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Abstract

Evaluating the acquisition of Computational
Thinking skills can be a very complicated pro-
cess, especially in a context in which, in ad-
dition to the development of the skills, the
quality of an outcome product is of particular
relevance. In this paper, we propose a strat-
egy to assess the acquisition of Computational
Thinking competences through eight metrics
that measure the quality of a working soft-
ware product. Our approach includes leverag-
ing Block-Based Programming Languages to
incorporate Software Engineering practices for
a metric collection effort that delivers value for
the evaluation of the quality of software prod-
uct as an observable outcome of the acquisi-
tion of Computational Thinking competences.

1 Introduction

Computational Thinking (CT) has received atten-
tion both from Research on Education and Research
in Computer Science to the point that the body of
knowledge in this subject allows for systematic stud-
ies [GP13, KGK16, LM17]. Also, mainstream media
has paid attention in CT as an enabler for construct-
ing transversal skills that, through structured thinking
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and disciplined reasoning, can bring computational ca-
pabilities to the service of diverse professional areas
of specialization. Structured thinking and disciplined
reasoning, along with a sufficient command of soft-
ware tools can help non-software professionals to de-
velop simple development activities, such as designing
a macro in Microsoft Office documents, writing Python
or R scripts for statistical analysis, or writing HTML
documents for web pages. These are illustrative exam-
ples of cases where the acquisition of CT skills can be
brought to a productive setting and can be associated
to an outcome software tool that boosts productivity
or improves the quality of a professional environment.

Although considerable effort has been made to un-
derstand how to evaluate the effectiveness on the ac-
quisition of CT skills [FIC17a], major assessment mod-
els miss quantitative indicators that can show the at-
tainment and possible success of a CT skill accurately.
Evaluation models give preference to a qualitative as-
sessment viewpoint, leaving open the opportunity to
understand the comprehension of the concepts quan-
titatively.

In this paper, we propose a compound assessment
model in which the evaluation of the CT skill could
be associated with Software Engineering (SE) charac-
teristics that are observable in an outcome software
product. To this end, we present a strategy to map a
selection of CT dimensions into software quality assur-
ance characteristics, illustrated by metrics that allow
a quantitative indicator. The plan includes proposing
case studies to run this mapping in independent popu-
lations, to shed light on how this CT assessment effort
can be executed in different contexts.

The rest of this paper is structured as follows: Sec-
tion 2 discusses strategies for CT assessment and CT
dimensions; Section 3 presents an association between
CT dimensions and SE quality characteristics; Sec-



tion 4 describes the experimental setting in which this
strategy shall be applied, and Section 5 establishes ex-
pectations for future efforts and closes this work.

2 Assessment of Computational
Thinking Skills

Assessing the learning of CT skills has been a contin-
uous challenge that has not accomplished yet a steady
level of agreement. It is easy to find a complete body
of research that has focused its efforts on a number of
research goals pertaining CT, mainly curriculum de-
sign and implementation of software tools.

The systematic study of Kalelioglu et al. [KGK16]
shows that out of a universe of 125 examined papers,
43 articles focus on curriculum design, 34 on tool us-
age, and only 13 were flagged as focusing on pedagog-
ical frameworks, including learning assessment. The
mention to CT assessment in Grover and Pea [GP13]
is as well minor, including three citations of articles
whose focus is evaluation of CT skills. Nonetheless,
this systematic study acknowledges the importance of
methods of evaluation, and how “without attention to
assessment, CT can have little hope of making its way
successfully into any K-12 curriculum”. Finally, the
systematic mapping of Lockwood and Mooney [LM17]
does not consider assessment of CT as a separate re-
search focus to study, although the concept is par-
tially mentioned when discussed other research con-
tributions.

2.1 Qualitative Strategies

Frameworks for evaluating CT are constructed de-
pending on the needs of the context, segment and ed-
ucational goals of the population (for instance K12
[SF13, MDD+14], Middle/High School [WDCK12,
FIC17b] or Professionals of Education [RGPJ+16,
YGGM17]). Research products in the matter show
that authors do not concur in a common strategy, typ-
ically motivated by the fact that different CT assess-
ment frameworks are implemented in distinct appli-
cation environments. Each proposed method is very
tailored for the instance, and the assessment strategy
depends heavily on the context and population. More-
over, the evaluation models are commonly qualitative
and lack of consistent metrics. Instead, questionnaires,
empirical enquiries, or observations of behavioral traits
are some of the preferred methods to assess the ac-
quisition of CT skills from a presence/absence or suc-
cess/failure point of view.

