
Specifying PSOA RuleML/XML 1.03:
MYNG-modularized Schemas

for the RNC & XSD Validation of
XSLT-normalized Data and Knowledge?

Tara Athan1, Harold Boley2, Rima Chaudhari3

1 Athan Services, West Lafayette, Indiana, USA
taraathan[AT]gmail[DT]com

2 Faculty of Computer Science, University of New Brunswick
Fredericton, NB, Canada

harold[DT]boley[AT]unb[DT]ca
3 CB Unique Solutions, West Lafayette, Indiana, USA

rimachaudhari5681[AT]gmail[DT]com

Abstract. Positional-Slotted Object-Applicative (PSOA) RuleML has
been used for graph-relational data and knowledge representation in an
executable presentation syntax. In support of interoperation, the XML
specifications of Deliberation RuleML Versions 1.02 and 1.03 are ex-
tended for Deliberation PSOA RuleML V. 1.03 (PSOA RuleML/XML
1.03). To specify PSOA RuleML’s new kinds of atoms (e.g., allowing de-
pendent slots and explicit tuples) and functional expressions, RuleML’s
MYNG-defined schema system is extended and modified. The PSOA-
extended modular Relax NG schemas, in Compact syntax (RNC), are
transformed to monolithic XSD schemas by application of the Trang
Schema Converter, followed by an XSLT postprocessor previously devel-
oped for Deliberation RuleML. Validation of a PSOA rulebase instance
can thus be performed w.r.t. RNC, XSD, or dual RNC+XSD schemas.
The earlier XSLT-based Deliberation RuleML normalizer is likewise ex-
tended for PSOA RuleML. As for all of RuleML, a “normalidation”
workflow, where rulebases undergo “first normalization, second valida-
tion”, prevents false negatives on direct validation against the XSD or
RNC+XSD schemas.

1 Introduction

Advanced AI systems need to be based on both data (e.g., variableless facts) and
knowledge (e.g., rules), where knowledge can be engineered by humans and/or
learned by machines from data. The data and knowledge representation language
Positional-Slotted Object-Applicative (PSOA) RuleML [Bol11,BZ19,Bol18] as

? Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

realized by the execution system PSOATransRun [ZB16,Zou18] has been em-
ployed in various graph-relational use cases, including ATC KB [DMA+19].1 For
this, PSOA RuleML’s (plain-text) presentation syntax has mostly been utilized.
However, data and knowledge validation, transformation, interchange, and reuse
benefit from serialization (XML) syntaxes as provided by RuleML2. A transla-
tor from versions of PSOA RuleML/XML to PSOA presentation syntax has
established a link in one direction [ARBB12]3.

The specification of RuleML itself has usually employed both presentation
and serialization syntaxes. Of these, RuleML/XML is normatively specified with
Relax NG schemas [AB11] while informative XSD schemas are (Trang+XSLT)-
generated for major languages, called “anchor languages”, including hornlog.

PSOA RuleML Version 1.04 was specified with model-theoretic semantics and
transformational realizations over an EBNF and – in PSOATransRun – ANTLR-
defined presentation syntax, also initializing the XML syntax. Moreover, the
specification of RuleML starting with Version 1.025 permits the definition of
semantic styles, including predefined styles6, one of which being for Horn-PSOA
Tarski7.

In general, a RuleML logic is considered as a (syntactic) language paired with
a (semantic) style [Bol16]8. The PSOA RuleML page thus specifies syntaxes9

and semantics10. In particular, the PSOA RuleML logic of interest here is the
hornlogPSOA language of the PSOA RuleML/XML Version 1.03 family paired
with the semantic style Horn-PSOA Tarski.

PSOA RuleML/XML Version 1.03 is specified on the RuleML website11

– carrying through the sketch in [Bol15], Section 6 – and described in the
current paper. PSOA RuleML/XML 1.03 extends the XML specifications of De-
liberation RuleML Versions 1.02 (released) and 1.03 (ongoing). PSOA RuleML’s
extended “psoa atoms” (e.g., allowing dependent slots and explicit tuples) lead
to extensions of Deliberation PSOA RuleML/XML Version 1.03 (relative to De-
liberation RuleML/XML Version 1.03) focused on new modules that define the
new PSOA features (dependent slots and explicit tuples) and modifications of
the modules that define serialization-sensitive named patterns12 for atoms and
functional expressions. From there, because of the modular structure of the Relax
NG schemas, the PSOA-schema extensions are applied to the rest of the syntac-

1 http://wiki.ruleml.org/index.php/PSOA_RuleML
2 http://wiki.ruleml.org/index.php/Introducing_RuleML
3 http://wiki.ruleml.org/index.php/PSOA_RuleML_API
4 http://ruleml.org/talks/PSOAPerspectivalKnowledge-talk.pdf
5 http://deliberation.ruleml.org/1.02
6 http://wiki.ruleml.org/index.php/Predefined_Semantic_Styles_of_RuleML_

1.03
7 http://ruleml.org/1.03/profiles/HornPSOA-Tarski
8 http://ruleml.org/talks/RuleMLKnowleropHub-talk.pdf
9 http://wiki.ruleml.org/index.php/PSOA_RuleML#Syntaxes

10 http://wiki.ruleml.org/index.php/PSOA_RuleML#Semantics
11 http://wiki.ruleml.org/index.php/PSOA_RuleML#Modular_Syntax
12 https://relaxng.org/compact-tutorial-20030326.html#id2814516

http://wiki.ruleml.org/index.php/PSOA_RuleML
http://wiki.ruleml.org/index.php/Introducing_RuleML
http://wiki.ruleml.org/index.php/PSOA_RuleML_API
http://ruleml.org/talks/PSOAPerspectivalKnowledge-talk.pdf
http://deliberation.ruleml.org/1.02
http://wiki.ruleml.org/index.php/Predefined_Semantic_Styles_of_RuleML_1.03
http://wiki.ruleml.org/index.php/Predefined_Semantic_Styles_of_RuleML_1.03
http://ruleml.org/1.03/profiles/HornPSOA-Tarski
http://ruleml.org/talks/RuleMLKnowleropHub-talk.pdf
http://wiki.ruleml.org/index.php/PSOA_RuleML#Syntaxes
http://wiki.ruleml.org/index.php/PSOA_RuleML#Semantics
http://wiki.ruleml.org/index.php/PSOA_RuleML#Modular_Syntax
https://relaxng.org/compact-tutorial-20030326.html#id2814516

tic structures, including to queries and rules, whenever the new PSOA modules
are included in the governing driver schema. Existing RuleML languages, whose
drivers do not include the PSOA modules, are not affected by these extensions.

This paper describes the current prerelease of PSOA RuleML/XML 1.0313as
a major addition to RuleML’s open-source repository:

– PSOA-enabling changes are made to the existing named patterns in the
Relax NG schema modules that define the content models of atoms (Node:
Atom) and functional expressions (Nodes: Expr and Plex).

– Four completely new modules are introduced in order to define new elements:
the element slotdep (to complement existing slot), edge elements tup and
tupdep, as well as a Node element, Tuple.

– New anchor languages for PSOA’s existing collection14, as previewed in the
left branch of Fig. 1 (which will be explained in Section 5.4):
• datalogPSOA
• hornlogPSOA
• naffologeqPSOA

Next, following this introduction, the paper will give PSOA/XML examples
(Section 2). Then, complete instance documents will be exposed in the sequence
of “first validation, second normalization”15 (Section 3). After the preceding
two sections’ presentation of the “what”, the subsequent four sections will pro-
ceed to the “how”. To provide context, the existing RuleML V. 1.03 schema
methodology will be reviewed (Section 4). Then, PSOA changes to the schema
system will be explained (Section 5). Continuing the expository sequence, PSOA
changes to the normalizer will be discussed (Section 6). Shifting perspective to
the level of supporting infrastructure, configuration and test scripts will be dis-
cussed (Section 7). The paper will conclude with hints for future work (Section 8).
Finally, online validation (Appendix A) and normalization (Appendix B) will be
demonstrated.

