
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0).

Intellectual technology for computation control in the package

of applied microservices

I V Bychkov, G A Oparin, V G Bogdanova and A A Pashinin

Matrosov Institute for System Dynamics and Control Theory SB RAS, Lermontov St.

134, Irkutsk, Russia, 664033

bvg@icc.ru

Abstract. The complexity of exhaustive problems with the properties of large-scale, openness,

unpredictable dynamics, and component mobility determines the relevance of developing

microservice-oriented software for their solving in a hybrid computational environment. We

propose an approach for adapting to this environment both the existing software and new ones

developed using new automated technology for creating an applied microservice package and

organizing control of computations in it. The distributed computational model is represented by

a set of small, loosely coupled, replaceable, interacting with the use of lightweight

communication mechanisms autonomous microservices that implement the functions of the

program package modules. The decentralized management of the microservices interaction is

carried out by a self-organizing multi-agent system, agents of which are delegated the rights to

launch microservices. The paper discusses the models, methods, and software platform that

form the basis of the proposed technology. We demonstrate the application of the applied

microservice package, based on this technology, for solving the problems of qualitative

analysis of binary dynamic system using the author's Boolean constraints method.

1. Introduction

Recently, the trend of active use of the microservice technology for accessing cloud resources is

observed mainly in the development of business applications. Currently, many papers (for example,

[1, 2]) raise issues related to the development of tool environments and the providing infrastructures

for implementation resource-intensive scientific applications based on microservices. Our research

focuses on the use of microservice technology for automating both the creation new and adaption an

existing application software for the hybrid computing infrastructure that provides the ability to solve

complex problems of some subject domain (SD). The research in such SD requires computational

experiments (multivariate calculations), due to the variation of the mathematical model of the

problem, the use of various research methods, algorithms of implementation based on these methods,

and source data. In particular, the area of our scientific interests is related to the study of dynamics and

structural-parametric synthesis for different classes of dynamic controlled systems. The experience of

development of the applied program packages in this area is summarized in [3]. Currently, we focus

on the qualitative study of binary dynamic systems (BDS) based on the developed by authors method

of Boolean constraints [4].

Based on the proposed technology, hybrid computing environment oriented software is presented

in the form of a package of applied microservices (AMP). The AMP distributed computational model

is represented by a set of small, loosely coupled, replaceable, and interacting with the use of

lightweight communication mechanisms autonomous microservices [5], within our approach,

implementing the functions of the package modules. Nowadays, the researchers pay great attention to

microservices-oriented computational infrastructure development. Thus, various aspects of a complete

transition to the cloud structure, related to reliability and availability, the confidentiality of data stored

in the cloud, and expenses are discussed and compared in [6]. In [2] the advantage of using on-

premises computers and connecting to the cloud for scaling the computations in case of resources lack

are noted. The objective of our research is to develop an automated technology for creating and

supporting the AMP functioning in a hybrid computing environment that includes on-premises

computers and, on demand, the resources of a public cloud. The new software platform underlying this

technology is the further development of the author’s tools [7]. Based on this platform new technology

provides the automation for both the creation of AMP and the organization of decentralized control in

the process of solving an applied problem based on direct interactions of agents (which delegates the

right to perform microservices), providing better adaptability to dynamic environments and a higher

reactivity to external influences compared to indirect ones. A modified knowledge base and the new

architecture of control agent provide of the organizing the parallel pipeline in dynamic multivariate

computations along with static multivariate one.

2. Related work

The necessity of development of scalable microservice-based applications instead of producing

monolithic applications is discussed in [8, 9]. Unpredictable dynamics, mobility of components of

some problems with complex structure, and variability of cloud computing environments for solving

these problems actualize the usage of self-organization mechanisms and the multiagent approach [10,

11] for the development of software based on microservice-oriented architecture [12]. This paper

argues that an agent can be viewed as a type of microservice that can be deployed seamlessly within

any microservice ecosystem. The control organization in such systems requires new models,

architectures, and development technologies [11]. In [13], it is noted that modeling both individual

microservice components and their ensembles is challenging. In [14], the foundations of ensemble

modeling are considered, in particular, the model for the organization of goal-oriented behavior of this

ensemble is noted as a difficult problem. The engineering of these ensembles for providing their

reliability in conditions of changes in ensemble environment and requirements is one of the most tasks

[15]. The application of the multiagent system to decentralized self-adaptation of microservices based

on Docker containers [16] is described in [17]. Distributed organization and decentralized multiagent

management are indicated in [18-20] as among the main criteria for the quality and reliability of such

software systems. Direct interactions of agents in comparison with indirect ones provide better

adaptability to the variability of cloud environments and higher reactivity [21]. Microservices are

considered as modern agents that could improve systems of interrelated computing devices in

distributed environments, such as the Internet of Things in [22]. Unlike this, we focus on scientific

computations.