2.2 Quantitative Strategies

In the quantitative side, the work of Werner et al.
proposed a more quantitative, product-focused ap-

Table 1: Computational Thinking Dimensions.
Dimension Descriptor

Computational concepts Sequences
Loops
Events
Parallelism
Conditionals
Operators
Data

Computational practices Iterations
Testing
Reusing
Modularizing

Computational perspectives Expressing
Connecting
Questioning

proach that, in addition to the traditional demograph-
ical and behavioral traits, it introduced the use of
characteristics of programming artifacts to evaluate
students’ understanding of CT notions such as ab-
straction, conditional logic, algorithmic thinking, and
others [WDCK12]. Moreover, the study published in
[SF13] attempts to create a framework to assess CT
in primary grades using a quantitative approach. The
study published in [MPK+08] lays the foundation to
analyze aspects of a Scratch project by assessing the
presence or absence of a certain programming trait
such as loops, conditions, variables, etc.

2.3 Automated Tools

Tools like Dr. Scratch [MLRRG15] and Hairball
[BHL+13] have had a tremendous success on evalu-
ating block-based programming snippets and even as-
sociating them to specific CT skills, but in a approach
that is language-centric to Scratch and that leaves
open the opportunity to extend the approach to other
languages.

To understand better what are the items of interest
that are regularly evaluated in CT assessment mod-
els, it is relevant to review the work of Brennan and
Resnick [BR12], who, inspired in a certain develop-
ment framework, structured and organized the CT
skillset that can be extended to other development
tools. They distinguish common items to watch when
teaching under the CT framework, and structures
these items in the so-called Computational Thinking
Dimensions shown in Table 1.

The structure of dimensions and associated descrip-
tors are of paramount help to understand better what
is the expectation in the learning outcome of a person
who is receiving training in CT. Also, the organiza-
tion dimensions-descriptors permits to outline possi-
ble characteristics that, if an outcome software prod-



uct exists, can be evaluated quantitatively to deter-
mine the level of comprehension (that is, understand-
ing and application of the concept) that the student
attained after a series of explanations and exercises.

3 A Quantitative Quality Assurance
Model for CT Skills

The model proposed by Brennan and Resnick [BR12]
stops at identifying descriptors upon which measure-
ments can be defined, leaving open the opportunity
of associating such descriptors to quality characteris-
tics that can be in practice scrutinized in the soft-
ware product using a Software Engineering approach,
namely the implementation of software metrics.

Software metrics have been intensely used in edu-
cational, research, and practitioner contexts to under-
stand, measure, and assess the software product, to
eventually predict the quality of the software product.
The international standard ISO/IEC 25010 [ISO10]
defines two dimensions of software quality:

• Internal/External Quality: Characteristics
that define a view of “quality” from the stand-
point of the “developer”, which considers and
measures only development artifacts. As ISO
25010 sheds light on strategies to evaluate relevant
quality characteristics of the software product, it
opens the door for proposing concrete measuring
strategies or metrics, since it does not recommend
how to track quality attributes accurately. This
overlaps with the presence of CT descriptors, that
outline a set of characteristics to measure CT suc-
cess but do not recommend a metric to measure
them precisely.

• Quality in Use: The degree to which a product
or system can be used by specific users to meet
their needs to achieve specific goals with effective-
ness, efficiency, freedom from risk and satisfaction
in specific contexts of use. This means a perspec-
tive of quality from a standpoint is of the user in
her/his role of “end-user”, as this dimension of
quality is observable only when the final product
is used in execution conditions. This approach is
the most studied and implemented in previous CT
assessment research since it focuses on the success
of the student implementing a CT strategy, and in
the success/failure of the outcome product from
a subjective end-user viewpoint.

