
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0).

Automation of microservices creation for qualitative analysis

of binary dynamic systems

G A Oparin, V G Bogdanova and A A Pashinin

Matrosov Institute for System Dynamics and Control Theory SB RAS, Lermontov St.

134, Irkutsk, Russia, 664033

bvg@icc.ru

Abstract. The main objective of qualitative research is to analyze the behavior of the

trajectories of a dynamic system to verify whether it corresponds to the set of constraints

characterizing the property. We use an approach to study binary dynamic systems on a finite

time interval based on the author's method of Boolean constraints. Based on this method, the

Boolean model of the properties of a binary dynamic system is written in the language of

Boolean equations or Boolean formulas with quantifiers. Thus, the verification of various

dynamical properties is reduced to solving the problems of Boolean constraints satisfiability or

the validity of a quantified Boolean formula using efficient SAT or TQBF solvers. The high

computational complexity of these problems requires the development of software and tools

for their parallel and distributed solving and ensuring transparent end-user access to high-

performance computing environments based on a service-oriented approach. This paper

represents the architecture and functionality of a new instrumental system that automates the

creation of a distributed application for solving the considered class of problems based on the

microservice approach and multi-agent technology.

1. Introduction

The extensive use of binary dynamic systems (BDS) in both scientific and applied researches

determines the relevance of developing new and improving existing methods for qualitative analysis

of the BDS trajectories behavior. The high computational complexity of these problems requires the

development of software and tools to solve it using technologies of parallel and distributed computing

and ensuring clear end-user access to resources of high-performance computing environments based

on a service-oriented approach.

An approach based on the method of Boolean constraints [1] to study BDS is used for solving some

qualitative analysis problems represented in [2, 3]. Based on this method, the Boolean model of the

dynamical property of BDS satisfying logical property specification and equations of system dynamics

is written in the language of Boolean equations or Boolean formulas with quantifiers. The satisfiability

verification of a property is reduced to solving the problems of satisfiability of Boolean constraints or

verification of the validity of a quantified Boolean formula using efficient SAT or TQBF solvers.

Existing software for qualitative analysis of autonomous synchronous BDS (also called Boolean

network) [4-7] is mainly intended only for searching attractors. It is noted in [8] that these tools have

several drawbacks, in particular, they are limited by the complexity of the Boolean model and the

format of its presentation, require programming skills from subject specialists, since they are often

used only as command line tools depending on the platform. Thus, it is relevant to develop new

methods that provide the ability to solve problems of qualitative analysis of BDS for large dimensions

of the state vector on a sufficiently long time interval and parallel software tools for implementing this

method. The advantages of the author's Boolean constraints method in comparison with the existing

ones are given in [1].

Therefore, during the solving of qualitative analysis problems based on the method of Boolean

constraints, the following software is required:

 Tools for constructing a Boolean model both for searching for attractors and for specifying

various dynamic properties of BDS (in particular, reachability, isolation, attraction,

connectivity) in the required format;

 Efficient parallel solvers for SAT and TQBF problems.

In the context of the proposed approach, software tools for constructing a Boolean model that

specifies a dynamic property and solutions of the resulting system of Boolean equations are

implemented as independently applied microservices. The decentralized management of the

interaction of microservices is carried out by a self-organizing multiagent system, agents of which are

delegated the rights to launch microservices. To automate the creation, deployment, and testing of

microservices, the previously developed HPCSOMAS toolkits [9, 10] is extended by a new

specialized subsystem MSCDT (Micro-Services Creating, Deployment and Testing), the architecture

and functionality of which are considered in this work. The focus is on the deployment of

microservices.

2. Related work

Currently, the direction associated with the development of distributed applications based on

microservice architecture is actively developing. The advantages and disadvantages of microservice-

oriented applications in comparison with monolithic ones, issues related to the design, creation, and

deployment of microservice-oriented software systems are discussed in detail in [11, 12]. Nowadays,

the trend of creating automation tools for processes of microservices deploying and testing is

observed. In [13], the analysis of existing testing methods, that are used for such distributed systems,

is performed, and a new model of the microservice system validation is represented. In [14], an

approach for the automatic generation of self-configuring microservice regarding the target execution

environment was proposed. In [15], still open problems are given, in particular, those related to the

automation of microservices configurations choice and their mapping to heterogeneous computing

environment and the specification of the topology and composition of the microservice application.

Consequently, a relevant research area is a study related to the development of tools that ensure the

solving of such problems, namely, the formation of a composition of microservices, their reuse and

simplified interaction with a complex computing infrastructure.

The dynamic nature of cloud computing environment and the complexity arising in the research in

the subject area of the exhaustive problems of qualitative analysis leads to the intensification of the

development of microservice-oriented software tools for their solution based on self-organization and

multi-agent approach [16, 17]. An application of multi-agent technology in the implementation of

microservice architecture is described in [18, 19].

Based on direct interactions of agents management by a microservices ensemble provides better

adaptability to dynamic environments and higher reactivity to external influences compared to indirect

[20, 21]. Taking into consideration the disadvantages and advantages of the above approaches, we use

a self-organizing multi-agent system (MAS) to organize decentralized management.

Instead the description of microservices choreography in programming language, in contrast to

existing works, our approach uses the discrete event model of the functioning of MAS agents, which

delegates the right to launch microservices. This model was developed by authors in [10]. The

MSCDT subsystem provides automation of the agents configuration.

3. MSCDT architecture

Reactive agents based on software modules (Computational Module Agent, CMA) and intelligent

distributed solver agents (DSA) are created in the form of microservices with the help of MSCDT. The

MSCDT subsystem automates the configuration of CMA and DSA agents. MSCDT also provides

tools for automating the deployment and testing of computational microservices and filling the local

knowledge bases (KB) of DSA agents that are delegated the rights to launch these microservices on

dedicated computing resources of a heterogeneous distributed computing environment (figure 1). A

computational domain model is used as the KB, which is distributed the way that each agent has

limited knowledge of both the capabilities of other system agents and the computational field (CF)

topology as a whole. The local KB stores the data about relationships with neighboring agents.

Figure 1. MSCDT architecture.

The computational model is represented as a set of domain parameters and functional relationships

between them. Each functional relation is implemented by a software module that calculates the values

of the output parameters according to the specified values of the input parameters. A CF is a set of

network-connected logical computing nodes on which agents of a distributed solver are installed. The

functionality of each agent is determined by the requirements of inclusion of the module associated

with the agent in the computational process of solving an applied problem. A logical node is a physical

computing resource, which can be: a set of processor cores and nodes of a computing cluster, a

personal computer, a virtual machine, a mobile device. СF is discrete. In each node, the CF numeric

value is calculated, taking into account the node's agent state and according to the rule of СF agents

local interactions. The initial CF value of the node of DSA is set equal to the number of signs of

computability transmitted by the predecessor agents and decreases as they are received. The zero value

of the CF is a trigger for the inclusion of the corresponding module in the process of solving an

applied problem.

For the non-procedural formulation of the “Given-Find” problem [3] on the distributed

computational domain model, the Problem Statement Agent (PSA) web-interface is provided. The KB

of PSA agent stores the relations of the CF modules and nodes. In distributed and cloud computing,

the PSA agent is installed on dedicated computing nodes and is the entry point to the system.

3.1. Microservices development

During the microservice creating, the developer has to perform many different routine operations,

especially in experimental testing. The need for this operation arises after updating the developed

software that implements the functions of the microservice. For example, a compiled microservice

needs to be moved to a correspondent directory of the Tomcat services server by connecting to a

computational resource via the SSH protocol. In some cases, it is necessary to suspend the server using

console commands on this resource. The console commands, location and working directories names

for the installed software depend on this resource. During the microservices creating, the developer

also needs to configure agents and environment variables. For example, on different computing

resources, there are different paths to the directories for downloading files, storing executable files,

user directories, and the same microservice will need to be configured differently. Similar problems

arise during the resources administering, adding new, and updating existing computational

microservice and DSA agents. Access to the functionality of these utilities is reached through a

graphical user interface (GUI) shown in figure 2.

The “Service tools” menu is intended for creating microservices. The developer of computational

microservices can use two approaches for this: programming using Java language and the class library

HPCSOMAS-MS API (Applied Program Interface); usage of standard compiled implementations

(templates) of microservices. In the second case, the developer only needs to change the parameters in

the configuration file. In this case, the developer is freed from the study of the low-level

implementation details of creating and functioning microservices.

Both approaches assume that the developer will need to load the services he creates onto resources

for testing, debugging, and providing to users. Subsystem MSCDT allows simplifying these processes.

Having data for authorization and access granted, the developer can upload microservices and related

Figure 2. GUI of MSCDT system.

software to a resource where PSA agents are already operating, configure it to work in the

environment of this resource and prepare agents for working with installed microservices. The “agent

tools” menu is used to configure agents. PSA-agents are pre-installed on a computational resource

using the same tool by the administrator. The software necessary for the functioning of these agents, in

particular, Java SE and Tomcat, is installed using the “Installation tools” menu. The “Resource

analysis” and “Resource setting” menus are used to set up a computational resource.

The developer or administrator once fills in the parameters of the resource and saves them as

presets to quickly switch between them. The utility package performs the following actions in

automatic mode:

 Uploading the compiled service to the server directory of the services on the computing

resource;

 Possible suspension of the service server at the time of service replacement to eliminate

unwanted automatic deployment before additional actions with files;

 Editing service configuration files;

 Loading configuration files associated with this computing resource;

 Automatic reconfiguration of these files of existing microservice to work with a given

computing resource (replacement of environment directories, resource parameters);

 Adding a microservice to the PSA agent registry of this resource;

 Remote tracking of the service workability, analysis of error reports;

 Transmission of microservices description to dependent microservices.

MSCDT allows deploying the microservices on a wide range of computing resources, including

computing clusters with job control systems, virtual dedicated servers in the cloud (VDS), containers

in virtualization systems (Docker) and individual workstations (figure 3).

Since the implementation of microservices is based on Java Servlet technology, they can work on

any resources on which Apache Tomcat Server can be installed. The choice of a resource depends on

the required computational characteristics and its availability as well as on the system requirements of

Figure 3. Variants for deploying microservices.

the application programs installed on the DSA agent launching the computational microservice. The

resource type also determines the degree of the deployment process automation.

In some cases, DSA agents can be automatically installed and configured using the SSH protocol.

In other cases, in particular, in the Google Compute Engine, DSA agents are deployed using a

correspondent set of platform tools for computing resources, namely the Google Cloud SDK for this

case.

3.2. PSA agent interface.

The end user is provided with a PSA-interface for forming a request for solving the problem. For the

non-procedural formulation of the problem, the “Problem Statement” menu is used. The user selects

the subject area. As a result, a list of parameters appears, where the required ones in the “Value(In)”

and “Value(Out)” columns should be ticked (figure 4). Then the task is created. Task execution stages

are considered in [3] in detail. First, an active group of DSA agents is formed for executing this task

by the logical inference using the non-procedural formulation of the problem over the distributed

model of the subject area. After this stage in the process of solving the problem, two situations may

arise. In the first case, an active group of agents will be formed (which will ensure the calculation of

the output data values by the given input data values). In this case, the grey colored fields (figure 4)

will be accessed for entering the parameter values. Then the task will be solved at the stage of joint

actions of the DSA agents. In the second case, the user is informed that this task is unsolved. PSA

agent also is intended to process the following objects: the dictionary of domain parameters,

microservices that implement the functionality of applied subject modules, logical CF nodes

associated with a specific computational resource, and the list of agents delegated to launch the

modules. Only HPCSOMAS system administrator and microservice developer have access rights to

these PSA agent objects.

Figure 4. Problem statement interface.

4. MSCDT-based on Boolean modelling system for qualitative analysis of BDS

A subject-oriented subsystem MSQABDS (Micro-Services based Qualitative Analysis of Binary

Dynamic System) (figure 5) is developed using MSCDT and intended to automate building Boolean

models of the BDS dynamical properties.

Models of dynamic properties in the form of a Boolean constraint, satisfying the logical

specification of the property and the equations of the dynamics of the BDS are constructed for

autonomous synchronous BDS, the vector – matrix equation of which has the form

)(1 tt xFx , (1)

where x is the state vector, nBx , }10{ ,B  , n is the state vector dimension; }21{ ,...,k,Tt  is

discrete time (the time step number); F(x) is a vector function of Boolean algebra which is call

transition function.

The MSQABDS system includes the microservices for constructing the Boolean constraint based

on the system dynamics equations (1), these equations may be specified in CNET [5] or MathML [22]

formats. The basis for constructing a Boolean model of a dynamic property is the Boolean one-step

transition formula obtained according to (1) (the left side of the equation 0)(01  xFx).

