct parent output concepts to avoid selecting services returning
data too general. It is combined with the syntactic similarity.

– logic-based fail: matching fails according to the above logic-based semantic crite-
ria.

– nearest-neighbor ∀ INS ∃ INR: INS � INR ∧ ∀ OUTR ∃ OUTS : OUTR � OUTS ∨
SIMIR(S, R) ≥ α.

– fail: service advertisement and request do not match according to the above criteria.

Applying concept similarity As occurred in the previous approach, concept similarity
could be applied when the subsumption relation is checked (�). Now the aggregation of
similarity values is a little more complicated since, besides the set of inputs and outputs,
it has also to be combined with the IR similarity value (in the case of subsumed-by
and nearest-neighbor). This combination is not straightforward, maybe a parametrized
function which allows scaling the contribution of each measure might be appropriate.

Li Horrocks[18] A DL concept is used to describe the inputs and another for the out-
puts of a service advertisement or request. They extend the degrees of match proposed
by Paolucci et al. by adding an intersection match. Formally,

– exact: if A ≡ R.
– plug-in: if R v A.
– subsume: if A v R.
– intersection: ¬(A uR v ⊥)
– disjoint: A uR v ⊥.

Applying concept similarity Since this approach is focused on DL, in this case distance
is difficult to be used, unless some canonical representation is found. Although some
approaches to concept similarity for DL were reviewed in section 2.2, they resulted to
be applied on very simple DL, thus more investigation in this line is needed.

3.2 Towards a combined notion of similarity-based Service matchmaking

In this section we provide preliminary ideas on how concept similarity might be com-
bined with notions of match. Our aim is to provide a unified matching function which
returns a numeric value that can be used for ranking services. We consider such a func-
tion with range [0..1] although, of course, any other range would be acceptable as well.

In section 3 we identified three components of semantic service descriptions: in-
puts, outputs and operations. For each component, a function should return its degree
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of match, IM , OM , and OpM , respectively. Following current approaches, relations be-
tween components are usually classified according to several categories or notions of
match(e.g. exact, plug-in, intersection,...). As analyzed in section 3.1 this classification
is coarse grained and might be refined with concept similarity approaches. The rank-
ing function must compare the notion of match first, and then the (numerical) similarity
value. A way to facilitate the use of such a function is by dividing the range [0..1] in non
overlapping intervals and scaling the similarity value to the interval corresponding to
its category. Any division is acceptable under the condition that it keeps the order as is
done for their categories. We define the following functions (being c1 and c2 concepts):

– nom(c1, c2): returns the notion of match category ∈ {cat1, cat2, ..., catN}, where
cat1 > cat2 > catN . Note that usually cat1 = exact and catN = fail.

– inf(cat): returns the lower limit of the interval corresponding to category cat.
– sup(cat): returns the upper limit of the interval corresponding to category cat.
– sim(c1, c2): returns the concept similarity, which is a value ∈ [0..1].
– nosm(c1, c2): returns the notion of similarity match between c1 and c2, which is

a value resulting of scaling the sim(c1, c2) into the interval corresponding to the
category nom(c1, c2). This can be defined as

nosm(c1, c2) = inf(nom(c1, c2))+sim(c1, c2)·(sup(nom(c1, c2))−inf(nom(c1, c2)))

IM , OM and OpM should be defined based on nosm applied to its individual el-
ements (e.g. each of its inputs for IM ). Such a functions, for instance IM might use
aggregation functions, like the ones described for similarity of compound concepts in
section 2.2 or others.

Finally, the three values need to be combined, for instance by taking a weighted
sum:

match(S,R) = α · IM + β ·OM + θ ·OpM (18)

where α, β and θ ∈ [0..1], and α+ β + θ = 1.

4 Conclusions

In this paper we have provided a survey of current approaches to semantic service de-
scriptions by means of ontologies and notions of matching between requests and ser-
vice advertisements. These proposals rank service advertisements following a (coarse-
grained) notion of match classification. We have also reviewed concept similarity frame-
works in ontologies and discussed how these could be incorporated into the existing
service description and matchmaking methodologies, so as to provide a fine-grained
ranking of services. Finally, we have provided preliminary ideas aiming at a numerical
notion of service match which combines notions of match with concept similarity.

This paper has reported on our work in progress. Some of the identified open issues
include:

– What service description framework should we focus on? Should we select an ex-
isting one such as OWL-S, WSMO, etc, or a new one to which these approaches
could be mapped?
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– Which concept similarity measure better fits our framework? Is there a single “best”
measure? What are the conditions that it must fulfill?

– How should values corresponding to different elements be combined?
– do different applications require the same framework or should it be configured for

each of them?

Some of these questions are being tackled presently, while the in-depth coverage of
others is subject to our future work.
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