
PQ-VAE: Efficient Recommendation
UsingQuantized Embeddings

Jan Van Balen
Apple, Inc.
London, UK
jvanbalen@apple.com

Mark Levy
Apple, Inc.
London, UK
mark_levy@apple.com

ABSTRACT
Large neural recommendation models can be a challenge to deploy at scale. For recommendation
services with a large number of users, the most powerful models may require an impractical amount
of space to store the large dense vectors encoding each of the users’ tastes. Combining ideas from
auto-encoder-based recommender systems, neural discrete representation learning (VQ-VAE), and
product quantization (PQ), we propose PQ-VAE, a recommendation model that learns compact,
discrete embeddings at only a small cost in accuracy.

KEYWORDS
Recommender systems; auto-encoders; representation learning; product quantization.

INTRODUCTION
Neural recommendation models typically learn one or more sets of user or item embeddings, which
together tend to make up the vast majority of the network’s weights. Recent work in neural recom-
mender systems suggest that, given enough regularization, large embedding dimensions can be an
effective way to achieve accurate model predictions: the state-of-the-art variational auto-encoder
(VAE) in [3] has an embedding dimensions of 600; meanwhile, experiments in [4] show even better
results for a model that does away with the VAE’s low-rank bottleneck altogether.
Large embeddings of course, come with a large memory footprint. The uncompressed memory

footprint of N D-dimensional user or item vectors is N × D × P , where D is the model’s embedding

ACM RecSys 2019 Late-breaking Results, 16th-20th September 2019, Copenhagen, Denmark
Copyright ©2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International 
(CC BY 4.0). 



PQ-VAE: Efficient Recommendation UsingQuantized EmbeddingsACM RecSys 2019 Late-breaking Results, 16th-20th September 2019, Copenhagen, Denmark

dimension, and P is the precision in bits (typically 32). With tens of millions of users, and sometimes
multiple vectors per user, that could mean upward of 100G of embeddings.

In this work, we propose PQ-VAE: a neural recommendation model that uses quantization to learn
compact user embeddings at only a small accuracy cost. Our approach builds on three ideas: the
auto-encoder recommenders proposed in [3], neural discrete representation learning [5], and product
quantization [1].

RELATEDWORK
Experiments in [3] have shown how denoising auto-encoders (DAE) and variational auto-encoders (VAE)
can be used for recommendation. The proposed DAE model is essentially a simple fully-connected
neural network with a few hidden layers. Each input example is a user’s history of item interactions,
as a sparseM-dimensional vector of counts. Its objective is to reconstruct these inputs after noise is
added in the form of dropout. TheM reconstructed values are the recommender’s item scores.
We combine this model with discrete representations. VQ-VAE, the model proposed in [5], learns

discrete representations of audio and image data, by trying to reconstruct its input from an interme-
diate representation to which vector quantization is applied. By reducing an image to a small number
of integer codes, VQ-VAE generally makes for a good tool for data compression.

The third innovation on which we built PQ-VAE is product quantization [1]. This is a technique that
is used primarily for approximate nearest neighbor search. The idea is that, by applying piece-wise
k-means vector quantization to the candidate vectors, only O(k) distance computations need to
be performed per query. The resulting distances can be relatively cheaply combined to obtain the
approximate distance to each of the neighbors. To the best of our knowledge, the ideas in [5] and [1]
have been previously only been combined in the context of image retrieval [6].

PQ-VAE
PQ-VAE, like the state-of-the-art DAE recommender from [3], is a neural network that takes a user’s
item interaction counts as inputs and produces item scores on the output side. The model’s objective
during training is to reconstruct its inputs. The network itself consists of one or more fully-connected
layers with tanh activations, as shown in the top half of Figure 1. Unlike the DAE, we apply quantization
to the activations of the last hidden layer, similarly to how VQ-VAE learns discrete representations.
This is equivalent to the way vectors are quantized in product quantization.

Concretely, the vector of activations corresponding to each example is cut into chunks of around
length 10, and each of these chunks is quantized using a learned codebook. This presents a few
challenges at training time. First, the quantization operation is not differentiable, making it impossible
to optimize the above model exactly via gradient descent. As in [5], we work around this by using the
unquantized instead of the quantized vector during the gradient computation, as if the quantization



PQ-VAE: Efficient Recommendation UsingQuantized EmbeddingsACM RecSys 2019 Late-breaking Results, 16th-20th September 2019, Copenhagen, Denmark

step simply never happened.1 Second, we would like to learn codes efficiently as part of model training.1This is sometimes referred to as straight-
through estimation. In a way, it is not too differ-
ent from how a DAE learns: the quantization ef-
fectively produces additive (quantization) noise
to which the model must learn to develop some
amount of invariance.

To this end, we use exponential moving average k-means to learn codes in a batch-wise fashion, again
following [5]; this way we avoid having to process the entire dataset on every update, as in the classic
k-means algorithm.

In a trained PQ-VAE, the quantized representations in the last hidden layer represent the user, as
illustrated in Figure 1. When these user representations are frozen for serving, we can convert them
to discrete vectors, allowing us to store them with just 10–100 bytes each, 1-2 orders of magnitudes
less that the the embeddings learned by a large DAE.