The Boolean editor uses this one-step transition formula and a property specification, which may

include the initial, admissible, and target state sets for building a Boolean property model. The

converters, the editor and pre-processor are implemented as microservices based on ready-made

templates (based on the class for the CMA agent from the HPCSOMAS API class library) of the

MSCDT subsystem. Using the MSCDT GUI, the user can select the preferred template and edit it

using the "Agents tools" menu (figure 5).

4.1. Microservice of editing

The subsystem of the Boolean modelling includes microservices that performs the following

functions:

 Loading a dynamics description of the system (1) (DD) in a valid input format;

 The typing of the DD in a mathematical language using the freely distributed FMath

Javascript Equation Editor [23];

 Converting the DD into an output format using suitable conversion microservices;

 Saving the DD in the mathematical language using the formats Latex or MathML.

A screenshot of the microservice of editing is shown in figure 6.

Figure 6. Microservice of editing.

4.2. Microservice of converting MathML-DIMACS

The MathML-DIMACS converter is used during building the Boolean model of the dynamical

property of BDS and has the following features:

 Conversion of a Boolean function from MathML format to an internal representation;

 Analysis of the Boolean function structure, revealing internal parallelism;

 Construction of a parallel plan for calculating the Boolean function;

 The dynamical constructing of the truth table with simultaneous generating the Boolean

function representation in using the DIMACS format.

The output language (MathML) of the formula editor is used as the input language of the converter.

The converter reads the Boolean function, performs lexical and syntactic analysis, and forms the

internal representation of the Boolean function. The Boolean function is represented as a labeled tree.

The leaves are marked with symbols from an alphabet containing variable names. Other vertices are

marked with symbols from the alphabet of symbols of Boolean operations. The vertex of the tree is

represented in the computer memory by a recursive data structure containing a field for storing the

computed value (of this subtree), type (variable or operation) and references to the parent and children.

The planner bypasses the tree and builds a layer-parallel form of the algorithm for calculating this

function. This algorithm calculates the length of the maximum path from the vertex to the each leave

of the tree. Then vertices are distributed between layers so that these paths must be the equal length at

one tier. Thus, the height of the layer-parallel form cannot be larger than the height of the tree. Then

the vertices of each layer are divided into independent blocks that can be processed in parallel.

A parallel plan of calculation for the calculator is formed. The parallel calculator of the Boolean

function is applicable for dynamical building a truth table, using which the Boolean constraint in

DIMACS format is generated. MSQABDS is an open system that allows expanding the set of input

formats with the inclusion of an additional converter.

4.3. Experimental study

When solving problems of a qualitative study of BDS based on the method of Boolean constraints, we

use a declarative approach, in contrast to the procedural one presented, for example in [4, 5]. Based on

the declarative approach, the satisfiability of the required dynamical property of the system (1) is

represented as some set of Boolean constraints (or Boolean model) on the behavior of the BDS

trajectories. The integration in one model of both the description of the property and the equations of

the dynamics (1) of a specific object is the distinctive feature of such models developed using the

method of Boolean constraints.

The proposed declarative approach implies a uniform automated scheme for constructing models

for different dynamic properties in the form of Boolean constraints. Satisfiability of these constraints

is verified using an effective Sat solver. Thus, the same solver may be used to check different

properties. For example, based on offered approach Boolean models for following dynamical

properties of the reachability type is represented in [1]: the main reachability property; the security

property; the simultaneous reachability property; the reachability property under phase constraints; the

attraction property; the connectedness property of the target set; the total reachability property of the

target set from the set of initial states.

The procedural approach involves the implementation of an algorithm for verifying the

satisfiability of the required dynamic property in a programming language. This approach, unlike the

declarative one, firstly, requires another algorithm to check other property. Secondly, such algorithms

are not parallelized well [8]. Thirdly, most of the algorithms are designed only to search for attractors.

In this case, additional complexity arises - the search for all solutions is required.

In the first computational experiment, a comparison of based on these approaches computations

were carried out for the problem of searching for equilibrium states in autonomous synchronous

Boolean networks (models of gene regulatory networks – the GRN, most often used in testing [4, 7])

shown in table 1.