With a reasonably rigorous Software Engineering
approach, a precious instrument to understand how
CT skills are learnt and implemented is an outcome
software product. The opportunity of analyzing it
and measuring it from a development point of view

makes the Internal/External Quality Assurance per-
spective of high interest for CT analysis. Consid-
ering as well that CT commonly leverages the pos-
sibilities offered by Block-Based Programming Lan-
guages (BBPL) such as Scratch1 or AppInventor2, this
enables the possibility of performing software qual-
ity analysis in products developed using those frame-
works. The main advantage of this approach is to offer
quantitative evidence to relate an internal characteris-
tic of the outcome software product to the acquisition
of a particular CT skill.

To implement the strategy in an ordered and se-
quential manner, we start by placing a high-level ques-
tion:

RQ. How source artifacts can be analyzed to provide
an objective notion of the acquisition of CT skills?

This question represents the main challenge of our
strategy: associating the CT descriptors to source code
characteristics that be measured and described as reg-
ular software metrics [FB14], following a strategy that
permits to infer software quality metrics from external
quality indicators [CSS14].

To assist in the identification of the proper metrics
to observe the CT skill, we suggest to follow a flow
roughly inspired in the GQM approach proposed by
Basili et al. [BCR94, FP18]: this implies to define
a goal, decompose the goal into questions, and dis-
cretize the answer to those questions in metrics that
collect the necessary information to construct a solu-
tion. With this, the analysis is structured as follows:

• Goal (conceptual level): The overall goal that
the student aims to attain, obtaining a good com-
mand of CT skills, understood as a collection of
CT dimensions.

• Questions (operational level): Concepts to char-
acterize the object of measurement with respect
to a selected quality characteristic, in this case the
CT descriptors that the student aims to exercise.

• Metrics (quantitative level): Data associated
with each question to answer it numerically. With
the Internal/External quality approach, such data
may come from BBPL source code characteristics.

To conclude the analysis, it is necessary to provide
a description of each CT dimension and its associated
CT descriptor, to have a better understanding of the
concept and be able to propose a corresponding soft-
ware metric. Descriptions are taken from [BR12].

1https://scratch.mit.edu/
2http://appinventor.mit.edu/



3.1 Computational Concepts

Computational Concepts are traits that are common
in many programming languages and that are easily
mapped to features typically found in BBPLs. Com-
putational Concepts enabler a programmer to struc-
ture and give direction to the execution flow that the
developer aims to model.

• Sequences: A series of individual steps or in-
structions that can be executed by the computer.
This can be observed scrutinizing how students
assembly steps, for instance, by measuring the
number of consecutive blocks for each execu-
tion flow in a project.

• Loops: A mechanism for running the same se-
quence multiple times. This can be measured
counting the number of iterative sequences

(while, for, do-while) present in a project.

• Events: One thing causing another thing to hap-
pen. This can be measured counting the number

of event listeners (“when” blocks) present in
a project.

• Parallelism: Sequences of instructions happen-
ing at the same time. This can be measured
by visually inspecting and analyzing the number

of concurrent procedures that effectively take
place at the same time.

• Conditionals: The ability to make decisions
based on certain conditions, which supports the
expression of multiple outcomes. This can be
observed by counting the number of condition

blocks present in a project.

• Operators: Provide support for mathematical,
logical, and string expressions, enabling the devel-
oper to perform manipulations. This can be mea-
sured counting the number of operators (arith-
metic, logic, string) present in a project.

• Data: Data involves storing, retrieving, and up-
dating values. This can be observed by count-
ing the number of variables blocks used in a
project.

Most of the Computational Concepts can be mea-
sured by performing code analysis of the component
blocks, except for parallelism that requires additional
analysis to determine whether more than one kernel of
blocks are executed at the same moment in time.

3.2 Computational Practices

Computational Practices focus on the process of think-
ing and learning, moving beyond what students are
learning to how students are learning.

• Iterations: The adaptive process to plan for the
design, and then implementing the design in code.
Although this practice can be observed counting
the number of sprints used by a person or team
to develop the project, the collection would not be
product-centric.

• Testing: Debugging practices, commonly de-
veloped through trial and error. Much like It-
erations, this practice can be tracked by the
number of test scenarios designed to validate
the product, however the metric would be more
process-based and less product-centric.

• Reusing: The process of baselining an already-
finished project and perform the necessary
changes to fork it as a new product. As the prac-
tice is completely procedural, it remains out of
the scope of this metric framework.