2 PSOA RuleML Examples

Examples will be given in a “relaxed” XML serialization (containing and merg-
ing both “compact” and “normalized” serializations as well as adding positional
freedom), where aligned XML comments will show the corresponding presenta-
tion syntax.

2.1 Examples with Dependent Slots

Dependent slots as discussed in [BZ19] are employed for making slot names un-
ambiguous by interpreting them under the perspective of a predicate. A use case
for dependent slots and other PSOA RuleML features is explained in [DMA+19].

13 https://github.com/RuleML/deliberation-ruleml/tree/1.03-psoa
14 http://deliberation.ruleml.org/1.03-psoa/relaxng/#anchor
15 This sequence is inverse to the “normalidation” workflow of “first normalization,

second validation”, which will be explained in Section 4.3.

https://github.com/RuleML/deliberation-ruleml/tree/1.03-psoa
http://deliberation.ruleml.org/1.03-psoa/relaxng/#anchor

Fig. 1. Hasse diagram for a subset of the RuleML language semilattice with infi-
mum corresponding to the Datalog language (anchor datalog min) and suprema
corresponding to the PSOA language (anchor naffologeqPSOA) and the non-
PSOA language (anchor naffologeq). All of the vertices of the depicted semi-
lattice are identified by their myng-codes. The myng-code for Datalog is shown
in its entirety, while for other vertices only the components that differ from their
nearest sublanguage are shown.

Dependent-Slotted Fact (Reduced to its Atom)

Example S1. Purchase record with dependent slots. An OID transaction200 is
typed by the predicate purchase, which is applied to three purchase-dependent
slots. A slot name like item is thus disambiguated to be the item-of-the-purchase.
Because this atom is oidful, slotted, and dependent, according to the metamodel
of [BZ19] it is an example of a pairpoint.

<Atom>

<oid><Ind>transaction200</Ind></oid>

<!-- transaction200# -->

<op><Rel>purchase</Rel></op>

<!-- purchase(-->

<slotdep><Ind>buyer</Ind><Ind>John</Ind></slotdep>

<!-- buyer+>John -->

<slotdep><Ind>seller</Ind><Ind>Mary</Ind></slotdep>

<!-- seller+>Mary -->

<slotdep><Ind>item</Ind><Ind>Fido</Ind></slotdep>

<!-- item+>Fido) -->

</Atom>

Dependent-Slotted Rule

Example S2. Liability rule based on purchase record. An independent-slotted
version of this was introduced elsewhere16. The slot name item changes its
dependence from the predicate purchase (item-of-the-purchase) in the condi-
tion to the predicate liability (item-of-the-liability) in the conclusion. The
slot filler-variable b moves from slot name buyer in the condition to slot name
bearer in the conclusion. The rule is applicable to the dependent-slotted fact of
Example S1, deducing a liability record (conclusion: <then> part) from
that purchase record (condition: <if> part), where a fresh liability OID,
liabilityID(transaction200), is generated as a functional expression from the
purchase OID, transaction200.

<Forall>

<Var>b</Var>

<Var>s</Var>

<Var>i</Var>

<Var>t</Var>

<formula>

<Implies>

<if> <!-- ?t#purchase(buyer+>?b seller+>?s item+>?i) -->

<Atom>

<oid><Var>t</Var></oid>

<op><Rel>purchase</Rel></op>

<slotdep><Ind>buyer</Ind><Var>b</Var></slotdep>

<slotdep><Ind>seller</Ind><Var>s</Var></slotdep>

<slotdep><Ind>item</Ind><Var>i</Var></slotdep>

</Atom>

</if>

16 http://wiki.ruleml.org/index.php/PSOA_RuleML#Presentation_Preview

http://wiki.ruleml.org/index.php/PSOA_RuleML#Presentation_Preview

<then> <!-- liabilityID(?t)#liability(bearer+>?b item+>?i) -->

<Atom>

<oid>

<Expr>

<op><Fun>liabilityID</Fun></op>

<arg index="1"><Var>t</Var></arg>

</Expr>

</oid>

<op><Rel>liability</Rel></op>

<slotdep><Ind>bearer</Ind><Var>b</Var></slotdep>

<slotdep><Ind>item</Ind><Var>i</Var></slotdep>

</Atom>

</then>

</Implies>

</formula>

</Forall>

2.2 Examples with Explicit Dependent Tuples

While single (predicate-)dependent tuples are widespread, multiple dependent
tuples as discussed in [Bol11,BZ19] are novel. While a single tuple can be implicit
in its positional argument sequence, multiple tuples must be explicit to separate
their argument sequences.

Dependent-Tupled Facts (Reduced to their Atoms)

Example T1. Purchase tables with A. single and B. multiple rows.

A. Single tuple represents single row. Because this atom is oidless, single-tupled,
and dependent, according to the metamodel of [BZ19] it is an example of a
relationship and a special case of what is referred to by systematic name de1.

<!-- Implicit tuple (already in Deliberation RuleML) -->

<Atom>

<Rel>purchase</Rel> <!-- purchase(John Mary Fido) -->

<Ind>John</Ind>

<Ind>Mary</Ind>

<Ind>Fido</Ind>

</Atom>

<!-- Explicit tuple (added in Deliberation PSOA RuleML) -->

<Atom>

<Rel>purchase</Rel> <!-- purchase(+[John Mary Fido]) -->

<tupdep>

<Tuple>

<Ind>John</Ind>

<Ind>Mary</Ind>

<Ind>Fido</Ind>

</Tuple>

</tupdep>

</Atom>

B. Multiple tuples represent multiple rows. Because this atom is oidless, multiple-
tupled, and dependent, according to the metamodel of [BZ19] it is a general case
of what is referred to by systematic name de1.

<!-- Explicit tuples (added in Deliberation PSOA RuleML) -->

<Atom>

<Rel>purchase</Rel> <!-- purchase(-->

<tupdep> <!-- +[John Mary Fido] -->

<Tuple>

<Ind>John</Ind>

<Ind>Mary</Ind>

<Ind>Fido</Ind>

</Tuple>

</tupdep>

<tupdep> <!-- +[Pedro Amy Tabby] -->

<Tuple>

<Ind>Pedro</Ind>

<Ind>Amy</Ind>

<Ind>Tabby</Ind>

</Tuple>

</tupdep>

<tupdep> <!-- +[Mary John Coco] -->

<Tuple>

<Ind>Mary</Ind>

<Ind>John</Ind>

<Ind>Coco</Ind>

</Tuple>

</tupdep>

<tupdep> <!-- +[Amy Pedro Tabby]) -->

<Tuple>

<Ind>Amy</Ind>

<Ind>Pedro</Ind>

<Ind>Tabby</Ind>

</Tuple>

</tupdep>

</Atom>

Dependent-Tupled Rules

Example T2. Liability rule based on single purchase tuple at a time. This was
introduced elsewhere17. The rule is applicable to the dependent-tupled facts of
Example T1, deducing a liability tuple for each of A’s and B’s purchase tuples.

Single row:

<Forall>

<Var>b</Var>

<Var>s</Var>

<Var>i</Var>

17 http://wiki.ruleml.org/index.php/PSOA_RuleML#Serialization_Preview

http://wiki.ruleml.org/index.php/PSOA_RuleML#Serialization_Preview

<formula>

<Implies>

<if>

<Atom>

<Rel>purchase</Rel> <!-- purchase(+[?b ?s ?i]) -->

<tupdep>

<Tuple>

<Var>b</Var>

<Var>s</Var>

<Var>i</Var>

</Tuple>

</tupdep>

</Atom>

</if>

<then>

<Atom>

<Rel>liability</Rel> <!-- liability(+[?b ?i]) -->

<tupdep>

<Tuple>

<Var>b</Var>

<Var>i</Var>

</Tuple>

</tupdep>

</Atom>

</then>

</Implies>

</formula>

</Forall>

Example T3. Cyclic-purchase rule based on one or more purchase tuples. The
condition (first child of Implies)18 detects a tuple, anywhere amongst the tu-
ples, for which there also is, again anywhere, an ‘inverse’ tuple (where the buyer
x and seller y are swapped to y and x while the item i is kept the same). A special
case of this cyclicity condition is x = y (someone purchasing from themselves).
The conclusion (second child of Implies)18 alerts about such a cyclic purchase
by showing the tuple of the involved buyer, seller and item, hence provides
more information than the ‘falsity’ conclusion of a corresponding integrity rule
would. The rule is applicable, in two possible ways, to the dependent-tupled
fact of Example T1.B, deducing two alert tuples: +[Pedro Amy Tabby] and
+[Amy Pedro Tabby].

Multiple rows (in condition atom):

<Forall xmlns="http://ruleml.org/spec">

<Var>x</Var>

<Var>y</Var>

<Var>i</Var>

18 The relaxed serialization allows the if and then tags to be skipped.

<Implies>

<Atom>

<Rel>purchase</Rel> <!-- purchase(-->

<tupdep> <!-- +[?x ?y ?i] -->

<Tuple>

<Var>x</Var>

<Var>y</Var>

<Var>i</Var>

</Tuple>

</tupdep>

<tupdep> <!-- +[?y ?x ?i]) -->

<Tuple>

<Var>y</Var>

<Var>x</Var>

<Var>i</Var>

</Tuple>

</tupdep>

</Atom>

<Atom>

<Rel>cyclic-purchase</Rel> <!-- cyclic-purchase(-->

<tupdep> <!-- +[?x ?y ?i]) -->

<Tuple>

<Var>x</Var>

<Var>y</Var>

<Var>i</Var>

</Tuple>

</tupdep>

</Atom>

</Implies>

</Forall>

3 Validating and Normalizing Instances

Based on examples of the previous section, the current section discusses charac-
teristic XML processing of instance documents, which for RuleML are rulebases
(including facts): their validation w.r.t. schemas and their XML-to-XML trans-
formation (here, normalization).

3.1 Instance Validation

Deliberation RuleML’s RNC- & XSD-based validation checks whether instances
conform to its RNC- & XSD-schema definition.19 This has been extended for
PSOA RuleML’s additional features of dependent slots and explicit tuples, as
will be explained in Section 5.

For example, the dependent-slotted fact in Section 2.1 can be completed to
a PSOA RuleML instance document with <RuleML> and <Assert> wrappers:

19 http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_

1.03#Appendix_3:_Validating_a_RuleML_Instance_Against_a_Relax_NG_Schema

http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.03#Appendix_3:_Validating_a_RuleML_Instance_Against_a_Relax_NG_Schema
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.03#Appendix_3:_Validating_a_RuleML_Instance_Against_a_Relax_NG_Schema

<RuleML xmlns="http://ruleml.org/spec">

<Assert>

<Atom>

<oid><Ind>transaction200</Ind></oid>

<!-- transaction200# -->

<op><Rel>purchase</Rel></op>

<!-- purchase(-->

<slotdep><Ind>buyer</Ind><Ind>John</Ind></slotdep>

<!-- buyer+>John -->

. . .

</Atom>

</Assert>

</RuleML>

This instance is valid w.r.t. the RNC & XSD schemas. An instance with, e.g.,
one instead of two <slotdep> children such as <slotdep><Ind>buyer</Ind>

</slotdep>, is invalid. Readers are encouraged to try these and other instances
online (cf. Appendix A).

3.2 Instance Normalization

Deliberation RuleML’s XSLT-based normalizer (see Section 4.3) fills in skipped
edges and sorts elements into a canonical order.20 Again, this has been extended
for PSOA RuleML’s additional features, as will be explained in Section 6.

Much of the PSOA RuleML normalizer’s functionality can be seen for Ex-
ample T3 of Section 2.2, which becomes transformed thus:21

<Forall xmlns="http://ruleml.org/spec">

<ruleml:declare xmlns:ruleml="http://ruleml.org/spec">

<Var>x</Var>

</ruleml:declare>

<ruleml:declare xmlns:ruleml="http://ruleml.org/spec">

<Var>y</Var>

</ruleml:declare>

<ruleml:declare xmlns:ruleml="http://ruleml.org/spec">

<Var>i</Var>

</ruleml:declare>

<ruleml:formula xmlns:ruleml="http://ruleml.org/spec">

<Implies>

<ruleml:if>

<Atom>

<!-- purchase(-->

<ruleml:op><Rel>purchase</Rel></ruleml:op>

20 http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_

1.03#XSLT-Based_Normalizer
21 We reproduce the original output of our current XSLT normalizer, which pre-

serves input tags, e.g. <tupdep>, and creates new tags, e.g. <ruleml:if>,
with the prefix ruleml. The normalizer adds a namespace declaration
xmlns:ruleml="http://ruleml.org/spec" to new tags when needed.

http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.03#XSLT-Based_Normalizer
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.03#XSLT-Based_Normalizer

<tupdep>

<!-- +[?x ?y ?i] -->

<Tuple>

<ruleml:arg index="1"><Var>x</Var></ruleml:arg>

<ruleml:arg index="2"><Var>y</Var></ruleml:arg>

<ruleml:arg index="3"><Var>i</Var></ruleml:arg>

</Tuple>

</tupdep>

<tupdep>

<!-- +[?y ?x ?i]) -->

<Tuple>

<ruleml:arg index="1"><Var>y</Var></ruleml:arg>

<ruleml:arg index="2"><Var>x</Var></ruleml:arg>

<ruleml:arg index="3"><Var>i</Var></ruleml:arg>

</Tuple>

</tupdep>

</Atom>

</ruleml:if>

<ruleml:then>

<Atom>

<!-- cyclic-purchase(-->

<ruleml:op><Rel>cyclic-purchase</Rel></ruleml:op>

<tupdep>

<!-- +[?x ?y ?i]) -->

<Tuple>

<ruleml:arg index="1"><Var>x</Var></ruleml:arg>

<ruleml:arg index="2"><Var>y</Var></ruleml:arg>

<ruleml:arg index="3"><Var>i</Var></ruleml:arg>

</Tuple>

</tupdep>

</Atom>

</ruleml:then>

</Implies>

</ruleml:formula>

</Forall>

An equivalent normal form is obtained from the various non-normal forms
of Example T3, e.g. with only some of the edges skipped. Readers are again
encouraged to try these and other instances online (cf. Appendix B).

4 Schema Methodology

In this section, we review the RuleML schema methodology that was developed,
primarily, for RuleML V. 1.0 [AB11]22. In the subsequent Versions 1.01 [AB14],
1.02 [ABP15] and 1.0323 of Deliberation RuleML, the schema modularization
system has been extended and enhanced, while upholding the original design

22 http://deliberation.ruleml.org/1.0/
23 http://deliberation.ruleml.org/1.03/

http://deliberation.ruleml.org/1.0/
http://deliberation.ruleml.org/1.03/

principles. The following subsections described the aspects of RuleML’s schema
system relevant to the new PSOA/RuleML XML extension, including modular-
ization design principles, and serialization, normalization, initialization, pivot-
schema, customization, and test-automation methodologies.

4.1 Modularization Design Principles

Beginning with Version 1.0, Deliberation RuleML introduced a modularization
approach, based on a restriction of Relax NG [AB11], whereby a RuleML syntax
is defined by a set of RNC module inclusions in a driver schema. The restricted
Relax NG is monotonic, meaning when two drivers are combined, i.e. by form-
ing the union of the module inclusions in a larger driver, the syntax defined by
the larger driver contains both of the smaller syntaxes [AB14]. Because of this
monotonicity property, the more than one hundred Deliberation RuleML schema
modules24 may be freely (orthogonally) combined to define a fine-grained poset
lattice of RuleML syntaxes, with a partial order based on syntactic containment.

As may be seen in the schema snippets in Section 5, the RuleML RNC
schema employs element definition conventions consisting of several layers of
named patterns, in order to optimize schema extensibility.

In summary, the main design principles of the RuleML schema modulariza-
tion system are:

– Monotonicity
– Orthogonality
– Extensibility

4.2 Serialization Methodology

There are four serializations of Deliberation RuleML – normalized, relaxed,
mixed, and compact.

The “normalized” serialization requires all content models to have a canon-
ical ordering of their child elements. For example, the canonical ordering for
atoms requires positional arguments to precede slots, should both occur in the
same atom. The canonical ordering of the contents of functional expressions is
maintained to be identical to that of atoms.

The “relaxed” serialization allows significantly more positional freedom in
content models. It also allows certain edges to be skipped, provided they can be
reconstructed unambiguously.

In general, the RNC patterns for the relaxed serialization content models are
similar to that of the corresponding normalized serialization patterns after sub-
stitution of the interleave symbol ‘&’ for commas in the definition of sequences.
RuleML takes advantage of this convenient RNC mechanism for implementing
positional freedom in content models to define the relaxed serialization. How-
ever, the interleave pattern cannot be accurately translated into XSD, due to the

24 http://deliberation.ruleml.org/1.03/relaxng/modules/

http://deliberation.ruleml.org/1.03/relaxng/modules/

XSD requirement of deterministic models25. The “mixed” serialization (of some
language) is constructed to be the greatest subset of the relaxed serialization (of
that language) with the most positional freedom that can still be defined within
XSD (see Section 4.5).

The “compact” serialization is similar to the normalized one in that it re-
quires the same canonical ordering of elements. It differs from the normalized one
in that it requires all edges skippable in the relaxed serialization to be skipped.

Elements whose content models have some positional freedom among their
children in the relaxed and mixed serializations, including atomic formulas (Atom)
and functional expressions (Expr and Plex), have their content models for the
four serializations specified in three RNC serialization modules26 27 28, resp. The
main exception to the RuleML schema design principle of orthogonality occurs
in regard to serialization: a (valid) driver schema may have only one serialization
module inclusion.

4.3 Normalization Methodology

The goals of the RuleML normalizer include the following:

– Reconstruct all skipped edge tags to produce a fully striped form (since edge
tags correspond to Resource Description Framework (RDF)[29] properties,
this simplifies interoperation between RuleML/XML and, e.g., directed la-
beled RDF graphs)

– Perform canonical ordering of sibling elements (this reduces the complexity
of equality comparison across RuleML/XML serializations, for both humans
and machines)

We say that using this normalizer followed by schema-based RuleML valida-
tion performs “normalidation” on RuleML instances. That is, not only are miss-
ing edge elements inserted and sibling elements sorted in the XSLT output, but
this transformed instance is subsequently validated syntactically to ensure that
Node and edge elements only appear in correct positions, and with permitted
content. Normalidation is required when using the XSD schemas for validation
of general RuleML instances, because the positional freedom allowed by the re-
laxed serialization of the Relax NG schemas is beyond the expressivity of XSD.
This is to prevent valid instances being deemed as invalid (“false negatives”).

4.4 Initialization Methodology

Another exception to the orthogonality principle is required in order to support
the development and implementation of the (otherwise) orthogonal system: the

25 http://books.xmlschemata.org/relaxng/relax-CHP-16-SECT-2.html
26 Normalized and compact: http://deliberation.ruleml.org/1.03/relaxng/

modules/ordered_groups_expansion_module.rnc
27 Relaxed: http://deliberation.ruleml.org/1.03/relaxng/modules/unordered_

groups_expansion_module.rnc
28 Mixed: http://deliberation.ruleml.org/1.03/relaxng/modules/unordered_

deterministic_groups_expansion_module.rnc

http://books.xmlschemata.org/relaxng/relax-CHP-16-SECT-2.html
http://deliberation.ruleml.org/1.03/relaxng/modules/ordered_groups_expansion_module.rnc
http://deliberation.ruleml.org/1.03/relaxng/modules/ordered_groups_expansion_module.rnc
http://deliberation.ruleml.org/1.03/relaxng/modules/unordered_groups_expansion_module.rnc
http://deliberation.ruleml.org/1.03/relaxng/modules/unordered_groups_expansion_module.rnc
http://deliberation.ruleml.org/1.03/relaxng/modules/unordered_deterministic_groups_expansion_module.rnc
http://deliberation.ruleml.org/1.03/relaxng/modules/unordered_deterministic_groups_expansion_module.rnc

inclusion of the initialization module29, containing vacuous (either empty or not
allowed) definitions of many named patterns, is required in all (valid) drivers
so that named patterns that are used in an included module but defined in an
excluded module are never left undefined in the inclusion closure of the driver.
In particular, singleton inclusion sets (a driver containing only one module in-
clusion) are not valid, in general, within the RuleML modularization system.
Such drivers become valid upon inclusion of the initialization module, enabling
fine-grained validation during development as well as ensuring orthogonality in
implementation.

4.5 Pivot-schema Methodology

The RNC schemas act as normative “pivot schemas”30 that define the XSD
schemas for Deliberation RuleML languages by translation using Trang31 fol-
lowed by XSLT post-processing [AB11]. The XSD schema for the normalized
serialization of a Deliberation RuleML language is obtained in a straightforward
manner by this translation mechanism. In order to define a ‘more relaxed’ XSD
schema having as much positional freedom in content models as possible, while
still remaining deterministic, the ‘mixed’ serialization is used. The Relax NG
for the mixed serialization implements this trade-off through involved regular
expressions.

4.6 Customization Methodology

In order to manage the large number of RuleML syntaxes generated by the above
modularization approach, the Modular sYNtax confiGurator (MYNG) applica-
tion [Ath11] was developed to provide a unified parameterized RNC schema ac-
cessible either directly, using a REST interface implemented in PHP, or through
a GUI32 that exposes the REST interface. The parameters which specify directly
the features of the syntax, and indirectly the module inclusion set needed to de-
fine those features, are efficiently captured in a string called the “myng-code”.
The myng-code is partitioned into sets of features called “option facets”. Each
feature of a facet is assigned a unique bit position, from zero up, where a digit
of 1 in that position indicates the feature is selected and 0 otherwise. Although
myng-codes are interpreted according to their binary representation, they are
expressed and transmitted in hexadecimal for brevity.

RNC and XSD schemas for RuleML anchor languages are obtained from
human-readable URLs via URL redirects to the MYNG PHP engine with the
specifying myng-code parameters expressed in the query string. The redirects are
implemented through a .htaccess file that is auto-generated by a configuration
bash script.

29 http://deliberation.ruleml.org/1.03/relaxng/modules/init_expansion_

module.rnc
30 http://books.xmlschemata.org/relaxng/relax-CHP-1-SECT-6.html
31 https://relaxng.org/jclark/trang.html
32 http://deliberation.ruleml.org/1.03/myng

http://deliberation.ruleml.org/1.03/relaxng/modules/init_expansion_module.rnc
http://deliberation.ruleml.org/1.03/relaxng/modules/init_expansion_module.rnc
http://books.xmlschemata.org/relaxng/relax-CHP-1-SECT-6.html
https://relaxng.org/jclark/trang.html
http://deliberation.ruleml.org/1.03/myng

4.7 Test-automation Methodology

RuleML’s automated testing procedures include Jing validation of RNC modules
and driver schemas, as well as JAXB33 validation of XSD schemas. Cross-testing
of the schemas is carried out by auto-generating XML instances from the XSD
schemas and validating them against the RNC schemas.

5 PSOA Enhancements of the Schema System

The modifications necessary to implement the new PSOA/XML syntax, de-
scribed below, are guided by the structure and principles of the RuleML schema
system as reviewed in Section 4. Validation of PSOA RuleML instances against
PSOA schemas is illustrated in Appendix A.

5.1 Dependent Slots

The PSOA feature of dependent slots in atoms and functional expressions is im-
plemented, in part, by means of the introduction into the modular RNC schema
system of one new module34.

The new module defining the dependent slot element is essentially identical to
the existing module defining the independent slot element35 after substitution of
slotdep for most occurrences of slot. An RNC snippet of the module is shown
below.

slotdep-edge.choice |= slotdep.edge.def

slotdep.edge.def =

A user-defined dependent slot (dependent property)...

element slotdep { slotdep.type.def }

slotdep.type.def = (slotdep-datt.choice & reslotdep.attlist),

slotdep.content

...

The slotdep content model consists of a key (first position) and

a filler (second position).

slotdep.content |= slotdepKeyTerm.choice, slotdepFillerTerm.choice

The key (first position) in a slotdep contains an interpreted term or

data, which may be simple or compound.

slotdepKeyTerm.choice |= SimpleKeyTerm.choice | CompoundTerm.choice

. . .

The filler (second position) in a slotdep contains any single term.

slotdepFillerTerm.choice |= AnyTerm.choice

33 https://github.com/eclipse-ee4j/jaxb-ri
34 http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/slotdep_

expansion_module.rnc
35 http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/slot_

expansion_module.rnc

https://github.com/eclipse-ee4j/jaxb-ri
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/slotdep_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/slotdep_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/slot_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/slot_expansion_module.rnc

. . .

edge.choice |= slotdep.edge.def

...

5.2 Explicit Tuples

The PSOA feature of explicit tuples in atoms and functional expressions is par-
tially implemented in the modular RNC schema system by means of the intro-
duction of three new modules36 37 38 . RNC snippets from these modules are
shown below.

From tuple expansion module.rnc

Tuple-node.choice |= Tuple.Node.def

The children of a generalized list (tuple) are divided into two

sections,

a header section for modifiers,

and a main section for the list arguments.

Tuple.Node.def =

A collection of (ordered) arguments (optionally enclosed by <arg>)

and/or (unordered) user-defined slots (<slot>),

identical to an uninterpreted expression (<Expr in="no">)

except not having a user-specified function name (equivalent

to having a system-specified constructor ’Tuple’).

Rest variables (<repo> and <resl>) are also permitted. ...

within repo

element Tuple { Tuple.type.def }

Tuple.type.def = Tuple.attlist, Tuple.header, Tuple.main

Tuple.attlist &= commonNode.attlist?

Generalized lists accept the header pattern common to Nodes.

Tuple.header &= Node.header?

For the declaration of the Node header,

see the modules meta_expansion_module).

A generalized list within a positional rest variable

contains a positional argument sequence

Tuple.main |= positionalArgumentsForAtoms.sequence

From tupdep expansion module.rnc

36 http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tuple_

expansion_module.rnc
37 http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tupdep_

expansion_module.rnc
38 http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tup_expansion_

module.rnc

http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tuple_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tuple_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tupdep_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tupdep_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tup_expansion_module.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/modules/tup_expansion_module.rnc

In atomic formulas, zero or more tupdep are allowed.

tupdepTerms.nonemptysequence.choice |= tupdep-edge.choice+

tupdepTerms.sequence |= tupdepTerms.nonemptysequence.choice?

tupdepTermsForAtoms.sequence |= tupdepTerms.sequence

In expressions, zero or more tupdep are allowed.

tupdepTermsForExpressions.sequence |= tupdepTerms.sequence

an extension point for specializations of the tupdep tag name.

tupdep-edge.choice |= tupdep.edge.def

tupdep.edge.def =

A user-defined tupdep (property)...

element tupdep { tupdep.type.def }

tupdep.type.def = tupdep.attlist? & tupdep.content

The tupdep content model consists of a Tuple.

tupdep.content |= Tuple-node.choice

. . .

tupdep.attlist &= commonInit.attlist?

The tup expansion module.rnc module is similar to that of the already dis-
cussed tupdep expansion module.rnc.

5.3 Integration of New Modules with Serializations

For the canoncial ordering of the normalized serialization, an XML realization
of the left-tuple, left-dependent canonical ordering is used that was given
in [BZ19] for the PSOA presentation syntax. One reason for preferring this or-
dering is that the basic atoms of relationships, which are single-tuple, should
be captured such that their arguments do not need to be moved when more
descriptors are added.

The RNC snippet specifying this canonical ordering for PSOA atomic for-
mulas is as follows:

The main section of an atomic formula contains an operator edge and

a collection of argument edges.

Prefix operator notation for atomic formulas is required in

the normalized serialization.

Atom.main |= operatorForAtoms-edge.choice, argumentsForAtoms.sequence

Slotted arguments follow positional arguments in atomic formulas

in the normalized serialization.

argumentsForAtoms.sequence |=

(positionalArgumentsForAtoms.sequence | tuplesForAtoms.sequence),

slotsForAtoms.sequence

Positional rest arguments follow the ordinary positional arguments

in atomic formulas in the normalized serialization.

positionalArgumentsForAtoms.sequence |=

termsForAtoms.sequence, restOfPositionalArguments-edge.choice?

...

In support of the orthogonality principle, the new named patterns introduced
for a sequence of dependent slots are initialized (see Section 4.4) as zero-length
sequences to accommodate non-PSOA languages having no dependent slots. The
RNC snippet from the initialization module that accomplishes this is as follows:

slotdepTermsForAtoms.sequence |= empty

slotdepTermsForExpressions.sequence |= empty

The RNC for the relaxed serialization is similar to that of the normalized seri-
alization shown above after substitution of the interleave symbol ‘&’ for commas
in the definition of sequences, as described in Section 4.2.

The XSDs for PSOA RuleML anchor languages are auto-generated as de-
scribed in Section 4.5.

5.4 Integration of New Modules with the MYNG Engine

The myng-code (specifying Deliberation RuleML syntaxes, see Section 4.6) is
extended to accommodate the PSOA/XML features. Three unused bits (binary
positions 13 through 15) of the terms option facet are utilized for the features
of dependent slots, dependent tuples, and independent tuples, respectively.

The inclusion of the slotdep expansion module.rnc module in a myng-
code-specified driver schema occurs whenever its myng-code (expanded from hex-
adecimal to binary) has 1 as the binary digit in position 13 (213) of
the terms option facet. Similarly, the tupdep expansion module.rnc and
tup expansion module.rnc modules are associated with positions 14 and 15
of this facet. The inclusion of the tuple expansion module.rnc module is re-
quired if either tupdep expansion module.rnc or tup expansion module.rnc

are included, since both edges are required to contain a Tuple element – thus,
it is not an orthogonal feature.

Consequently, myng-codes for RuleML languages having full PSOA capabil-
ity have the value ‘e’ or ‘f’ in hexadecimal position three (163) of the terms option
facet, e.g. bf-d7-a7-l1-p3cf-i7-tef0f-q1-e3-s4c for hornlogPSOA normal.

A portion of the PSOA-extended RuleML anchor language semilattice depict-
ing the new PSOA anchor languages and their nearest non-PSOA counterparts
is shown in Fig. 1. The first row of vertices above the infimum corresponds to
additional features of RuleML’s datalog and datalogPSOA languages that are
not part of textbook Datalog, differing from each other only with respect to the
PSOA features (tef0f vs. tf0f) and rest variables (q1 vs. q7). The vertices in
the second row above the infimum correspond to the additional feature charac-
teristic of Horn logic, i.e. functional expressions (bf for Expr and e3 for Plex).
The third row of vertices above the infimum corresponds to additional features
characteristic of First-Order Logic (b3f), as well as weak negation (p3ff), equa-
tions (tef3f), and set-valued and interpreted expressions (ef).

The following PHP snippet shows the modifications to the MYNG engine
which implement the extension of the myng-code for PSOA features.

$terms_slotdep = 13;

$terms_tupdep = 14;

$terms_tup = 15;

. . .

$needTupDep = extractBit($bterms, $terms_tupdep);

$needTup = extractBit($bterms, $terms_tup);

$needTuple = max($needTupDep, $needTup);

$needSlotDep = extractBit($bterms, $terms_slotdep);

. . .

// Include dependent slots

if ($needSlotDep){

echo "#\n# DEPENDENT SLOTS INCLUDED\n";

echo "#\n".’include "’ . $modulesLocation .

’slotdep_expansion_module.rnc"’."$end\n";

. . .

// Include dependent tuple edges if needed

if ($needTupDep){

echo "#\n# DEPENDENT TUPLE EDGES INCLUDED\n";

echo "#\n".’include "’ . $modulesLocation .

’tupdep_expansion_module.rnc"’."$end\n";

}

// Include independent tuple edges if needed

if ($needTup){

echo "#\n# INDEPENDENT TUPLE EDGES INCLUDED\n";

echo "#\n".’include "’ . $modulesLocation .

’tup_expansion_module.rnc"’."$end\n";

}

// Include tuple nodes if needed

if ($needTuple){

echo "#\n# TUPLE NODES INCLUDED\n";

echo "#\n".’include "’ . $modulesLocation .

’tuple_expansion_module.rnc"’."$end\n";

}

6 PSOA Enhancements of the Normalizer

The normalizer methodology reviewed in Section 4.3 is enhanced for PSOA
RuleML. Transformation employing this normalizer is illustrated in Appendix B.
The modified normalizer39 inserts skipped stripes within tuples as follows.

<xsl:template

match="ruleml:Tuple/*[ruleml:isNode(.)]"

mode="phase-1">

<xsl:call-template name="wrap">

39 http://deliberation.ruleml.org/1.03-psoa/xslt/normalizer/normalizer.

xslt

http://deliberation.ruleml.org/1.03-psoa/xslt/normalizer/normalizer.xslt
http://deliberation.ruleml.org/1.03-psoa/xslt/normalizer/normalizer.xslt

<xsl:with-param name="tag">arg</xsl:with-param>

</xsl:call-template>

</xsl:template>

The normalizer is further modified to canonically order slots and tuples in
atoms as follows.

<xsl:template match="ruleml:Atom" mode="phase-2">

<xsl:copy>

...

<xsl:apply-templates select="ruleml:oid" mode="phase-2"/>

...

<xsl:apply-templates select="ruleml:op" mode="phase-2"/>

...

<xsl:apply-templates select="ruleml:tupdep" mode="phase-2"/>

<xsl:apply-templates select="ruleml:tup" mode="phase-2"/>

...

<xsl:apply-templates select="ruleml:slotdep" mode="phase-2"/>

<xsl:apply-templates select="ruleml:slot" mode="phase-2"/>

...

</xsl:copy>

</xsl:template>

7 Scripts for Configuration and Testing

Updates and improvements have been made to RuleML’s bash scripts40 for
(anchor-language) configuration and (XSD-schema) testing.

7.1 Updates to Configuration Scripts

The modified configuration text files used by the configuration scripts (in bash)
implement the URL redirects for the new PSOA anchor languages. In the config-
uration file snippet below, the second and third columns contain the facet portion
of the myng-code for the normalized and relaxed serializations, respectively, for
the anchor language stem in the first column.

datalogPSOA b07-d7-a7-l1-p3cf-i07-tef0f-q1-e0-s4c
b07-d7-a7-l1-p3cf-i07-tef0f-q1-e0-s4f

hornlogPSOA b0f-d7-a7-l1-p3cf-i07-tef0f-q1-e3-s4c
b0f-d7-a7-l1-p3cf-i07-tef0f-q1-e3-s4f

naffologeqPSOA b3f-d7-a7-l1-p3ff-i7f-tef3f-q1-ef-s4c
b3f-d7-a7-l1-p3ff-i7f-tef3f-q1-ef-s4f

For example, execution of the configuration bash script will add a redirect to the
.htaccess file that redirects a request for http://deliberation.ruleml.org/
1.03-psoa/relaxng/hornlogPSOA_normal.rnc to http://deliberation.ruleml.
org/1.03-psoa/relaxng/myng-b0f-d7-a7-l1-p3cf-i07-tef0f-q1-e3-s4c.rnc

Similar redirects have been implemented for XSD schemas and simplified RNC
schemas.

40 https://github.com/RuleML/deliberation-ruleml/blob/1.03-psoa/bash

http://deliberation.ruleml.org/1.03-psoa/relaxng/hornlogPSOA_normal.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/hornlogPSOA_normal.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/myng-b0f-d7-a7-l1-p3cf-i07-tef0f-q1-e3-s4c.rnc
http://deliberation.ruleml.org/1.03-psoa/relaxng/myng-b0f-d7-a7-l1-p3cf-i07-tef0f-q1-e3-s4c.rnc
https://github.com/RuleML/deliberation-ruleml/blob/1.03-psoa/bash

7.2 Improvements to the Suite of Test Scripts

Among other tests, RuleML testing procedures have always performed JAXB
validation of XSD schemas. However, upon detailed examination of the out-
put from JAXB validation of RuleML XSD schemas during the development
of the PSOA extension, it has been determined that only the schemas for the
normalized serialization produce effective Java classes, even though the JAXB
validation of the mixed serialization XSD schemas do not generate validation
errors. Therefore, the test scripts have been modified to perform JAXB vali-
dation only on the XSD schemas for the normalized serialization. The mixed
serialization XSD schemas are instead validated manually using Xerces41.

In the PSOA relaxed serializations, it is allowed to reverse the canonical or-
der of slotdep with slot or tupdep with tup. However, this aspect of positional
freedom is not allowed in the mixed serialization (the most permissive serializa-
tion used in the XSD schemas, see Section 4.2). Therefore, the extended test
suite applies the XSLT normalizer to the RNC test suites, which include such
instances in the relaxed serialization.

8 Conclusions and Future Work

In conclusion, this paper connects PSOA RuleML work based on its presentation
syntax with Deliberation RuleML work based on its serialization syntax. The
paper describes the prerelease of PSOA RuleML/XML 1.03 for the representa-
tion and processing of data (facts) and knowledge (rules). Deliberation RuleML’s
syntactic definition via a MYNG-defined schema system, as developed in V. 1.0
and enhanced in subsequent versions through V. 1.03, is further extended and
modified to accommodate PSOA RuleML. The focus is on the validation as well
as normalization of rulebases utilizing the new PSOA features of dependent slots
and explicit tuples.