Based on MSQABDS system, for these GRNs, Boolean models that describe the equilibrium state

for a specific description of the dynamics of the BDS were constructed. The equilibrium states are

satisfiable sets of Boolean constraints of the model, which are found with the help of the “AllSAT

solution” solver [24]. In the declarative approach, the following “AllSAT solution” solvers are used to

search for the equilibrium states of the constructed Boolean models: nbc_minisat_all-1.0.2 and

bc_minisat_all-1.1.2 [24]. In the procedural approach, the BNS solver (bns_v1.3) [4] was used. BNS is

an SAT-based program (not the SAT solver) for searching for cycles of states (attractors) in Boolean

Networks with Synchronous update (a free version provided on

https://people.kth.se/~dubrova/bns.html). This well-known solver is still used for comparison with

new analogous software tools developed in recent years [6, 7]. The input format of BDS dynamics

description (1) for this solver is CNET format. The speedup obtained when solving the problem for

equilibrium states searching using the declarative approach, in comparison with the procedural one, is

shown in figure 7.

 Table 1. An example of GRNs.

GRN Nodes Equivalent

states

Dynamic description in “cnet” format

Fission yeast 10 13 https://people.kth.se/~dubrova/BNS/fission_yeast.cnet

Mammalian cell 10 1 https://people.kth.se/~dubrova/BNS/mammalian.cnet

Arabidopsis Thaliana 15 10 https://people.kth.se/~dubrova/BNS/arabidopsis.cnet

T-helper cell 23 3 https://people.kth.se/~dubrova/BNS/thelper.cnet

T-cell receptor 40 8 https://people.kth.se/~dubrova/BNS/tcr.cnet

Drosophila melanogaster 52 7 https://people.kth.se/~dubrova/BNS/drosophila4.cnet

In the second computational experiment, the search for equilibrium states was carried out for the

BDS of the form

1
1

1
1

1
12

1
1 ,...,,...,, 





  t
n

t
n

t
i

t
i

ttt
n

t xxxxxxxx , (2)

where n is the dimension of the BDS state vector.

Boolean models for the problem of searching for equilibrium states were constructed using

MSQABDS in DIMACS format (for nbc_minisat_all- and bc_minisat_all-solver) and generated in

CNET format (for BNS solver) for various values of n, increasing from 100 to 15,000. The results of

solving the problem under consideration are shown in figure 8. The speedup resulting from the

declarative approach steadily increases for both nbc_minisat_all- and bc_minisat_all-solver in

comparison with BNS solver when increasing dimension n of the state vector.

All experiments are performed on the HPC-cluster “Akademik V.M. Matrosov” (nodes with two

16-core processors AMD Opteron 6276 «Bulldozer»/«Interlagos» 2.3 GHz, 16 MB L3 cache, 4

FLOP/cycle).

Figure 7. Comparison of solvers for search of

equivalent states in GRN (table 1).

Figure 8. Comparison of solvers for search of

equivalent states in BDS (2).

Reducing the solution of qualitative analysis problems to solving SAT and 2QBF problems allows

data parallelism and provides the possibility for study the trajectories behavior for BDS of large

dimensions n of the state vector over a sufficiently long time interval T.

5. Conclusion

We offer an approach to automate the development of microservice-oriented applications using multi-

agent technology. Based on this approach, we develop the MSCDT for automating the creation,

deploying, and testing microservices. The microservice-oriented system MSQABDSA for building the

Boolean model of a BDS dynamical property is created using the MSCDT. MSQABDSA system is

intended for solving the problems of qualitative analysis of BDS. The widespread use of BDS as

models of gene regulatory networks determines the practical relevance of the tools developed.

Acknowledgment

This work was supported by the Russian Foundation of Basic Research, project no. 18-07-00596 (reg.

no. № AAAA-A18-118012290008-8). This work was also supported in part by the Presidium RAS,

program no. 2, project “Methods and tools for solving hard-search problems with supercomputers”

(reg. no. АААА-А18-118031590005-5). The authors would like to thank the Irkutsk Supercomputer

Center of SB RAS for providing access to cluster computational resources.

