
Dealing with User Requirements and Feedback
in SOA Projects

Daniel Lübke and Eric Knauss

Leibniz Universität Hannover, FG Software Engineering
Welfengarten 1

D-30167 Hannover, Germany
{daniel.luebke,eric.knauss}@inf.uni-hannover.de

http://www.se.uni-hannover.de

Abstract. SOA projects normally influence the work of many people –
especially in large organizations. The software will alter the way people
will work in the future and it will hopefully support the accomplishment
of their tasks. However, for building a SOA, business processes need to be
formalized. Using wrong process descriptions is going to hinder instead
of support people’s work. Therefore, integrating the future users into the
development project is crucial: Requirements need to be gathered and
the system needs to be refined over time in order to improve and adapt
to new situations. In this paper, we propose a methodology combined
of Use Cases and an Experience Forum to better communicate with
the system’s users. Use Cases are used for elicitating requirements and
deriving business processes in the requirements phase. Afterwards, the
Experience Forum is used for collecting feedback in order to improve the
system over time.

Key words: SOA, