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Abstract

This paper presents a study of the characteristics of trans-

actional databases used in frequent itemset mining. Such

characterizations have typically been used to benchmark and

understand the data mining algorithms working on these

databases. The aim of our study is to give a picture of how

diverse and representative these benchmarking databases

are, both in general but also in the context of particular

empirical studies found in the literature. Our proposed list

of metrics contains many of the existing metrics found in the

literature, as well as new ones. Our study shows that our

list of metrics is able to capture much of the datasets’ inner

complexity and thus provides a good basis for the charac-

terization of transactional datasets. Finally, we provide a

set of representative datasets based on our characterization

that may be used as a benchmark safely.

1 Introduction

Since the introduction of Frequent Itemset Mining
(FIM ) and its early algorithms, a huge number of al-
gorithms have been proposed [1, 14, 18, 22, 23] (see
Fournier-Viger et al. [9] for a more detailed review of
the latest FIM approaches); in fact, itemset mining
and the closely related association rule mining have
been arguably the hottest topic within the field of data
mining for years. With the appearance of competing
itemset mining algorithms comes the need to under-
stand their strengths and weaknesses. Natural questions
arise: what algorithm is the fastest for one particular
dataset1? What is the best algorithm? Or more real-
istically: what algorithms work best for what types of
datasets?

In an attempt to answer these questions, authors
set up and run empirical studies (what we call algo-
rithm benchmarking here). In data mining algorithm
benchmarking, one uses a set of datasets as the basis
for comparison (a benchmark), and applies all compet-
ing algorithm candidates to the benchmark in order to
establish what algorithm is the fastest, uses less mem-
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Catalunya, Spain, clezcano@cs.upc.edu
†Computer Science Department, Universitat Politècnica de
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ory or gives more accurate results. In order to make
the comparison fair, one should use as many datasets
as possible, and these should be as diverse as possible.
In other words, the benchmark should be a representa-
tive sample of what is to be expected when applying the
algorithms in real-world scenarios.

The question of whether a benchmark (that is,
a set of databases used for comparing algorithms) is
representative or not is a difficult one to answer. Our
proposed approach in this work is to characterize each
dataset with the computation of several metrics, each
capturing a different aspect of the datasets’ complexity
and structure. Trivial metrics are for example the
number of transactions in the database, and more
complex ones are the ones establishing, for example,
their density [12]. Once one has a description of each
dataset by means of a vector of metrics, one can see
how the different metrics’ values are distributed. If they
cover a wide range collectively, then the benchmark is
a good candidate for being representative. If, on the
other hand, values are all clumped together, then the
benchmark is probably not a good one to use.

Another use for the characterization of databases
is to establish connections between database character-
istics and the performance of particular data mining
algorithms, so that one could for example make claims
such as “algorithm A works well for databases that have
many transactions and are dense, but algorithm B works
better if the database is sparse and small.”

In fact, there are several works that do precisely
this, namely, establishing connections between dataset
characteristics and algorithm performance [11, 24]. We
detail these works in the next section.

An important tool that we exploit in this paper is
the FIMI public repository, where FIM algorithms and
benchmark datasets were made publicly accessible to
the FIM community. Since its introduction by Goethals
and Zaki [11], this repository serves as a standard
set of tools to benchmarking algorithmic approaches.
It has been very successful in the sense that most
benchmarking studies use datasets from this repository.
Another public repository of transactional datasets is
the SPMF open-source data mining mining library.
This repository is constantly updated and provides a
greater number of FIM implementations and datasets



[8]. We believe that is paramount to characterize the
transactional databases present in both repositories.
For that reason, we use metrics found in the literature
and others of our own in order to understand their
nature and evaluate their representativeness.

Another area where characterizing databases may
be of use is in synthetic database generation. When
attempting to generate synthetic data, one needs some
control over the generated data. This control may come
in the shape of characterizing the data generated, for
example, by means of metrics similar to the ones we
propose here.

Finally, we believe that taking into account the
characterization of databases when making claims about
an algorithm’s performance over competitors is impor-
tant in order to give enough support to such claims.
We recognize the fact that this may be out of the scope
of some work where the focus is on algorithm develop-
ment. To make the life of such developers easier, we
propose a benchmark that covers the full spectrum of
values found in our study as a “minimum representative
benchmark” (MRB), so that authors that use our pro-
posed MRB have some guarantees that the databases
used are representative. Naturally, if in the future new
metrics emerge, the list may have to be revised, so we
propose this as an evolving MRB. To summarize, the
contributions in this paper are:

1. We provide a comprehensive list of metrics used for
database characterization

2. We evaluate the metrics mentioned in the item
above over publicly available and commonly used
databases used for frequent itemset mining algo-
rithms

3. We define and study benchmark representativeness
of existing works

4. We propose a minimum representative benchmark,
i.e., a benchmark whose representativeness is guar-
anteed according to the metrics included here

The organization of this paper is as follows. Section
2 describes the related work which is divided into three
parts. Section 3 presents the definition of the metrics
used in the characterization of transactional datasets.
Then, in Section 4 the experiments and evaluations
carried out in this work are presented. Finally, Section
5 explains the conclusion and future work.

2 Related work

On the connections between database char-
acteristics and algorithm’s performance. To the
best of our knowledge, the work by Zheng et al. [24]

was the first one to note the relevance of data charac-
teristics over an algorithm’s performance. The authors
show that algorithms that appear better suited for some
specific dataset properties do not respond in the same
way for other classes of datasets. Specifically, they re-
port that algorithms measured over synthetic datasets
behave very differently when run over real datasets. The
same authors explain that the reason for this outcome
might be that the algorithms were fine-tuned for the
synthetic dataset characteristics used in their experi-
ment which caused to perform poorly on the real-life
datasets. Since then there has been awareness of the
importance of benchmarking methods over databases
with different set of dataset characteristics. Goethals
and Zaki [11] address the problem claimed by Zheng
et al. [24] and introduce the FIMI repository with much
success.

On algorithm benchmarking. The work of Zim-
mermann [25] points out several existing issues in the
evaluation of frequent itemset mining algorithms. Here,
the author denounces the lack of the necessary diversity
of characteristics to fully understand the algorithms’
strengths and limitations. The author notes that it is
not the number of datasets utilized in measuring the
quality of an algorithm that matters, but it is evaluat-
ing an algorithm with datasets with a variety of charac-
teristics representing real world scenarios. On the other
hand, it is also noted by the aforementioned author that
simply adding more datasets to a repository does not en-
tail that more different characteristics are being added.
Briefly, the problem above motivates the use of a col-
lection of real datasets or artificial dataset generators
that emulate the whole spectrum of genuine character-
istics found in real-life databases. In the same way, it
is explained that every dataset utilized in benchmark-
ing should be comprised of characteristics which emerge
from a real-life process. This means that merely gen-
erating new datasets under randomly selected charac-
teristics can not be considered appropriate since these
datasets do not reflect real-life behavior. Our work is
clearly motivated by the criticisms made in this work.

On database characterization. A central prop-
erty of transactional databases is their density. The best
intuitive notion of dataset density is given by Gouda and
Zaki [12] who explain that having long frequent itemsets
at high levels of support is what makes a dataset dense.
This is why frequent mining algorithms typically adapt
their method tactics according to this feature since it is
more difficult to work through a dense dataset than a
sparse one.

Among the works proposing new metrics for the
evaluation of transactional databases properties, Gouda
and Zaki [12] is the first one, to the best of our knowl-



Table 1: Characteristics of benchmarking datasets.