References

[1] Oparin G A, Bogdanova V G and Pashinin A A 2018 Boolean constraints method in qualitative

analysis of binary dynamic systems International Journal of Applied and Basic Research 9

19-29 (In Russian)

[2] Bychkov I V, Oparin G A, Bogdanova V G and Pashinin A A The applied problems solving

technology based on distributed computational subject domain model: a decentralized

approach Parallel computational technologies (Chelyabinsk: SUSU) pp 34-48

[3] Oparin G A, Bogdanova V G, Pashinin A A and Gorsky S A Distributed solvers of applied

problems based on microservices and agent networks 2018 Proc. of the 41st International

Convention on Information and Communication Technology, Electronics and

Microelectronics (IEEE) pp 1415-1420

[4] Dubrova E and Teslenko M 2011 A SAT-based algorithm for finding attractors in synchronous

Boolean networks Trans. Comput. Biol. Bioinformatics (IEEE/ACM) 8(5) 1393-1399

[5] Dubrova E, Teslenko M and Martinelli A 2005 Kauffman networks: analysis and applications

Proc. of the Int. Conf. on Computer-Aided Design pp 479-484

[6] He Z, Zhan M, Liu S, Fang Z and Yao C 2016 An algorithm for finding the singleton attractors

and pre-images in strong-inhibition Boolean networks PLOS ONE 11(11) e0166906

[7] Zheng D, Yang G, Li X, Wang Z and Hung W N 2013 An efficient algorithm for finding

attractors in synchronous Boolean networks with biochemical applications Genetics and

Molecular Research 12(4) 4656-66

[8] Guo W, Yang G, Wu W, He L and Sun M 2014 A parallel attractor finding algorithm based on

Boolean satisfiability for genetic regulatory networks PLOS ONE 9(4) e94258

[9] Bychkov I V, Oparin G A , Bogdanova V G , Pashinin A A and Gorsky S A 2017 Automation

development framework of scalable scientific web applications based on subject domain

knowledge Parallel Computing Technologies ed V Malyshkin (Springer: Cham) LNCS

10421 pp 278-288

[10] Bychkov I V, Oparin G A, Bogdanova V G and Pashinin A A 2018 Service-oriented

technology for development and application of decentralized multiagent solvers for applied

problems Herald of computer and information technologies 12 36-44 (In Russian)

[11] Richardson C and Smith F 2016 Microservices - from design to deployment (San Francisco:

NGINX)

[12] Newman S 2015 Building Microservices (O’Reilly)

[13] Savchenko D and Radchenko G. Microservices 2015 Validation: Methodology and

implementation Proc. of the`1st Ural Workshop on Parallel, Distributed, and Cloud

Computing for Young Scientists 1513

[14] Kehrer S and Blochinger W 2018 AUTOGENIC: Automated generation of self-configuring

microservices Proc. of the 8th International Conference on Cloud Computing and Services

Science (SCITEPRESS) pp 35-46

[15] Fazio M, Celesti A, Ranjan R, Liu C, Chen L and Villari M 2016 Open issues in scheduling

microservices in the Cloud Cloud Computing (IEEE) 3(5) pp 81-88

[16] Gorodetskii V I 2012 Self-organization and multiagent systems: I. Models of multiagent self-

organization Journal of Computer and Systems Sciences International 51(2) 256–281

[17] Rodrigues N 2014 Dynamic composition of service oriented multi-agent system in self-

organized environments Proc. of the Workshop on Intelligent Agents and Technologies for

Socially Interconnected Systems pp 1-6

[18] Oberhauser R 2016 Microflows: lightweight automated planning and enactment of workflows

comprising semantically-annotated microservices Proc. of the Sixth Int. Symposium on

Business Modeling and Software Design pp 134-143

[19] Florio L 2015 Decentralized self-adaptation in largescale distributed systems Proc. 10th Joint

Meeting on Foundations of Software Engineering (ACM) pp 1022-1025

[20] Buguillo J 2018 Self-organizing Coalitions for Managing Complexity (Springer International

Publishing) pp 89-100

[21] Moussaid M 2009 Collective information processing and pattern formation in swarms, flocks,

and crowds Top Cogn Sci ed M Moussaid et al. 1(3) pp 469–497

[22] Kohlhase M and Rabe F 2012 Math.Comput.Sci 6(3) (Springer Basel AG) 235–260

[23] Alexandru I 2017 FMath editor (Electronic Materials https://www.fmath.info/, accessed: May,

20 2019)

[24] Toda T and Soh T ACM Journal of Experimental Algorithmics 2016 21(1)

