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Abstract. This paper brings deep insight into data preparation when implement-

ing group-based anonymization techniques. A real-world dataset contains access 

log data and is used for the consequent anomaly detection task. Unlike other re-

search in the field of anonymization, we don’t focus on the design of new algo-

rithms, but on the pre-processing steps and on exploring of applicability of exist-

ing algorithms. Each algorithm has specific requirements for the data, so pre-

processing must be comprehensive. In this paper we present how such data can 

be transformed into relational data, introduce a novel approach for anonymization 

of IPv4 address in our dataset using several anonymization algorithms and dis-

cuss their principles, strengths, and weaknesses. Two ways of pre-processing of 

IPv4 for k-anonymity algorithms are presented: first, we split IPv4 into four parts 

and create generalization hierarchies and second we convert IPv4 to integer val-

ues. We propose an improvement in Mondrian algorithm suitable for categorical 

attributes which gives better results than the original algorithm. 
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1 Introduction 

There is an ongoing university research project with the objectives (i) to detect com-

puter attacks in the university information system using anomaly-based detection meth-

ods and (ii) to create an artificial generator of such attacks. The dataset used for exper-

iments contains access log data and is represented in a relational database. The results 

of the experiments on the datasets should be published, therefore the dataset has to be 

anonymized. Anonymization is a technique of changing data in a way that prevents the 

identification of a person. There is a tradeoff between data utility and a level of anony-

mization. Our goal is to experiment with anonymization techniques so that the risk of 

re-identification of a person stays at an acceptable level and at the same time the infor-

mation required for successful anomaly detection remains in the dataset. In this paper, 

we selected and evaluate group-based anonymizations. A review of such techniques is 
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presented in [1]. Consider that e.g. IP address is anonymized in a way that last two 

octets are removed. If the dataset contains the only IP address starting 146.102.*.* then 

this anonymization technique does not protect the person using this address. The same 

logic applies when IP is replaced by a unique identifier, the pattern of a particular per-

son can be tracked and identity can be compromised if an attacker knows any additional 

information which is the usual case. With the k-anonymous group, each anonymized IP 

address belongs to a group with k-1 other IPs. The main contribution of this paper con-

tains (i) the data preparation steps for various anonymization algorithms, including 

transformation to relational data (ii) their comparison, evaluation and possible optimi-

zation and (iii) a novel approach for anonymization of the dataset with IPv4 addresses. 

Two ways of pre-processing convenient for the use by k-anonymity algorithms are pre-

sented further, we also discuss the ideas behind each decision. The experiments with 

Mondrian led us to optimize it for the use of categorical attributes. 

2 Background and Related Work 

Most of the research focuses on discovering models guaranteeing privacy and designing 

new algorithms on how to achieve it. Such benchmarks utilize the same public dataset 

Adult1 to prove how the new algorithms outperform the others. Main established models 

still in use are k-anonymity [2], ℓ-diversity [3], t-closeness [4], ε-differential privacy 

[5] or ρ-uncertainty [6]. An overview of the data anonymization methods was described 

by Prasser [7], author of ARX anonymization tool. Studies dealing with the application 

of anonymization algorithm on real-world data are rare. One of such case studies de-

scribes the anonymization of medical surveys [8] using k-anonymity. Emam described 

a framework for anonymization of clinical data [9]. Ayala-Rivera presented a system-

atic evaluation of k-anonymization algorithms on the Adult dataset. Differential privacy 

technique is currently being adopted in the commercial sector [10]. For the anonymiza-

tion of IPv4 address, according to the survey of network traffic anonymization methods 

[11], common methods are prefix-preserving, random permutation, truncation or 

grouping. None of the reviewed IPv4 papers deal with k-anonymization algorithms. 

K-Anonymity ensures that each tuple in a table is indistinguishable from at least k 

others, with respect to quasi-identifiers (QI). QI are attributes whose release must be 

controlled. Achieving k-anonymity is through searching the minimal generalization of 

the values of the attributes and optionally through tuples suppression. The relationship 

of the domain levels forms the domain generalization hierarchy (DGH). A value gen-

eralization hierarchy (VGH) represents a relationship between the values in the do-

mains. For the evaluation of the anonymization, we use the Anonymization ToolBox2. 

The algorithm Datafly [12] uses a greedy heuristic, Incognito [13] performs hierarchy-

based optimal search and Mondrian [14] performs partitioning. The first metric we will 

use in the evaluation is the discernibility metric, it assigns a penalty to each tuple based 

on how many tuples in the transformed dataset are indistinguishable from it [15]. The 

second metric is the normalized average equivalence class size metric described in [14]. 
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3 Data Understanding and Preparation 

The data used in this experiment are represented by HTTP requests stored in a MySQL 

table, one per user action. User-supplied POST parameters we removed because they 

are sensitive. UserID and SourceIP are quasi-identifiers. They can lead to the identifi-

cation of the persons when linking to some additional data. Another quasi-identifier 

could be a timestamp. There are some indications that the identity could be revealed 

when discovering user behavior. We selected a subset containing 350k transactions, 

activities generated in one day. Some modifications in the data were necessary to be 

done first. For example, SourceIP was transformed into five new attributes, first having 

integer values (using INET_ATON function3) and remaining four having IP address 

split into four octets. Then we extracted the identities from the transactional data and 

thus created the relational data with all the users and their originating IPs. This new 

table consists only UserID and SourceIP attributes and the relationship between the 

attributes is many-to-many. Statistics are described in Table 1. 

 

Full-domain Generalizations. Datafly and Incognito work with categorical attributes. 

All the values within the domain have to be generalized to the same level in DGH. This 

will lead to over-generalization if there are values which vary greatly from all the other 

values in the domain because they need to be generalized more to fit in an equivalence 

class. And this is the case for the IP addresses. IP split into four parts will represent the 

IP as four separate quasi-identifiers and allow to apply different domain generalization 

level to each IP part. In fact, it’s easier to generalize the fourth octet than the first one 

because its values are distributed more evenly. The last octet represents the host in the 

subnet, the first octet is assigned by IANA4 and the next one by Regional Internet Reg-

istries. VGH/DGH created are illustrated in Fig. 1. 

 

                                                           
3 https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_inet-aton 
4 IANA IPv4 Address Space Registry available at https://www.iana.org/assignments/ipv4-address-

space/ipv4-address-space.xhtml 

DGHIP VGHIP 

 

IP4 [0:255] 

 

IP3 [0:127] [128:255] 

 

IP2 [0:63] [64:127] [128:191] [192:255] 

 

IP1 [0:31] [32:63] [64:95] [96:127] [128:159] [160:191] [192:223] [224:255] 

 

IP0 All the leaf values 0, 1, … , 254, 255 direct to the appropriate group in upper 

domain generalization level (IP1) – not displayed in this diagram for simplification. 

Fig. 1: Domain and value generalization hierarchies for IP address 

https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_inet-aton


Top-down Algorithm. Mondrian partitions the values until k-anonymity is achieved 

so it works well with numeric attributes. UserID attribute is numerical discrete and IP 

address can be numerized also to discrete values. The advantage of numerizing IP over 

using VGH for partitioning is obvious. It will allow much more fine-grained generali-

zation. We proposed an improvement in the Mondrian, which is suitable for the use of 

categorical attributes mapped to discrete numerical values, especially when the attrib-

utes have low cardinality. We implemented it in UTD Toolbox and further, we prove it 

gives better results also for the numerized IP address. The original algorithm creates a 

frequency set in the selected dimension and searches for median (splitVal). It splits the 

values to the left-hand side (lhs) and right-hand side (rhs) interval. Lhs interval is then 

created using inclusive interval (including splitVal) and rhs exclusive. This cut is then 

recursively repeated in rhs and lhs until at least k values are present in each interval. 

Table 2 shows an example frequency set, were median is 3. Creating lhs = [1:3] and rhs 

= (3:4] would not be allowable cut considering k = 10. In such cases creating intervals 

where splitVal is rhs inclusive would still allow further cut, so we extended the algo-

rithm by one more step which tries to cut the partition to rhs inclusive when lhs inclu-

sive is not allowable. 

 

 Table 1: Identities table statistics  Table 2: Example frequency set 

 

 

 

 

4 Experimental Evaluation 

Following configuration was used for the experiment: Intel Xeon CPU 1.9 GHz, Java 

1.8U211 32-bit runtime-environment, maximum heap size is about 1.6GB. 

 

Datafly for IP Address. First evaluation is done for parameters k = 10 and suppression 

threshold = 10. The time processed was 642s. Octet 1 is generalized to DGH level = 

IP3, octets 2 to 4 are generalized to IP2 level. The result gives 9 suppressed tuples 

(described as an equivalence group of size 9) and a total of 128 equivalence classes. 

The smallest equivalence size is 11 and the largest is 432. The distribution of the group 

sizes is described in Fig. 2. This shows how many distinct users are associated with 

each anonymized IP address. Normalized average group size is calculated to be 11.27 

and discernibility metric is 2,893,151. 

Attribute Distinct 

Count 

Min Max Stdev Avg 

Octet 1 144 1 223 51.17 109.09 

Octet 2 253 0 255 64.50 124.21 

Octet 3 256 0 255 75.68 125.24 

Octet 4 256 0 255 75.40 119.79 

UserID 9974 - - - - 

Num. IP 12736 - - - - 

QID value count 

1 21 

2 370 

3 4214 

4 5 



 

The second evaluation is done for k = 10 and suppression threshold 0. The time was 

627s. To keep the suppression on zero level, generalizations are greater, octets 1 and 2 

are generalized do DGH = IP3 level, while octets 3 and 4 to IP2 level. There are 64 

groups, less than in the first experiment, but they are bigger (37 to 468). Normalized 

average group size is also higher (22.55) and discernibility metric is 4,243,430. The 

distribution of the group sizes is described in Fig. 3. 

 

  

 Fig. 2: Datafly, k=10, supp=10  Fig. 3: Datafly, k=10, supp=0 

 

Incognito for IP Address. Because of time limitation, we removed the IP1 level of 

DGH for IP address. The anonymization took 20942s which is nearly 6 hours. The 

optimal level of anonymization found is 3-2-3-0 for the IP parts 1 to 4, meaning the last 

octet remained with the original values. Intuitively the IP address should be generalized 

in such way, that most generalized bits should be on the right side. But this would not 

represent optimal anonymization by Incognito of the quasi attributes as we selected 

them. The solution for this would be to choose only three or two last octets. Fig. 4 

shows the distribution of equivalence classes (there are total 512 of them). Normalized 

average group size is smaller compared to Datafly (2.82) and discernibility metric is 

447,140. 

 

  

 Fig. 4: Incognito, k=10, supp=10 Fig. 5: Mondrian, k=10, alg. comparison 
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Mondrian for IP Address. First Mondrian evaluation for k = 10, using original Mon-

drian partitioning algorithm took 81s. There were 1016 equivalence classes created, 

smallest having size of 10 and the largest 30. Normalized average group size is calcu-

lated to be 1.42 and discernibility metric is 207,524. Second evaluation for the same 

parameter was done with the modified algorithm. Time processing was 80s, 1022 clas-

ses created in total (from size 10 to 29). Normalized average group size is calculated to 

be 1.41 and discernibility metric is 205,304. The results are slightly better than with the 

original algorithm. The graph comparison can be found in Fig. 5. To compare how 

many equivalence classes were created by the modified algorithm we searched for par-

titions split into intervals (a:splitVal) and [splitVal:b), which are those where splitVal 

is exclusive in lhs and inclusive in rhs. There are 6 partitions in total, cut in 12 such 

intervals, meaning 12 equivalence classes out of 1022 were created in the case when 

standard algorithm did not find further allowable cut. We examined the IP addresses 

defining the intervals and all of them belong to Universities or Internet Service Provid-

ers. This confirms the assumption about low cardinality attributes.  

 

Mondrian for User ID and IP Address. In this experiment, we included also anony-

mization of user ID within the equivalence class, along with the IP address. This will 

ensure that not only the IP address is indistinguishable from k – 1 other addresses, but 

so does the user ID. The processing time is 124s. There are 9 equivalence classes cre-

ated, smallest has 10 equivalent members and largest 18. There are only 2 classes of 18 

members. More information is shown in Fig. 6. Normalized average group size is cal-

culated to be 1.37 which is much smaller than for the previous algorithms. The discern-

ibility metric is also much smaller (199,530). The distribution of user IDs can be found 

in Fig. 7. Total intervals of IP addresses are 648, the distribution is shown in Fig. 8. 

Fig. 9 illustrates the relationship between the anonymized IP address groups and users. 

It shows that each IP address interval is associated with at least 10 users. Highly used 

IP intervals belong to the subnets of the University or the largest Internet Service Pro-

viders. 

 

  

 Fig. 6: Mondrian for UserID and IP, k=10 Fig. 7: Mondrian for UserID and IP, k=10 
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Fig. 8: Mondrian for UserID and IP, k=10 Fig. 9: Mondrian for UserID and IP, k=10 

 

5 Conclusions and Future Work 

Our work brings additional and practical information to the papers evaluating the algo-

rithms on public datasets. We believe that it can be useful for our further experiments 

and can give other researchers insight into the pre-processing of raw data. The experi-

ments proved that existing k-anonymization algorithms can be applied when data is 

prepared in a convenient way. The example illustrated anonymization of the IPv4 ad-

dress which considers their occurrences in the dataset to be published, as opposed to 

the IP anonymizations that don’t consider other instances in the dataset. Best results 

were achieved by the Mondrian algorithm because the partitioning technique is very 

good for the numeric continuous attributes or categorical mapped to discrete numerical 

values when the cardinality is high. When the cardinality is low we would consider 

using Datafly or Incognito with value generalization hierarchies. However, we saw the 

limitation of the Incognito’s optimal algorithm which is computationally very intensive. 

The intervals created by Mondrian as equivalence groups for IP address can be easily 

converted back to one anonymized IP address in IPv4 format when replacing the digits 

differentiating on the same index in lower and upper bound by an asterisk (*) while 

keeping the digits with same values on the same index. We also verified that the idea 

of the modified Mondrian algorithm is correct in the experiment with IP addresses. In 

our future work, we would like to perform a similar experiment with the transaction 

data, mainly to anonymize the timestamp attribute to hide the user behavior pattern. 

Eventually, consequent experiments with the anomaly detection task on anonymized 

dataset need to be done to evaluate when the detection is successful. 
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