Dataset DS AS ATS MTS F1 GGD H1 H2

(%) (%)
1. forests 246 206 61.26 162 29.73 89.88 7.07 13.24
2. bogPlants 377 315 14.65 39 4.65 16.57 6.56 11.56
3. chess 3196 75 37.00 37 49.33 93.05 5.81 10.57
4. foodmart 4141 1559 4.42 14 0.28 3.18 10.55 15.21
5. mushroom 8124 119 23.00 23 19.33 50.24 5.95 10.61
6. pumsb 49046 2113 74.00 74 3.50 23.93 7.67 14.17
7. pumsbStar 49046 2088 50.48 63 2.42 22.15 7.76 14.19
8. bmsWebview1 59602 497 2.51 267 0.51 51.90 7.85 14.84
9. connect 67557 129 43.00 43 33.33 82.69 6.12 11.18
10. bmsWebview2 77512 3340 4.62 161 0.14 12.95 10.46 18.07
11. belgiumRetail 88162 16470 10.31 76 0.06 2.65 11.27 20.45
12. skin 245057 12 3.99 4 33.30 84.85 3.36 5.01
13. accidents 340183 468 33.81 51 7.22 42.84 6.49 11.91
14. onlineRetail 541909 2604 4.36 8 0.17 0.53 8.91 12.59
15. recordLink 574913 27 10.00 10 37.04 78.63 3.80 6.43
16. kosarak 990002 41270 8.09 2498 0.02 3.89 10.43
17. kddcup99 1000000 135 16.00 16 11.85 38.93 5.04 8.54
18. pamp 1000000 82 23.93 26 29.19 86.57 5.48 9.85
19. uscensus 1000000 316 48.00 48 15.19 83.92 7.14 12.99
20. powerc 1040000 125 7.00 7 5.60 48.97 4.25 7.07
21. chainstore 1112949 46086 7.23 170 0.02 2.84 12.96

edge, to introduce a classification metric for dataset den-
sity which is based mainly on the positive border length
distribution. Essentially, the authors study the shape of
the positive border distribution cut off at specific levels
of support and classify datasets into four distinct types.
Even though this work sheds some light on the charac-
terization of datasets, it does not give any notion of how
the proposed classification behaves over different levels
of support.

Other works that use positive borders for the char-
acterization of databases are Ramesh et al. [19, 20]. In-
stead of using them to expand our understanding of
dataset properties, they focus on the problem of syn-
thetic database generation. For this, multiple levels
of positive borders distributions are extracted from an
original dataset and transferred to a synthetic one af-
terwards.

Palmerini et al. [16] propose new measures to learn
a dataset density based on the information theoretic
concept of entropy and the average support of frequent
itemsets. This work uses entropy to take a glance at the
database density without going though the inspection
of the entire database which is convenient in helping
algorithms to decide the best action to take at runtime.

Flouvat et al. [6, 7] introduce a dataset classification
which follows the idea of positive borders of Gouda and

Zaki [12] described above. The difference is that Flouvat
et al. [7] classifiy dataset density considering negative
border length distribution along with that of positive
borders. The authors find that negative borders provide
extra information which allows a finer understanding
of datasets. Concretely, an algorithm’s performance is
affected by how separated the mean distance between
both borders is.

All of the metrics mentioned in these related works
are included in our list of proposed metrics, as well
as some others. The next section details the different
metrics and related concepts considered in our study.

3 Definition of metrics

We propose to carry out different measurements on the
FIMI and SPMF benchmark datasets utilizing metrics
found in the literature and new ones of our own.

We start by defining basic properties of a transac-
tional database such as dataset size (DS) which is
simply its number of transactions, average transac-
tion size (ATS) as the name suggests is the average
of all transaction sizes, and maximum transaction
size (MTS) is the maximum size value of all transac-
tions.

Most of the following metrics are based on FIM .
Let I be a finite set of different elements called items and



let |I | represent its size. In other words, I represents the
database’s alphabet and hereafter we call the alphabet
size as (AS). Any subset of I is denoted as an itemset
X . In particular, an itemset with size k is regarded
as a k-itemset. Let D be a transactional database of
size |D | in which each transaction is represented by an
itemset. Duplication of transactions may exist; thus,
transactions are differentiated via identifiers.

The support of an itemset sup(X ) is defined as the
cardinality of the set of transactions in D in which X is a
subset. X is considered frequent if its support is greater
than or equal to a minimum support minsup defined
by the user, i.e., sup(X ) ≥ minsup. This allows to
define FI (minsup) or simply FI as the set of all frequent
itemsets with support greater or equal to minsup.

Durand and Quafafou [5] present an intuitive view
of frequent itemset borders where the positive border is
the set of its maximal frequent itemsets (Equation 3.1)
and the negative border is the set of minimal infrequent
itemsets (Equation 3.2).

Bd+(FI) = {X ∈ FI | ∀Y ⊃ X,Y 6∈ FI}(3.1)

Bd−(FI) = {X ∈ 2I \ FI | ∀Y ⊂ X,Y ∈ FI}(3.2)

Maximum singleton support (MSS) [20] is the
maximum over all singleton supports, i.e., MSS =
max∀X∈I sup(X). This metric provides an upper bound
of the support of any itemset and therefore constitutes
an important parameter. This metric also guides us in
choosing appropriate thresholds of min support values.
That is, S is the sequence of minsup values given
by the user in a itemset mining operation. Namely,
S = 〈s1, s2, s3, . . . , sm〉 where 0 < sk < sk+1 and
sm ≤MSS.

Maximum cardinality difference (MCD) is
defined to approximate how the number of frequent
itemsets is distributed throughout the range of possible
supports S defined above. That is, we defined MCD as
the area under the curve defined by the set of ordered
pairs {(s, |FI (s)|) | ∀s ∈ S}. After normalization, a
low MCD value indicates that the greater percentage
of frequent itemsets concentrates at the lowest levels of
support whereas a higher value suggests the number of
frequent itemsets does not variate abruptly throughout
the different support levels S.

Similar to MCD, positive border cardinality
(PBC) is the area under the curve given by the set
of ordered pairs {(s, |Bd+(FI (s))|) | ∀s ∈ S}. Here,
we are interested in knowing how the cardinality of
the positive border set (Equation 3.1) changes over the
different levels of support.

Likewise, negative border cardinality (NBC) is
based on the same formulation as PBC, but instead it
utilizes the negative border set (Equation 3.2) to define

the set of points {(s, |Bd−(FI (s))|) | ∀s ∈ S}.
Gaifman graph density (GGD) is another met-

ric we use to approximate the dataset density. Here, an
undirected graph G = (V,E) called Gaifman graph is
built from a transactional database D . Its vertices are
items (i.e. V = I) and two items share an edge if they
appear in at least a transaction together. Then, we com-
pute the density of the Gaifman graph G as the ratio of
the cardinality of its set of edges |E| to the maximum

number of edges, that is GGD = 2 |E |
|I | (|I |−1) .

Palmerini et al. [16] propose three metrics. The
first one, fraction of 1s (F1), represents the dataset
D as a binary matrix D′ where every row is deemed
as a transaction of D and every column as an item
X ∈ I. An element in D′ is marked by 1 depending
on whether item X appears in the transaction, and 0
otherwise. The fraction of 1s is calculated as the ratio
of the number of 1s in D′ to its number of elements, i.e.,
F1 = cardinality of 1s

|D| |I | .

The second one, FI average support, as
its name suggests takes the result of a mining
process—FI (minsup) along with every frequent itemset
support—and measures the distance between the
average support of all FI itemsets and minsup. We
take this idea, however, we here consider average
support distance (ASD) as the area under the
curve formed by the points {(s, γs) | ∀s ∈ S} where
γs = 1

|FI(s)|
∑
∀X∈FI(s) sup(X). Hence, it is assumed

that a database is denser the greater its ASD value is.

Figure 1: Scatter plot of our 21 datasets using metrics
ASD (x axis) and PBC (y axis). The four clusters
found by K-Means are color-marked.

We define FI average length (FAL) using a pro-
cedure similar to ASD. However, instead of considering
the average support of all FI itemsets, here FAL com-
putes the area under the curve using the average length
of all FI itemsets for every minsup defined by the user.



Table 2: Characteristics of benchmarking datasets which are calculated using the levels of support S defined for
each dataset.