Finally, the PQ structure of the embeddings alternatively allows for efficient retrieval. At prediction
time, the PQ structure of the embeddings allows us to swap out the model’s final layer for PQ-based
similarity scoring, replacing most of the multiply-adds with a lookup into precomputed scores.22In a typical recommendation scenario, user

embeddings function as query vectors, and
item embeddings as candidates to be retrieved.
In this paradigm, PQ-VAE quantizes queries as
opposed to (more usually in PQ) the candidate
vectors. Therefore, we cannot use PQ-based
nearest neighbor search directly. We found that
is possible to reduce the complexity of the sim-
ilarity computation between a query and a col-
lection of candidate vectors regardless of which
of the two are quantized. However, efficient dis-
tance computations on quantized user embed-
dings require the similarity scores between the
query codebook and all candidates to be pre-
computed, trading memory footprint for speed.

However, we noticed that without a highly optimized PQ implementation (see e.g. [2]) it is difficult to
make this approach surpass the performance of brute-force similarity search on real-world datasets.

DROPOUT DENSE + 
TANH

DENSE + 
TANH

DENSE + 
TANH

QUANTIZE
CHUNKS

USER ITEM INTERACTIONS
USER EMBEDDING

DENSE +
SOFTMAX

USER ITEM PREDICTIONS

DISCRETE
USER EMBEDDING

PQ 
SCORING

USER ITEM PREDICTIONS

ITEM 
EMBEDDINGS

serving

training

Figure 1: Schematic of the proposed PQ-VAE model.



PQ-VAE: Efficient Recommendation UsingQuantized EmbeddingsACM RecSys 2019 Late-breaking Results, 16th-20th September 2019, Copenhagen, Denmark

Table 1: Memory footprint and performance on MovieLens 20M, and one internal dataset,
for a selection of models. Model names are the architecture followed by the dimensions of
the hidden layers. TheDAE +PQmodels areDAE’s ofwhich the embeddingswere quantized
after training. Dimensions with × refer to the number (40) and length (5) of chunks after
piece-wise vector quantization.

ranking performance (NDCG @ 100)

Model size in memory of 50M vectors MovieLens 20M internal 66M

VAE 600-200-600 120G 0.426
DAE 200 40G 0.420 0.386

PQ-VAE 200-200-40×5 2G 0.412 0.362
PQ-VAE 200-200-20×10 1G 0.401 0.360

DAE 200-200-200 + PQ 40×5 2G 0.340
DAE 200-200-200 + PQ 20×10 1G 0.333

EXPERIMENTS
Table 1 shows the results of an experiment on theMovieLens 20M dataset and, for some of the models,
one internal dataset. The task is to predict a set of 20% “unseen” interactions from the other 80% as
in [3]. We report NDCG@100 for 10,000 held-out users not seen during training, i.e., we evaluate
so-called strong generalization. All DAE and PQ-VAE models were trained using the Adam optimizer,
a selection of learning rates between 10−5 and 10−3, L2-regularization between 10−2 and 10−1 and for
a maximum of 50 epochs.

The first two models, included for reference, were shown to perform well in [3]. For the remaining
models, we focused on networks with a three 200-dimensional hidden layers. Next, the PQ-VAE
models are shown. We compare quantization with 20 and 40 chunks of length 10 and 5, respectively.
Experiments with 100 and 400-dimensional hidden layers did not show improvements over the
performance shown in the table, nor did experiments with less than 20 chunks. Finally, the two rows
labeled “DAE + PQ” show results for experiments in which a DAE was trained first, and product
quantization was applied the model’s learned embeddings after training.

Results for MovieLens 20M show that the difference in ranking performance due to quantization is
small: less than 1% for a 10× decrease in memory footprint. Smaller models appear to come with a
bigger drop in performance, e.g. 4.6% for 20×. We observe however that PQ-VAE predictions are much
better than those from DAE user embeddings to which we apply product quantization after the fact:



PQ-VAE: Efficient Recommendation UsingQuantized EmbeddingsACM RecSys 2019 Late-breaking Results, 16th-20th September 2019, Copenhagen, Denmark

ranking performance drops by 19%. Preliminary results on the larger internal dataset are consistent
with these findings: a 40× user vector compression can be achieved with a relative performance drop
of less than 5%.

CONCLUSION
We show that is possible to learn high-quality, memory-efficient user representations by implementing
product quantization inside a neural recommender. In future work we hope to further leverage the
discrete nature of the learned user representations to speed up prediction.

REFERENCES
[1] Hergé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization for Nearest Neighbor Search. IEEE

Transactions on Pattern Analysis and Machine Intelligence 33, 1 (Jan 2011), 117–128. https://doi.org/10.1109/TPAMI.2010.57
[2] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity search with GPUs. arXiv preprint

arXiv:1702.08734 (2017).
[3] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational Autoencoders for Collaborative

Filtering. In Proceedings of the 2018 World Wide Web Conference (WWW ’18). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, Switzerland, 689–698. https://doi.org/10.1145/3178876.3186150

[4] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. arXiv preprint arXiv:1905.03375 (2019).
[5] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. 2017. Neural Discrete Representation Learning. In

Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 6306–6315. http://papers.nips.cc/paper/
7210-neural-discrete-representation-learning.pdf

[6] Hanwei Wu and Markus Flierl. 2018. Learning Product Codebooks using Vector Quantized Autoencoders for Image
Retrieval. arXiv preprint arXiv:1807.04629 (2018).

https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1145/3178876.3186150
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf

	Abstract
	Introduction
	Related Work
	PQ-VAE
	Experiments
	Conclusion
	References