The distinctive features of our approach are the following:

 The combination of microservices for providing research in specific SD is based on the AMP

development principles;

 Goal-oriented behavior of the microservices ensemble for solving a problem in this SD is

based on the non-procedural statement (NPS), decentralized control, self-organization, and

knowledge base (KB);

 This ensemble (and correspondently an active group of agents launched these microservices)

is formed by logical inference using NPS over distributed KB;

 The means of achieving the goal are a cooperative approach to solving the problem, direct

semantic interactions of agents, and a discrete-event finite-state behavioral model of the agent.

3. Basic principles of AMP development and application

The methodological aspects of the proposed specialized technology for creating and using the AMP

are the following: modularity and knowledge representation about mathematical models of studied SD

objects, methods, and methodology for their analysis and design; formulation of research problems;

problem solving management.

Modularity is one of the central structural properties of complex models, methods, and

methodologies of their study. For example, this principle is underlined in the mathematical model

constructing in the research areas of dynamic analysis and structural-parametric synthesis of control

systems. The method of solving a problem is focused, as a rule, on representing the model in some

standardized form. In this case, algorithms are provided both for converting a model from one format

to another and for constructing a mathematical model of a complex system without taking into account

its structure by usage the describing of the models of its elements and connections between them. The

modularity principle provides the replacement of programming way for method implementation with

the design from ready-made, previously developed, autonomously translated and debugged modules,

and allows the automatic ensemble of modules to solve a research problem.

3.1. Conceptual model of subject domain

Algorithmic knowledge of mathematical models, methods, and techniques for their study has a

complex hierarchical modular structure represented by three conceptually distinct layers: productional,

schematic, and computational. Concepts of the first layer are specified through (have references to)

schematic layer concepts that are specified through the computational one. Computational knowledge

is represented by a library of specified autonomous sub-programs. The schematic layer is a system of

interconnected objects, namely operations (O), and parameters (P), which are the simplest, most

adequate, and expressive means for describing the modular structure of a mathematical model and its

algorithms for its analysis. The organization of intermodular interfaces requires supporting the

symbolic name mechanism in the SD specification language and providing the uniqueness of

parameters and operations names automatically. The operation is an abstractive procedure that

implements the relationship of computability between two subsets of the entire set of SD parameters.

Other words, this relationship allows calculating the values of the first subset of the parameters

(operation output) according to known values of the second subset (operation input) if logical

constraints on these parameters are satisfiable. These parameters and operations are subdivided into

primitive (basis) and complex (composite) ones. Basis operations are implemented by correspondent

subprograms. Basis parameters are the actual parameters of these subprograms.

For the representation of production knowledge, relations of the form Pr: L O are introduced.

The logic parameter of the subset L P defines the condition of the execution of the operation O.

Production systems satisfy the modularity principle and ensure the dynamic processes of construction

and modification of technological schemes of computational experiments. On the base of the proposed

approach, it is possible to group SD objects (operations and parameters) into over-layer knowledge

units called processors (C). Processors are structurally isolated and complexly organized entireties of

knowledge. These SD objects represent, for example, subsystems of constructing a mathematical

model or research methods similar in parameters and operations. Processors have a set of built-in

objects that can be used for the research problem statement (PS). The knowledge concentrated in the

processor allows automating the problem solving process by providing the means for an NPS of the

problem, formulated as follows: we need to calculate the values of D (B0) from the given values of

D (A0) (A0 P, B0 P). The NPS of the problem is hereinafter denoted as T = (A0; B0; D (A0)) (or in

short as T = (A0; B0)). The group of modules required for this problem solving is assembled using this

PS with the help of inference on the SD knowledge base distributed over the computational field (CF)

nodes (N). As a knowledge base, a following computational model (Knowledge Base Modified, KBM)

distributed over nodes is used

KBM = (P, D, M, N, O, C, In, Out, Opm, Opp, Pr, Cmp, Cmo, Com),

where P, D, M, N, O, C are finite sets of, correspondently, parameters, parameter values, modules, CF

nodes, operations, and processors. The KBM has an additional set of SD objects and relationships

between them in comparison with the KBE model developed by authors in [23]. The relations

In PM, Out MP, Opm OM, Opp OP, Pr LO (LP), Cmp CP, Cmo CO,

Com MN

define the relationships between the correspondent sets (figure 1).