• Abstracting/Modularizing: Building some-
thing large by putting together collections of
smaller parts, for example by creating reusable
modules. This can be observed by counting
the number of stored procedures used in a
project.

As observed, Computational Practices are typically
procedural and process-focused, allowing for very little
room for source code analysis and data collection.

3.3 Computational Perspectives

Computational Perspectives describe the shifts in per-
spective that are observed in students when exposed
to CT practices.

• Expressing: The ability to see computation as
more than something to consume but something
that can be used for design and self-expression.

• Connecting: The capacity of having access to
new people, projects, and perspectives via net-
works.

• Questioning: The empowerment to ask ques-
tions about and with technology.

Since these descriptors fall in the area of personal
analysis, we leave them out of the scope of this strat-
egy, that aims to be product-centric.

With this analysis, we observe that mostly Com-
putational Concepts can be inferred by SE metrics,



Table 2: Computational Thinking / Software Engineering Metrics Set.
Dimension Descriptor Associated Metric

Computational concepts Sequences Count of consecutive blocks
Loops Number of Iterative Sequences
Events Number of Event Listeners
Parallelism Number of Concurrent Procedures
Conditionals Number of Condition Blocks
Operators Number of Operators
Data Number of Declared Variables

Computational practices Abstracting/modularizing Number of Stored Procedures

while Computational Practices fall more in the scope
of Software Process Analysis. Finally, Computational
Perspectives shall continue being studied and analyzed
from a qualitative, behavioral point of view and re-
main out of the scope of our model. The collection
of characteristics that can be measured directly in the
source software to be associated with CT concepts and
practices, constructs a family of 8 metrics for CT as-
sessment, which is illustrated in Table 2. This metric
set is an abstract parametrization of CT measures that
may be implemented in many ways, included visual in-
spection or automatic source analysis.

Although our metric set aims to be comprehensive
and cover a good range of Computational Concepts
and Practices, it is important to flag its limitations.
The metrics shed light to note the presence/absence of
a type of block (e.g., loops, event listeners) or a coding
practice (e.g., procedures) in a programming project.
Then, by counting the number of appearances, it con-
veys the extent to which the block or a coding practice
is used. Since not all kind of programming projects
needs to handle all types of blocks, the numbers de-
livered by the metrics would require a more in-depth
analysis, as it would not be realistic to assume that an
individual has poor CT skills when not using a block
even if it is not necessary for a project. For this reason,
we suggest the introduction of a qualifier parameter to
complement the value of each metric.

3.4 Qualifier Parameter

To overcome this limitation, an additional parameter
can be incorporated to refine the overall assessment of
the quality of the values that construct a metric.

Let M be a metric of the model. A parameter Q
can apply a value that qualifies the accuracy in which
the elements of M are used. The more accurately,
precisely and finely the elements of the metric M are
used, the higher value of Q shall be set, to ensure
direct proportionality. The higher the value of Q is,
the higher the reward to the metric M. To establish a
range for Q values, we propose the following scale:

• Outstanding (4): The blocks are used properly

and deliver additional value to the solution (e.g.,
it optimizes the solution).

• Good (3): The blocks are used properly as per
the requirement of the algorithm.

• Fair (2): The blocks are present with no visible
contribution to the solution, but without intro-
ducing an error.

• Poor (1): The blocks are present, and their pres-
ence impacts negatively the solution, (e.g., it in-
jects an error).

In this way, the calculation of a qualified metric QM
could be set as:

QualifiedMetric = Metric ∗Qualification (1)

To understand it better, let us suppose a case in
which the metric M represents the number of iterative
sequences (loops) in a project. Then, let us suppose
two competing projects A and B, with the same num-
ber of loops (for instance, 5).

In project A, all the loops are correctly set and con-
tribute effectively to the solution of the problem. The
qualification of these loops would be Good, that is, 3.

In project B, some of the loops are misplaced and
contribute marginally to the solution of the problem.
The qualification of these loops would be Fair, that is,
2.