Dataset MSS Levels of support S MCD ASD FAL PBC PBL
(%) (%)

1. forests 93.09 〈30, 40, 50, . . . , 90〉 519.69 3805.10 242.07 544.74 270.20
2. bogPlants 65.25 〈10, 20, 30, . . . , 60〉 699.62 2151.31 81.33 867.58 91.87
3. chess 99.97 〈20, 30, 40, . . . , 90〉 656.69 4222.48 544.58 870.26 681.04
4. foodmart 0.60 〈0.1, 0.2, . . . , 0.6〉 18.36 0.21 0.50 18.36 0.50
5. mushroom 100.00 〈10, 20, 30, . . . , 90〉 599.48 4796.45 301.26 1022.85 396.58
6. pumsb 99.79 〈50, 60, 70, 80, 90〉 634.85 2944.61 349.69 770.19 391.60
7. pumsbStar 79.01 〈30, 40, 50, 60, 70〉 565.21 2178.56 188.54 861.111 192.68
8. bmsWebview1 6.14 〈1, 2, 3, 4, 5, 6〉 106.49 23.70 5.11 111.94 5.12
9. connect 99.88 〈40, 50, 60, . . . , 90〉 836.10 3510.22 488.85 1765.89 717.68
10. bmsWebview2 4.86 〈1, 2, 3, 4〉 70.99 10.23 3.17 75.37 3.16
11. belgiumRetail 57.48 〈10, 20, 30, 40, 50〉 1444.44 1860.98 48.89 1400.00 64.00
12. skin 79.25 〈10, 20, 30, . . . , 70〉 1490.00 3348.70 81.69 2714.29 99.29
13. accidents 99.99 〈10, 20, 30, . . . , 90〉 601.27 4526.47 419.98 661.9 585.52
14. onlineRetail 10.04 〈1, 2, 3, . . . , 9〉 126.07 56.31 8.69 155.63 8.83
15. recordLink 99.99 〈10, 20, 30, . . . , 90〉 1803.25 5200.77 309.71 8583.33 508.19
16. kosarak 60.75 〈10, 20, 30, . . . , 60〉 1888.89 2434.53 59.83 4250.00 72.50
17. kddcup99 79.36 〈10, 20, 30, . . . , 70〉 1366.71 2893.80 373.32 4000.00 454.31
18. pamp 94.51 〈10, 20, 30, . . . , 90〉 658.54 4499.74 425.66 895.82 471.18
19. uscensus 88.23 〈30, 40, 50, . . . , 80〉 546.55 2971.37 210.29 890.65 233.58
20. powerc 96.74 〈10, 20, 30, . . . , 90〉 1372.14 5406.29 168.90 2125.00 236.17
21. chainstore 5.73 〈1, 2, 3, 4, 5〉 100.00 16.64 4.00 100.00 4.00

For this, we define the set of points as {(s, λs) | ∀s ∈ S}
where λs = 1

|FI(s)|
∑
∀X∈FI(s) |X|. Recall the concept

of the sequence of minsup S is explained above.
In addition, positive border average length

(PBL) and negative border average length (NBL)
are denoted with the same formulation as the previous
FAL metric. In this case, PBL and NBL utilize the set
Bd+(FI(s)) and Bd−(FI(s)) respectively instead of the
FI(s). It is worth mentioning that in this work all the
metrics which base their calculation on itemset lengths
such as FAL, PBL, and NBL are not normalized.

For their third metric, Palmerini et al. [16] use the
concept of entropy over probability distributions of k-
itemsets in order to attempt a density estimation of the
database without needing to work through it entirely.
This is done by first computing H1 which is the entropy
of the 1-itemset set (i.e. the singleton set), then H2

considering the 2-itemset set, and so forth.
In general they define Hk = −

∑
i∈αk

pi log2(pi),
where αk is the set of k-itemsets, and pi corresponds to
the relative support of a given k-itemset. Datasets with
low entropies are considered denser.

We want to point out that most metrics have been
described and used in the past, however, we have defined
new ones (MCD,GGD) and adapted existing ones to

our needs (ASD,FAL,PBL,PBC,NBC,NBL).

4 Dataset characterization

In this section we present the characterization of the
datasets under study, and introduce our notion of
minimum representative benchmark. Finally, we include
a description of how the FIM literature has employed
these datasets for algorithm benchmarking.

We consider two public repositories: FIMI 2, and
SPMF 3; these two repositories have been made avail-
able to the community for the purpose of benchmark-
ing new and existing FIM algorithms. Both reposito-
ries possess collections of real-life datasets (listed in Ta-
ble 1, from row 3 to row 21). The first two datasets
(i.e. row 1 and 2) are also real datasets taken from W.
Hamalainen of the University of Eastern Finland4. The
first four columns of Table 1 present elemental proper-
ties of any transactional database: the number of trans-
actions (DS), alphabet size (AS), average transaction
size (ATS), and the maximum transaction size (MTS).

2http://fimi.ua.ac.be (accessed September 1, 2017)
3http://philippe-fournier-viger.com/spmf/ (accessed

September 1, 2017)
4http://www.cs.uef.fi/~whamalai/datasets.html (accessed

September 1, 2017)

http://fimi.ua.ac.be
http://philippe-fournier-viger.com/spmf/ 
http://www.cs.uef.fi/~whamalai/datasets.html


Table 3: Benchmarking datasets utilized in published empirical studies. Columns with a citation correspond to
the studies, and an “x” marks the fact that the dataset has been included in the study. The datasets have been
grouped by clusters according to Figure 1.

Dataset Cluster [11] [21] [2] [15] [10] [13] [4] [3] [14] [18] [22]
4. foodmart 0
8. bmsWebview1 0 x x x x x x x
10. bmsWebview2 0 x x x x
11. belgiumRetail 0 x x x
14. onlineRetail 0
21. chainstore 0
12. skin 1
16. kosarak 1 x x x
17. kddcup99 1
20. powerc 1
15. recordLink 2
1. forests 3
2. bogPlants 3
3. chess 3 x x x x x
5. mushroom 3 x x x x x x x
6. pumsb 3 x x x x x x
7. pumsbStar 3 x x x x x
9. connect 3 x x x x x x x x
13. accidents 3 x x x x
18. pamp 3
19. uscensus 3

Metrics F1 and GGD of Table 1 and MSS of
Table 2 are presented as percentage. Metrics H1 and
H2 of Table 1 have been calculated based on the
formulation of entropy H using 1-itemset and 2-itemset
sets, respectively. The five metrics of Table 2—MCD,
ASD, FAL, PBC, and, PBL—are computed at different
levels of support. These levels of support are presented
in the same table for each dataset and are named by the
notation S defined previously in Section 3.

The formulation of the metrics related to negative
borders NBC and NBL have been presented in this
work, however, the experimental results on these met-
rics will be included in a future work.

Two observations are important. Firstly, each of
the support levels in S is given in percentage and is
denoted as the ratio of the number of transactions to
the size of the database. Secondly, that the highest level
of support used with a particular dataset is bounded by
the datasets’ MSS value. Given this upper bound, we
have taken (roughly) equidistant intervals of support.

Next, we show in Table 1 and Table 2 the values
obtained for each elemental metric and also for the more
sophisticated metrics described in Section 3 for our 21
datasets.

4.1 Minimum representative benchmark. Intu-
itively, a representative benchmark is a set of datasets
one can safely do empirical studies on (for example,
checking whether one algorithm is better than another
in a benchmarking study). As an example, suppose
that we only care about the number of transactions of a
dataset. Then, a benchmark would be representative if
it were to include datasets with few transactions as well
as datasets with a high number of them, and perhaps
datasets with an intermediate number of transactions.
In a sense, we are clustering the datasets according to
this particular value, and a representative benchmark
is one that includes at least a representative from each
cluster. We follow this idea, but instead of using a single
characteristic, we use a whole array of them – namely,
all the metrics considered in Section 3.

Therefore, our working assumption is that if the
values of the benchmark cover the whole range of
possible values, then it is representative. Moreover,
we seek minimum benchmarks in the sense that we
want to include as few datasets as possible (adding
datasets with similar characteristics to the benchmark
does not enrich the benchmark and slows down the
benchmarking process).



Figure 2: Decision tree classifying datasets into the four
clusters found by K-Means.

We have clustered the 21 datasets used in this paper
into four clusters using K-Means. In order to perform
the clustering, we have used the scikit-learn package
[17], more concretely its kmeans++ initialization version
with 500 restarts. Metrics have been scaled prior to
clustering with RobustScaler from scikit-learn to
avoid different ranges of values perverting the clustering
process. Finally, we have chosen to partition into four
clusters because this resulted into the most succint de-
scription of the resulting clusters (please see paragraph
below on the tree description of the clusters regarding
Figure 2).

Figure 1 shows the four clusters found,
which are: {4, 8, 10, 11, 14, 21} (cluster 0),
{12, 16, 17, 20} (cluster 1), {15} (cluster 2), and
finally {1, 2, 3, 5, 6, 7, 9, 13, 18, 19} (cluster 3). The
underlying idea is that datasets within clusters are
similar to each other (in terms of their metrics’ values),
but different to others in different clusters. Any
representative benchmark should therefore include at
least one dataset of each of the four clusters found (a
representative benchmark constitutes a hitting set for
the four clusters).

In order to understand the nature of the four
clusters found by K-Means, we have generated a decision
tree that is able to classify all datasets into their right
cluster using metrics’ values as attributes. This tree can
be seen in Figure 2. Cluster 0, for example, is formed
by datasets having a value of at most 2006 in the ASD
metric. Cluster 1 consists of those datasets having large
value in ASD and a value for PBC between 1945 and
6416. Cluster 3 consists of datasets having large values

in ASD but small values for PBC. Finally, cluster 2
consists of datasets having large values for ASD and
PBC.

4.2 Literature review of empirical studies. Ta-
ble 3 presents the real-life benchmarking datasets used
by several authors to performing comparison studies on
FIM algorithms. In here, Goethals and Zaki [11] and
Uno et al. [22] based their benchmarking studies on most
of the datasets presented in this work and closely fol-
lowed by Uno et al. [21] and Burdick et al. [2]. This
information allows us to identify which works need to
expand their pool of benchmarking datasets in order to
consider their outcome as closer to reality, in addition
to giving the FIM community a global vision of the way
the set of public benchmarking datasets is distributed
among the different authors.

In order to find out which of the sets employed in the
empirical studies of Table 3 are representative, we need
to establish which of the benchmarks employed consti-
tute hitting sets of the four groups defined previously in
Section 4.1.

The datasets used in Goethals and Zaki [11] and
Uno et al. [22] are {3, 5, 6, 7, 8, 9, 10, 11, 13, 16}. This
set intersects with all the clusters with the exception
of recordLink dataset (cluster 2) thus they miss the
characteristic metrics provided by this cluster. So,
both studies would only need to include recordLink

to comply with the requirement. The remaining studies
mentioned in Table 3 miss datasets from more than one
cluster.

Hence, according to the analysis and criteria used
in this work, we conclude that there is no study that
uses a representative benchmark which is very useful for
the various authors to take into account when deciding
the set of benchmarking datasets to be used in their
experiments. Besides, this work serves as a guide
and motivation for new benchmarking datasets to be
introduced into the public domain in order to be further
characterized and extend the range of characteristics
coverage.

5 Conclusions and future work

In this work we provide a study of metrics for the char-
acterization of transactional databases commonly used
for the benchmarking of itemset mining algorithms. We
argue that these metrics are needed in order to assess
the diversity and, therefore, the representativeness of
such benchmarks so that conclusions drawn from bench-
marking studies are sufficiently supported. We study
the representativeness of databases used as the basis
for existing benchmarking studies found in the litera-
ture based on our characteristics, thus assessing which



of the studies has a better support for their claims. Fi-
nally, we propose a way of obtaining benchmarks with
guaranteed diversity that authors of new benchmarking
studies can benefit from.

As future lines of research we are always on the
lookout for new metrics used for the characterization
of databases. As new metrics and databases are incor-
porated into our lists, we should revise the minimum
representative benchmarks accordingly. This could be
thought of as an evolving process and as such could (and
should) potentially be included in the FIMI or similar
repository to be used by the data mining community.

Finally, a line of research that we are pursuing is
that of synthetic database generation. The existence of
this paper is, in fact, due to the fact that we identified
the need for characterizing databases so that we could
assess in some ways the datasets that we generate. With
characterization metrics, we can check the nature of the
databases that we generate (generally mimicking some
original database that due to privacy and ownership
constraints cannot be shown or used). For example, we
could check whether synthetic and original are similar
enough, if that is what is desired. Or we could study
how parameter tuning in the generative algorithms
affects the nature of the generated databases. In any
case, being able to characterize databases is a powerful
and necessary tool to understand the nature of the
generated datasets.
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