The abovementioned KBM objects are mapped onto AMP data structure as follows: distributed

problem solver agents (DSA) with the “Ordinary” and “Condition” modifiers, respectively, represent

the simple operation and conditional one; the module corresponds to the computational module agent

(CMA). An NPS is formulated using the web-interface of the problem statement agent (PSA) and

saved as a template. Unique keys of parameters are represented in the parameters vocabulary of SD;

the actual values of parameters are stored in the calculated databases. Fragments of the In, Out, Opm,

Opp and Pr relationships required for DSA functioning are stored in the local KBMDSA and are used to

identify neighboring with which DSA interacts and the CMA agents which DSA initiates. Thus, the

KBM is distributed in such a way that each DSA agent has limited knowledge of both the capabilities

of other system agents and the CF topology as a whole. Com and Cmp relations are stored in the PSA

agent database and are used respectively to send messages to DSA agents and to form a local

dictionary of parameters if the user selects a specific processor for the PS.

3.2. Multiagent control

Three types of agents constitute the controlling multiagent system (MAS): PSA, DSA, and CMA

according to the three control levels (figure 2). At the first control level, PSA agents receive the user’s

NPS T and send parameters names given by the sets A0 and B0 (signs of computability) to DSA agents,

which are built-in in the selected processor. These built-in initial and goal DSA agents are created for

sending out parameters from A0 and accumulating parameters from B0 correspondently.

At the second level, DSA agents verify the possibility of problem solving (solving-modules

availability) in the computational network deployed at the CF nodes. This is stage of forming the

active group of agents, step 1 in figure 2. During this verification based on self-organization

mechanisms and decentralized control, DSA agents form an active group for solving the specified

problem. If the problem can be solved the DSA-goal agent sends “Solvable” to PSA agent, the PSA

agent sends input parameters values D(A0) for solving the problem (finding D(B0)) (the problem

solving stage, step 2 in figure 2).

Figure 1.Conceptual scheme of SD. Figure 2. Control levels in AMP.

Otherwise, the user receives a notification about the impossibility of solving the problem. The

method of coordinating the DSA agents is based on asynchronous behavior “on readiness of input

data” (event-driven control) and used during both the group forming and problem solving. Direct

agent interactions are defined by fragments of the In and Out relationships stored in local DSA.

The third control level is involved only for the stage of problem solving. DSA agent initiates

correspondent CMA agent according to input data readiness only if the logic parameter defined by the

relation Pr is TRUE. CMA agent controls the program module launch, monitoring of its executing,

and sending results to DSA agent.

3.3. Conditional control structure

Let L = {l1, l2, …, lq}, L P is the set of q logic parameters for controlling the launch of modules from

M. The relation Pr LP will be called the conditional control structure of the KBM (similar to [23]).

The semantics of this relationship is as follows: if the pair (l*, m*) (l* L, m* M) belongs to Pr, then

the launch of the module m* can be done if the value of the parameter l* is TRUE. The parameters

from L are calculated during the problem solving or sets by the user (by including in the set A0) at the

stage of the NPS T.

3.4. Multivariate calculations

Let V = {v1, v2, …, vr}, V A0 be the set of r variable parameters. The necessity is observed to solve

the problem T for a set of values from domain D (V) repeatedly in many cases. The KBM model

provides a single stage of forming an active group of agents, but the problem solving stage is repeated

according to the number of variants from the domain D (V). It is assumed that variants generation

process is regular (algorithmic) and ends if the set of variants has been exhausted or the current one

has a solution of problem T. In both cases, all active agents involved in the problem solving using

multivariate calculations are deactivated. A built-in processor’s operation generates the variants

according to the NPS T = (A0 ={V, Vmax, Vmin, H,…}; B0). The V, Vmax, Vmin, and H parameters are

composite that include specifications of variable type and a way to increase step (for example,

arithmetic or geometric progression). To organize dynamic multivariate calculations when the size of

the domain D and the step of changing the variable parameters are unknown, the DSA agent is used

with the "Variant" modifier, which is set when creating the agent. The DSA agent of this type

iteratively performs the following sequence of actions: launching a CMA agent, sending the result to

DSA neighbouring agents (according to the In, Out relationship in the local knowledge base) until a

message is received from the CMA agent that no more solutions are found.

3.5. DSA agent behavior model

The behavior of the DSA agent is described by the discrete-event finite-state model FFSMwVW

(Flowed Finite State Machine with Variables and Works), which is a further development of the model

represented in [23, 24]. The modified model provides processing of the heterogeneous tasks flow in

multivariate computations, and has the following form:

)),y,(,,,,,,δ,,(FFSMwVW 00 mssWEGyxS ,

where

 Σ and S are finite sets correspondingly of events and states;

 δ: Σ × G ×x × y × S → S × y is the transition function;

 x and y are the vectors of binary correspondingly input and output;

 G and E are sets of predicates correspondingly for input variables and events;

 W is a set of program works performed by the agent;

 s0 and sm are the initial and final states;

 y0 is the value of output vector y in the initial state s0.

When agents interact, each message with the number i initiates the formation of an event

corresponding to this message, and the value of the event predicate ei becomes TRUE. The list of

events is represented in figure 3. Messages are divided into external and internal ones and processed in

the order they are taken from the message queue. The transition graph of the FFSMwVW based DSA

agent is shown in figure 3. The DSA agent can be in seven states. Predicates g1, g2, ..., g9, belonging to

the set G, define the condition for the transition by arcs depending on the values of the components of

the input vector x and are calculated by the formulas:

.;;;;

;;;;

319218217216215

314321332123211

xxgxxgxxgxxgxxg

xxgxxxgxxxgxxxg

3.6. New DSA architecture

The new DSA agent architecture allows including this DSA in several (KAg) active groups Ag*
1, Ag*

2,

…, Ag*
KAg. In contrast to [23, 24], firstly, the data stored in the memory of the DSA agent is

represented by arrays of lists instead of one-dimensional structures. Secondly, along with processing

of homogeneous flows, the processing heterogeneous subtask flows, which are generated for

multivariate calculations for different problems solved concurrently, is provided. Also, the structure of

the transmitted messages is changed accordingly. A message router is added to the executable part of

the DSA agent.

Figure 3. The transition graph of FFSMwVW based DSA agent.

3.7. AMP implementation platform novelty

The new version of previously developed by the authors the HPCSOMAS framework [7], namely

HPCSOMAS-MS platform, is designed to automate the creating, deploying, testing, and usage of

AMP. This version simplifies the using of cloud-based computing resources and automates the

constructing AMP intended for integrated cloud and on-premises calculations. Thus, the components

for deploying and updating microservices, synchronization of data installed on cloud and on-premises

resources extend this version's features in comparison with [7]. The generalized scheme of

constructing AMP based on HPCSOMAS-MS is presented in figure 4. The main components of

HPCSOMAS-MS are the web-constructor of the AMP including subsystems for editing the SD

vocabulary, web services for building and configuring of agents, and PSA structurizer and

configurator; deployment wizard for microservices, and synchronizer for knowledge bases and

databases.

The last four subsystems were absent in previous versions. These subsystems were developed and

incorporated into the HPCSOMAS-MS platform in connection with the transition to AMP-based

computing. With the help of the structurizer, computational microservices are distributed among the

processors C included in the PSA agent structure. During structuring, relations Cmp and Cmo are

formed. The information about which is entered into the local KBMPSA. This database also stores

information about users connected to the HPCSOMAS-MS system, active agent groups Ag* formed

for different problem statements (AGPS), user data update tables (UDUT), and developer data update

tables (DDUT), in which monitoring results of computations are stored. The AGPS stores the set of

microservices included in the NPS. UDUT is used for synchronization. DDUT and AGPS are used for

automated deployment, updating, and testing of microservices. For example, in case of updating

microservice, testing is performed not for all AGPS but only for those to which it belongs.

Figure 4. HPCSOMAS-MS based AMP construction.

4. Example of using AMP based on the proposed technology

The created AMP package is focused on solving problems of qualitative analysis and the structural-

parametric synthesis of BDS using the author's logical method [4]. Based on this method, the solving

of these problems reduce to verifying of the satisfiability of Boolean constraints on the trajectories

behavior. For BDS, whose functioning is considered on a finite time interval, these constraints are

written in the language of Boolean equations or Boolean formulas with quantifiers. In the first case

solving the SAT problem is required. The second is related to evaluating the truthfulness of the QBF

formula. At the initial stage, a Boolean model (BM) of the dynamical property of BDS is built. The

structure of the BM is determined by the logical specification of the dynamical property and BDS

dynamics description. At the next stage, the satisfiability of this property is verified using efficient

parallel SAT and QBF solvers. AMP includes two processors intended for a parametric synthesis of

stabilizing feedback and a qualitative study of the BDS trajectories behavior on a finite time interval.

As an example of the AMP use, we consider the qualitative study problems solving in the second

processor. Specific parameters (a step and bounds of changing domains values) and operations

(variants generators) are included into this processor for the multivariate calculations.