Future work42 encompasses the completion of the PSOA RuleML/XML 1.03
release43.

This includes syntactic completion, e.g. by incorporating XML elements for
Subclass (‘##’), which was already used in other RuleML languages, e.g. for
SWSL, and Equal (‘=’), which was already used in several Deliberation RuleML
languages, e.g. in hornlogeq.

Conversely, while OIDs, e.g. for functional expressions, already are optional
only, they could be entirely prohibited for expressions in a hornlogPSOA-restricting
anchor language that defines a more precise, Expr-oidless and Plexless syntax
for the semantic style Horn-PSOA Tarski realized by PSOATransRun.

41 https://xerces.apache.org
42 Also see the PSOATransRun work overlap: http://wiki.ruleml.org/index.php/

PSOATransRun_Development_Agenda
43 See here for keeping track of the release: http://wiki.ruleml.org/index.php/

Timeline_of_Deliberation_RuleML_1.03-psoa

https://xerces.apache.org
http://wiki.ruleml.org/index.php/PSOATransRun_Development_Agenda
http://wiki.ruleml.org/index.php/PSOATransRun_Development_Agenda
http://wiki.ruleml.org/index.php/Timeline_of_Deliberation_RuleML_1.03-psoa
http://wiki.ruleml.org/index.php/Timeline_of_Deliberation_RuleML_1.03-psoa

Similarly, while the “extended PSOA” introduced in [Bol15], Section 6, al-
lowing a “positional rest” within a tuple, has been adopted from Deliberation
RuleML’s schemas as an option by PSOA RuleML V. 1.03, it could be entirely
prohibited in “pure PSOA” (anchor) languages.

Moreover, in a merged Deliberation PSOA RuleML, a PSOA-derived seman-
tic style for built-in “slotribution” [Bol11] could be alternated with a Deliberation-
derived semantic style for an explicit “rest of slots” [Bol15].

Completion of the release also includes technical completion, e.g.:

– Update the MYNG GUI (in Javascript) to accommodate PSOA features that
are already implemented in the MYNG PHP engine.

– Extend for PSOA the V. 1.03 compact serialization and associated trans-
former (compactifier).

– Automate the PSOA validation of mixed-serialization XSD schemas.

– Implement PSOA features as syntactic options within the RuleML Holog
syntax. This is particularly important for restoring a single supremum to the
Deliberation RuleML syntactic structure in a release merging Deliberation
RuleML V. 1.03 and PSOA RuleML V. 1.03.

As the abstract inverse of the translator from PSOA RuleML/XML to PSOA
presentation syntax [ARBB12], a translator from PSOA presentation syntax to
PSOA RuleML/XML should be written. This could be layered on PSOATrans-
Run’s ANTLR-based parser for PSOA presentation syntax into Abstract Syntax
Trees (ASTs) [ZPPBR12], adding an AST tree walker that generates PSOA
RuleML/XML.

The results of the current work on PSOA-extended Deliberation RuleML
should be transferred to Reaction RuleML and Consumer RuleML [ABP15],
which could then target a further developed PSOA Prova [GBP18] engine.

Support for (PSOA) RuleML/XML editing, validation, and transformation
could be enhanced through the development of plugins or frameworks in profes-
sional tools, e.g. the Oxygen XML Editor suite44, which is aware of Relax NG
as well as XSD.

Strengthening an early connection, it would be interesting to compare PSOA
RuleML logics with N3Logic [BLCK+08], building, e.g., on the PhD work of Gen
Zou [Zou18], Chapter 6, and of Dörthe Arndt [ASDRV19] as well as work by the
W3C Notation 3 (N3) Community Group45. This can lead to the definition of a
new RuleML logic customized for a revised N3.

44 https://www.oxygenxml.com
45 https://www.w3.org/community/n3-dev/

https://www.oxygenxml.com
https://www.w3.org/community/n3-dev/

References

AB11. Tara Athan and Harold Boley. Design and Implementation of Highly Mod-
ular Schemas for XML: Customization of RuleML in Relax NG. In Frank
Olken, Monica Palmirani, and Davide Sottara, editors, Rule-Based Model-
ing and Computing on the Semantic Web, Proc. 5th International Sympo-
sium (RuleML-2011 America), Ft. Lauderdale, FL, Florida, USA, volume
7018 of Lecture Notes in Computer Science, pages 17–32. Springer, Novem-
ber 2011.

AB14. Tara Athan and Harold Boley. The MYNG 1.01 Suite for Deliberation
RuleML 1.01: Taming the Language Lattice. In Theodore Patkos, Adam
Wyner, and Adrian Giurca, editors, Proceedings of the RuleML 2014 Chal-
lenge, at the 8th International Web Rule Symposium, volume 1211. CEUR,
August 2014.

ABP15. Tara Athan, Harold Boley, and Adrian Paschke. RuleML 1.02: Delibera-
tion, Reaction, and Consumer Families. In Proceedings of the RuleML2015
Challenge, at the 9th International Symposium on Rules. CEUR, August
2015.

ARBB12. Mohammad Sadnan Al Manir, Alexandre Riazanov, Harold Boley, and
Christopher J. O. Baker. PSOA RuleML API: A Tool for Processing Ab-
stract and Concrete Syntaxes. In Antonis Bikakis and Adrian Giurca,
editors, Rules on the Web: Research and Applications, Proc. 6th Inter-
national Symposium, RuleML 2012, Montpellier, France, volume 7438 of
Lecture Notes in Computer Science, pages 280–288. Springer, August 2012.

ASDRV19. Dörthe Arndt, Tom Schrijvers, Jos De Roo, and Ruben Verborgh. Implicit
Quantification Made Explicit: How to Interpret Blank Nodes and Universal
Variables in Notation3 Logic. Journal of Web Semantics, 2019.

Ath11. Tara Athan. Myng: Validation with ruleml 1.0 parameterized relax ng
schemas. In Proceedings of the 5th International RuleML2011@BRF
Challenge, co-located with the 5th International Rule Symposium. CEUR-
WS.org, 2011.

BLCK+08. Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim
Hendler. N3Logic: A Logical Framework for the World Wide Web. Theory
and Practice of Logic Programming (TPLP), 8(3), May 2008.

Bol11. Harold Boley. A RIF-Style Semantics for RuleML-Integrated Positional-
Slotted, Object-Applicative Rules. In Proc. 5th International Symposium
on Rules: Research Based and Industry Focused (RuleML-2011 Europe),
Barcelona, Spain, Lecture Notes in Computer Science, pages 194–211.
Springer, July 2011.

Bol15. Harold Boley. PSOA RuleML: Integrated Object-Relational Data and
Rules. In Wolfgang Faber and Adrian Paschke, editors, Reasoning Web.
Web Logic Rules (RuleML 2015) - 11th Int’l Summer School 2015, Berlin,
Germany, July 31- August 4, 2015, Tutorial Lectures, volume 9203 of
LNCS. Springer, 2015.

Bol16. Harold Boley. The RuleML Knowledge-Interoperation Hub. In José Júlio
Alferes, Leopoldo E. Bertossi, Guido Governatori, Paul Fodor, and Du-
mitru Roman, editors, Rule Technologies. Research, Tools, and Applica-
tions - 10th International Symposium, RuleML 2016, Stony Brook, NY,
USA, July 6-9, 2016. Proceedings, volume 9718 of Lecture Notes in Com-
puter Science, pages 19–33. Springer, 2016.