Per equation (1), the qualified metric QM for both
projects is:

QMA = 5 ∗ 3

QMA = 15

And,

QMB = 5 ∗ 2

QMB = 10

Although both projects have the same number



of loops and hence the same value of the illustrative
metric M, the qualifier Q allows the calculation of
two very distinct values, rewarding the project in
which the assessed characteristic was better used, or
penalizing a practice that instead of contributing to
the solution, opens an opportunity of error.

The introduction of the qualifier parameter permits
a better association of the metric value with its ac-
tual contribution to the overall assessment of the CT
quality. Nonetheless, it poses an additional challenge
in the metric management strategy to determine who
and how should execute the quality assessment to as-
sign a rigorous and accurate qualifier value, without
being subjective.

4 Case Studies

To have an initial approach as to how the proposed
model can deliver insightful information on the way
that a population is learning CT skills, we propose to
set up training experiences of Block-Based Program-
ming Languages (BBPL) addressed to two different
populations of non-expert subjects. Programming en-
vironments like these are often used as the basis for
CT assessment, to have a steady environment for eval-
uating tasks or measure products for aspects of algo-
rithmic thinking, abstraction, and modelling.

The BBPL that will be taught is Thunkable3, a mo-
bile app development language that permits to design
user interfaces and executable programs using blocks
of code (Figure 1). To open the possibilities of the
case studies, Thunkable was selected as it respects the
BBPL programming paradigm, and permits multiplat-
form development for Android and iOS. The teaching
staff will be the same for both courses. The metrics
will be collected manually, and the criteria to qualify
the metrics will be set by the teaching staff.

4.1 Group 1: A Bootcamp for Middle Schools

We will introduce our metric set to analyze the out-
come products of a one-week course that delivers
hands-on experience in software development for mo-
bile devices. This bootcamp targets high school stu-
dents with no experience in software development.
The age segment of participants spans from 15 to
18 years old. The length of the course is 20 hours
of hands-on training, taught in 5 sessions of 4 hours
(Monday to Friday). The course will take place in
Italy, in a state University.

The course offers an overview on problem-solving
based on CT principles. Then, BBPL tools are intro-
duced to represent and execute the algorithms. Par-
ticipants are required to design and implement a soft-

3https://www.thunkable.com/

ware project working in teams of three students. The
project is handed in by the end of the course and will
serve as outcome product for code analysis and metric
calculation.

4.2 Group 2: A Graduate Course for Fine
Arts

The experience will be replicated in a postgraduate
course that will be offered in a Faculty of Fine Arts in
Mexico. The course is addressed to graduate students
who have earned a Bachelor’s Degree in Arts previ-
ously. The age segment of participants spans from 21
to 35 years old. The course will be carried out in a
state University in Mexico.

The population does not have experience in soft-
ware development. The length of the course is 40 hours
of theoretical and practical study, taught in sessions of
2 hours. The structure of the course will be the same
of Group 1. For replication purposes, students will
be as well required to design and execute a software
project working in teams of three students, and the
project and will be analyzed based on the proposed
metric set.

5 Future Work and Closing Remarks

In this paper, we introduce a strategy to assess the ac-
quisition of CT competences based on an association of
CT dimensions with software code quality metrics. We
envision the execution of BBPL training courses with
the same content and structure, addressed to two non-
expert populations, that can deliver insightful metrics
collected using our model. This product-centric ap-
proach to evaluate the success of CT skills is based
on eight metrics that represent CT dimensions. We
expect to follow up this work by collecting a dataset
that permits deepening in the analysis to strengthen
the discussion to ensure a quantitative, population-
agnostic CT assessment practice.

There is still much work to do to draw conclusions
in the underlying ideas of this work. As future work,
the case studies of Section 4 need to be implemented
on top of a robust design of experiment, in which the
technical coverage of the two settings is comparable so
that the collection of outcome products in the two set-
tings is similar too. Moreover, an essential next step
is to determine “acceptance” ranges, thresholds and
usage traits to evaluate the success of specific skills
based on the value delivered by a metric. Addition-
ally, several validity threats must be borne in mind to
ensure a successful implementation of the strategy. We
can identify two major ones: The manual calculation
of the metrics, and the subjective assignment of the
qualifier value.



Figure 1: User interface of Thunkable.
This work is an initial step to connect Software En-

gineering practices for the evaluation of the quality of
the software product as an observable outcome of the
acquisition of Computational Thinking competences.
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