4.1. The problem of analyzing the structure of the state space of nonlinear BDS

Let us demonstrate the proposed approach for the practically important, and computationally complex

problem of analyzing the structure of the state space for a nonlinear BDS. BDS dynamics description

has the following vector-matrix form

),(11 ttt uxFx , (1)

where nBx is a state vector, }10{ ,B , n – is the dimension of the state vector; mBu is the input

vector, m is the dimension of the input vector; }21{ ,...,k,Tt is the discrete time (number of time

steps); F(x) is a vector-function of the logic algebra called transition function (nmn BBBF :). Let

us define the trajectory))(,,(0 tuxtx of (1) as a finite sequence
kxxx ,...,, 10

 from the nB set for each

initial state nBx 0 and a finite sequence),...,,()(110 kuuutu of the states of the input vector (

mt Bu , 1,...,2,1,0 kt).

Qualitative analysis of BDS with inputs, based on the study of the structure of the state space,

suggests solving of following problems: the searching of equilibrium states and closed trajectories

(cycles), verifying of their isolation and the reachability property of the goal states set nBX * from

the initial one nBX 0 , determining of immediate predecessors for given states. Currently, these

problems are among the most important [25] for studying the dynamics of the behavior of gene

regulatory networks represented by a discrete in time and state model (1), for analyzing the different

stability types of a shift register with nonlinear feedback [26], and some other applications.

The model (1) is substantially nonlinear. So, existing methods in the theory of linear BDS are not

applicable for (1). Therefore, we formulate the mentioned above problems of analyzing the structure

of the state space of the model (1) as problems of the Boolean satisfiability [4]. The model (1) is

equivalent to a single Boolean equation of the form

0)),((),...,,,(Φ 11
11

11010

 tt
i

t
i

n
i

k
t

kk
k uxFxuuu,...,x,xx , (2)

where
t
ix and iF are i-th components of vectors tx and F; denotes modulo-2 addition. For one-step

transition (k = 1), the equation (2) takes the form

0)),((),(Φ 001
1

010
1 uxFxu,xx ii

n
i . (3)

Taking into account (3), the equation (2) is

0),(Φ),...,,,(Φ 11
11

11010

 tttk
t

kk
k u,xxuuu,...,x,xx .

4.2. Boolean equations for analyzing the structure of the state space

Let the input sequence u (t) is constant on the all interval of functioning the system (1) functioning

interval:)(),...,,()(001010 tuuuuuutu k
, mBu 0 . Then the maximum number of structures

in the state space of (1) is equal to m2 , each of which represents the autonomous behavior of (1) with

a corresponding constant input action. According to [4], the required Boolean equations for a

qualitative study of the state space structure of autonomous BDS on a finite time interval T are as

follows:

 All immediate predecessors x0 of the state nBs for given mBu 0 are the solutions of the

following equation

0))(,,(1

010
1

sx
tuxx . (4)

 Equilibrium states for given mBu 0 are the solutions of the next equation

.0))(,,(01

010
1

xx
tuxx (5)

 The property of reachability of the goal set X* from the set X0 for kt time steps is satisfied

when there is no solution for the equation

0))(())(,,...,,()(*
1

01000
tk

t
k

k xGtuxxxxG . (6)

Here, the equation 0)(00 xG defines the set of initial states,)(* xG are the characteristic function

of the set X*.

4.3. Computational model for analyzing the structure of the state space

According to equations (4)-(6), the sets {Ф1, X0}, {Ф1, s}, {Ф1, k, X0, X*} are the structural elements of

the BM for, correspondently, searching equilibrium states (BMES), searching the immediate

predecessors (BMIP), verifying the reachability property (BMR). The construction of BMES, BMIP,

BMR models (AMP parameters) are performed by BBMES, BBMIP, BBMR microservices (AMP

operations). Microservices EqST, ImPred, and Reach are used for solving analysis problems for these

models. The found sets of equilibrium states and immediate predecessors are stored respectively in the

parameters S and A_IP. The JA_IP inserts the next element IP found by the BBMIP into the A_IP

array if logical parameter YIP=TRUE. A fragment of the SD computational model is shown in figure 5.

Figure 5. Fragment of computational model for analyzing the structure of the state space problem.

This fragment illustrates static multivariate computations for verifying the reachability property by

the Reach microservice for different variants of k values (BM for k-step transitions are formed).

Dynamic ones are also provided – the equilibrium states are found iteratively one at a time by the

EqSTV microservice. The next found equilibrium state is assigned to the working variable var by the

EqSTV microservice, and the logical variable YS is assigned TRUE. In this case, the Y_ST

microservice convert var to SV and transmit it to BBMIP microservice for the verification of the

presence of immediate predecessors (an example of the pipeline:

BBMESEqSTVY_STBBMIPImPrJ_IP). Concurrently with the search for the next

equilibrium state, the presence of predecessors (verifying the isolation property) of the previous

equilibrium state is checked. In dynamic multivariate computations, pipeline computations can be

performed based on functional parallelism.