Bol18. Harold Boley. PSOA RuleML Explained with Blockchain Examples:
Grailog Visualizations, Herbrand Models, and PSOATransRun Queries.
RuleML Technical Report http://wiki.ruleml.org/index.php/PSOA_RuleML_

Explained_with_Blockchain_Examples:_Grailog_Visualizations,_Herbrand_Models,

_and_PSOATransRun_Queries. Keynote of Workshop on Rules: Logic and Appli-
cations, 19-20 December 2018, National Technical University of Athens
(NTUA), http://fsvg.math.ntua.gr/rulesworkshop.html, December 2018.

BZ19. Harold Boley and Gen Zou. Perspectival Knowledge in PSOA RuleML:
Representation, Model Theory, and Translation. CoRR, abs/1712.02869,
v3, 2019.

DMA+19. Marjolein Deryck, Theodoros Mitsikas, Sofia Almpani, Petros Stefaneas,
Panayiotis Frangos Iakovos Ouranos, Harold Boley, and Joost Vennekens.
Aligning, Interoperating, and Co-executing Air Traffic Control Rules
Across PSOA RuleML and IDP. In Rules and Reasoning - Third Inter-
national Joint Conference, RuleML+RR 2019, Bolzano, Italy, September
16-19, 2019, Proceedings, Lecture Notes in Computer Science. Springer,
2019.

GBP18. Lukas Grätz, Harold Boley, and Adrian Paschke. PSOA Prova: PSOA
Translation of Pure Production Rules to the Prova Engine. In Wolfgang
Faber, Paul Fodor, Giovanni De Gasperis, Adrian Giurca, and Kia Tey-
mourian, editors, Proc. Doctoral Consortium and Challenge, 2nd Interna-
tional Joint Conference on Rules and Reasoning (RuleML+RR), Luxem-
bourg, Sept. 20-26, volume 2204 of CEUR Workshop Proceedings. CEUR-
WS.org, 2018.

ZB16. Gen Zou and Harold Boley. Minimal Objectification and Maximal Unnest-
ing in PSOA RuleML. In José Júlio Alferes, Leopoldo E. Bertossi, Guido
Governatori, Paul Fodor, and Dumitru Roman, editors, Rule Technolo-
gies. Research, Tools, and Applications - 10th International Symposium,
RuleML 2016, Stony Brook, NY, USA, July 6-9, 2016. Proceedings, vol-
ume 9718 of Lecture Notes in Computer Science, pages 130–147. Springer,
2016.

Zou18. Gen Zou. Translators for Interoperating and Porting Object-Relational
Knowledge. PhD thesis, Faculty of Computer Science, University of New
Brunswick, April 2018.

ZPPBR12. Gen Zou, Reuben Peter-Paul, Harold Boley, and Alexandre Riazanov.
PSOA2TPTP: A Reference Translator for Interoperating PSOA RuleML
with TPTP Reasoners. In Antonis Bikakis and Adrian Giurca, editors,
Rules on the Web: Research and Applications, Proc. 6th International Sym-
posium, RuleML 2012, Montpellier, France, volume 7438 of Lecture Notes
in Computer Science, pages 264–279. Springer, August 2012.

http://wiki.ruleml.org/index.php/PSOA_RuleML_Explained_with_Blockchain_Examples:_Grailog_Visualizations,_Herbrand_Models,_and_PSOATransRun_Queries
http://wiki.ruleml.org/index.php/PSOA_RuleML_Explained_with_Blockchain_Examples:_Grailog_Visualizations,_Herbrand_Models,_and_PSOATransRun_Queries
http://wiki.ruleml.org/index.php/PSOA_RuleML_Explained_with_Blockchain_Examples:_Grailog_Visualizations,_Herbrand_Models,_and_PSOATransRun_Queries

A Validating a PSOA Instance against an RNC Schema

The tool Validator.nu46 can be used to validate a PSOA RuleML/XML instance
against a Relax NG (RNC) schema, as explained generally for RuleML 1.0347.
E.g.:

Text Field - Paste: instance from Section 3.1 (elided content from Section 2.1)

Schemas - Paste: http://deliberation.ruleml.org/1.03-psoa/relaxng/datalogPSOA_relaxed.rnc

B Normalizing a PSOA Instance via an XSLT Stylesheet

The tool Online XSLT 2.0 Service48 can be used to normalize a PSOA RuleML/
XML instance via an XSLT stylesheet, as explained generally for RuleML 1.0349.
E.g.:

URI for xsl resource - Paste: http://deliberation.ruleml.org/1.03-

psoa/xslt/normalizer/normalizer.xslt

URI for xml resource - Paste: http://deliberation.ruleml.org/1.03-

psoa/exa/DatalogPSOA/cyclic-purchasePSOA.ruleml

Clicking the transform button generates the result50, which contains the nor-
malized serialization of a complete rulebase (expanded from Section 3.2) includ-
ing the fact Example T1.B and the rule Example T3 in Section 2.2.

46 https://validator.nu
47 http://wiki.ruleml.org/index.php/Validating_with_Relax_NG_for_RuleML_1.

03
48 https://www.w3.org/2005/08/online_xslt/
49 http://wiki.ruleml.org/index.php/XSLT_Processing_for_Deliberation_

RuleML_1.03
50 http://services.w3.org/xslt?xslfile=http%3A%2F%2Fdeliberation.ruleml.

org%2F1.03-psoa%2Fxslt%2Fnormalizer%2Fnormalizer.xslt&xmlfile=http%3A%

2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fexa%2FDatalogPSOA%2Fcyclic-

purchasePSOA.ruleml&content-type=&debug=on&submit=transform

http://deliberation.ruleml.org/1.03-psoa/relaxng/datalogPSOA_relaxed.rnc
http://deliberation.ruleml.org/1.03-psoa/xslt/normalizer/normalizer.xslt
http://deliberation.ruleml.org/1.03-psoa/xslt/normalizer/normalizer.xslt
http://deliberation.ruleml.org/1.03-psoa/exa/DatalogPSOA/cyclic-purchasePSOA.ruleml
http://deliberation.ruleml.org/1.03-psoa/exa/DatalogPSOA/cyclic-purchasePSOA.ruleml
https://validator.nu
http://wiki.ruleml.org/index.php/Validating_with_Relax_NG_for_RuleML_1.03
http://wiki.ruleml.org/index.php/Validating_with_Relax_NG_for_RuleML_1.03
https://www.w3.org/2005/08/online_xslt/
http://wiki.ruleml.org/index.php/XSLT_Processing_for_Deliberation_RuleML_1.03
http://wiki.ruleml.org/index.php/XSLT_Processing_for_Deliberation_RuleML_1.03
http://services.w3.org/xslt?xslfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fxslt%2Fnormalizer%2Fnormalizer.xslt&xmlfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fexa%2FDatalogPSOA%2Fcyclic-purchasePSOA.ruleml&content-type=&debug=on&submit=transform
http://services.w3.org/xslt?xslfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fxslt%2Fnormalizer%2Fnormalizer.xslt&xmlfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fexa%2FDatalogPSOA%2Fcyclic-purchasePSOA.ruleml&content-type=&debug=on&submit=transform
http://services.w3.org/xslt?xslfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fxslt%2Fnormalizer%2Fnormalizer.xslt&xmlfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fexa%2FDatalogPSOA%2Fcyclic-purchasePSOA.ruleml&content-type=&debug=on&submit=transform
http://services.w3.org/xslt?xslfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fxslt%2Fnormalizer%2Fnormalizer.xslt&xmlfile=http%3A%2F%2Fdeliberation.ruleml.org%2F1.03-psoa%2Fexa%2FDatalogPSOA%2Fcyclic-purchasePSOA.ruleml&content-type=&debug=on&submit=transform

	Specifying PSOA RuleML/XML 1.03: MYNG-modularized Schemas for the RNC & XSD Validation of XSLT-normalized Data and Knowledge
	Tara Athan1, Harold Boley2, Rima Chaudhari3