Parallelism also can arise when performing multivariate heterogeneous tasks in CF using the same

DSA agent in different Ag* group. The DSA agent has a message queue, the format of which includes

a task identifier and a variant identifier. Therefore, this agent can switch from one task to another if it

is in a state of waiting for input data from the first task, and the data for the second one is ready. The

CMA agent has a task queue. DSA agent (having "parallel" modifier when creating) duplicates the

CMA one if its tasks are queuing for parallel computations in case of presence reserve resource.

4.4. Analyzing the structure of the state space

Let us consider the technology of applying Boolean constraints (4)-(6) and NPSs for studying the

stability property of a nonlinear feedback shift register (NFSR) [26]. NFSR dynamics equations of

closed-loop system are:

,)

()

(

1

5

1

4

1

2

1

5

1

4

1

1

1

5

1

2

1

1

1

4

1

2

1

1

11

2

1

1

1

5

1

1

1

5

1

2

1

4

1

2

1

5

1

1

1

4

1

1

11

5

1

4

1

2

1

1

1

5

1

4

1

2

1

1

1

5

1

4

1

2

1

11

tttt

ttttttttttttttttt

tttttttttttttttttt

xxxx

xxxxxxxxuxxxxxxxx

xxxxuxxxxxxxxxxxx

,)

()(

1

5

1

4

1

2

1

1

1

5

1

4

1

1

1

4

1

2

1

1

11

5

1

4

1

2

1

1

1

5

1

4

1

1

1

4

1

2

1

1

11

5

1

2

1

12

ttttttttt

ttttttttttttttttt

xxxxxxxxx

xuxxxxxxxxxxuxxxx

),

()(

1

5

1

4

1

2

1

1

1

5

1

4

1

2

1

4

1

2

1

1

11

5

1

4

1

2

1

1

1

5

1

4

1

2

1

4

1

2

1

1

11

3

1

2

1

13

ttttttttt

ttttttttttttttttt

xxxxxxxxx

xuxxxxxxxxxxuxxxx

 , 1
34
 tt xx

. 1
45
 tt xx

Here, x = col (x1, x2, x3, x4, x5) is the state vector, u (t) is scalar input vector (syndrome [26]). Two

properties of the shift register stability are considered in [26]:

 Property 1 (u (t) = 0, register self-control mode). The non-linear feedback shift register is

stable if for each state nBx there exists such t that x (t, x0, u0(t)=0) = 0. Otherwise, this

register is unstable.

 Property 2 (the input of the register receives an arbitrary input action u (t)). A shift register

with nonlinear feedback is stable with respect to the input action u (t) if and only if for any

state x* that this register can reach from the zero state with some input action u (t), there exists

such t that x (t, x*, u0 (t) = 0) = 0.

Let us describe the study of analyzing the structure of the state space of the shift register. The

binary register state is represented in decimal notation (x1 is the left bit of the binary set b1b2b3b4b5 and

is calculated as b120+b221+b322+b423+b524).

NPSs for computations are:

 T1 = (A0={Ф1}; B0={A_IP}, D(A0)={ Ф1=“F1.cnf”}) for searching immediate predecessors of

equilibrium states (parallel pipeline in multivariate computations).

 T2 = (A0={Ф1, IPV ,
min

IPV ,
max

IPV , HIP }; B0={IP}; D(A0)={VIP={14, 30},
min

IPV =1,
max

IPV =3,

HIP=+1, Ф1=“F1.cnf”}) for searching immediate predecessors of each state from VIP set of

states (parallel pipeline in static multivariate computations).

 T3 = (A0={Ф1,SV}; B0={IP}; D(A0)={SV=29, Ф1=“F2.cnf”}) for searching immediate

predecessors of a particular state, for example, 29 in this case.

 T4 = (A0={Ф1, X0, X*,
min

kV ,
max

kV , Hk}; B0={YR}; D(A0)={
min

kV =1,
max

kV =8, Hk=*2,

Ф1=“F2.cnf”}, X0=B5\{29, 14, 30, 7}, X*={0}}) for static multivariate computations. Verifying

the reachability of the set X* from the set X0 for different values of the level k.

Here, dynamics equations are described in files “F1.cnf” for u0 (t) = 0, and in “F2.cnf” for

u0 (t) = 1. The example of the parallel pipeline when performing the NPS T1 in dynamic multivariate

computations is shown in figure 6. Functional parallelism is implemented by executing different

microservices controlled by correspondent DSA at the same time interval ti. When executing different

NPS at the same time, the DSA included in both NPSs, switches between waiting mode and

performing tasks for each NPS if its data is ready. The DSAs Ag6 (variants generation) and Ag10

(collecting results) can be installed on the same CF node.

Figure 6. The parallel pipeline in dynamic multivariant computations.

The names of the input (A0) and output (B0) parameters are marked in the parameter list in the PSA

web-interface. The value of the input data D (A0) is set in the corresponding input fields. The

following explains the logic of studying stability property of shift register using the above NPSs.

The equilibrium states 0 and 29 are found by solving the equation (5) for u0 (t) = 0. When solving

equation (4) for u0 (t) = 0 for these states (T1 NPS), it turns out that state 29 is isolated (no

predecessors). So the state 0 is unreachable from the state 29. Therefore, taking into account property

1, the considered shift register with nonlinear feedback is unstable.

For checking the property 2, the Boolean equation (4) is solved for x1 = 29 and u0 (t) = 1 (T3 NPS).

As a result, the immediate predecessors of the state 29 are states 14 and 30. This equation is solved

once more for these states (T2 NPS for x1 = 14 and x1 = 30) for u0 (t) = 0. So, the state 14 has the

predecessor 7, but the state 30 has none. When solving (4) analogically for x1 = 7 (T3 NPS), the

predecessor is not found also. Finally, the absence of predecessors for these two states (30 and 7) both

for u0 (t) = 0 and u0 (t) = 1 means unreachability of 29 for any input u (t). Therefore the reachability set

is X 0=B5 \ {29, 14, 30, 7}.

The equation (6) is solved for checking the reachability property of the set X * = {0} for k = 1, 2, 4,

8 (T4 NPS). Elements of sets X 0 and X * are the roots of the following Boolean equations (state 0 is

excluded from X 0):

 ,0

:)(

12

34512345123451234512345
0

xx

xxxxxxxxxxxxxxxxxxxxxxxxG

.0:)(54321
* xxxxxxG

As a result, for k = 8 the reachability property is satisfied for X *. Therefore, taking into account

Property 2, a register with nonlinear feedback is stable relative to the input action u (t). State transition

diagrams (figure 7) allows verifying the stability property of the shift register.

This example illustrates using the NPS for research problem solving, and the static/dynamic

multivariate calculations conducted by active agents group for analyzing the structure of the state

space of shift register.

5. Conclusion

We develop the automation technology for creating, deploying, and supporting the AMP functioning

in a hybrid computing environment. This technology provides both functional parallelism and data

parallelism at dedicated CF nodes for the semantic network of agents. This functionality is based on

the AMP microservices architecture, the means of AMP computational model for conditional module

launch, and multivariate computations, decentralized multiagent control, self-organization

mechanisms, and DSA agent architecture based on FFSMwVW model.

Using this technology, we developed AMP to automate a qualitative study of binary dynamic

systems based on the Boolean constraints method and demonstrated its application to solve the

problem of analyzing the structure of the states space of the shift register and its stability.

The developed AMP can be used to solve a wide range of tasks, including the study of the

dynamics of gene regulatory networks represented by a discrete both in time and a state, model.

Acknowledgments

This work was supported by Russian Foundation of Basic Research, project no. 18-07-00596 (reg. no.

№ AAAA-A18-118012290008-8). This work was also supported in part by the Presidium RAS,

program no. 7, project “Methods, algorithms and tools for the decentralized group solving of problems

Figure 7. The state diagrams of the shift register.

in computing and control systems” ” (reg. no. АААА-А18-118031590006-2). The authors would like

to thank the Irkutsk Supercomputer Center of SB RAS for providing access to cluster computational

resources.

References

[1] Mazzara M, Khanda K, Mustafin R, Rivera V, Safina L and Sillitti A 2018 Microservices

science and engineering ed P Ciancarini, S Litvinov et al Proc. of the 5th International

Conference in Software Engineering for Defence Applications. SEDA. Advances in

Intelligent Systems and Computing (Cham: Springer) 717 pp 11-20

[2] Netto M A, Calheiros R N, Rodrigues E R, Cunha R L and Buyya R 2018 HPC cloud for

scientific and business applications: taxonomy, vision, and research challenges ACM

Comput. Surv. 51 8:1-8:29

[3] Somov Ye I, Butyrin S, Oparin G A and Bogdanova V G 2016 Methods and software for

computer-aided design of the spacecraft guidance, navigation and control systems MESA

7(4) 613-624

[4] Oparin G A, Bogdanova V G and Pashinin A A 2018 Boolean constraints method in qualitative

analysis of binary dynamic systems International Journal of Applied and Basic Research 9

19-29 (In Russian)

[5] Newman S 2015 Building Microservices (O’Reilly)

[6] Fisher C 2018 Cloud versus on-premise computing American Journal of Industrial and Busi-

ness Management 8 1991-2006

[7] Bychkov I V, Oparin G A, Bogdanova V G, Pashinin A A and Gorsky S A 2017 Automation

development framework of scalable scientific web applications based on subject domain

knowledge Parallel Computing Technologies ed V Malyshkin (Cham: Springer, LNCS)

10421 pp 278-288

[8] Oberhauser R 2017 Microflows: Enabling agile business process modeling to orchestrate

semantically-annotated microservices ed R Oberhauser and S Stigler Seventh Int. Symp. on

Business Modeling and Software Design (SCITEPRESS) 1 pp 19-28

[9] Ghani A and Zakaria M 2018 Method for designing scalable microservice-based application

systematically: a case study IJACSA 9(8) 125-135

[10] Gorodetskii V I 2012 Self-organization and multiagent systems: I. Models of multiagent self-

organization Journal of Computer and Systems Sciences International 51(2) 256–281

[11] Rodrigues N, Leitão P and Oliveira E 2014 Dynamic composition of service oriented multi-

agent system in self-organized environments Proc. of the 2014 Workshop on Intelligent

Agents and Technologies for Socially Interconnected Systems pp 1-6

[12] Collier R W, O'Neill E, Lillis D and O'Hare G 2019 MAMS: Multi-Agent MicroServices Proc.

The WWW Conf. pp 655-662

[13] Mayer P, Velasco J, Klarl A, Hennicker R, Puviani M, Tiezzi F, Pugliese R, Keznikl J and

Bureš T 2015 The autonomic cloud ed M Wirsing and M Hölzl Software Engineering for

Collective Autonomic Systems (Cham: Springer, LNCS) 8998 495-512

[14] Hennicker R and Klarl A 2014 Foundations for ensemble modeling – the Helena approach ed S

Iida et al (Berlin, Heidelberg: Springer, LNCS) 8373 pp 359–381

[15] Hölzl M and Wirsing M 2011 Towards a system model for ensembles ed G Agha et al Formal

Modeling: Actors, Open Systems, Biological Systems al (Berlin, Heidelberg: Springer,

LNCS) 7000 pp 241-261

[16] Merkel D 2014 Docker: lightweight Linux containers for consistent development and

deployment Linux Journal 2014(239)

[17] Florio L 2015 Decentralized self-adaptation in largescale distributed systems Proc. of the 2015

10th Joint Meeting on Foundations of Software Engineering (New York: ACM) pp 1022-

1025

[18] Bures T, Gerostathopoulos I, Hnetynka P, Keznikl J, Kit M and Plasil F 2013 Deeco: An en-

semble-based component system Proc. of the 16th International ACM Sigsoft Symp. on

Component-based Software Engineering (New York, USA: ACM) pp 81–90

[19] Brueckner S and Czap H 2006 Organization, self-organization, autonomy and emergence: States

and challenges ITSA 2(1) 1-9

[20] Fernández H, Priol T and Tedeschi C 2010 Decentralized approach for execution of composite

Web services using the chemical paradigm Proc. of the 8th IEEE Int. Conf. on Web Services

(Miami: FL) pp 139-146

[21] Buguillo J 2018 Self-organizing Coalitions for Managing Complexity (Springer International

Publishing) 29 pp 89-100

[22] Krivic P, Skocir P, Kusek M and Jezic G 2018 Microservices as agents in IoT systems Int.

symp. Agent and Multi-Agent Systems: Technology and Applications. KES-AMSTA 2017.

Smart Innovation, Systems and Technologies ed G Jezic and M Kusek (Cham: Springer) 74

pp 22-31

[23] Bychkov I V, Oparin GA, Bogdanova V G and Pashinin A A 2018 Service-oriented technology

for development and application of decentralized multiagent solvers for applied problems

Herald of computer and information technologies 12 36-44 (In Russian)

[24] Oparin G A, Bogdanova V G, Pashinin A A and Gorsky S A Distributed solvers of applied

problems based on microservices and agent networks Proc. of the 41st Int. Convention on

Information and Communication Technology, Electronics and Microelectronics, Opatija,

2018. P. 1415-1420

[25] Akutsu T, Hayashida M and Tamura T 2008 Algorithms for inference, analysis and control of

Boolean networks Proc. of the Int. Conf. on Algebraic Biology pp 1-15

[26] Massey J L and Li R W 1964 Application of Lyapunov’s direct method to error-propagation

effect convolutional code IEEE Trans. IT 10(3) 248-250

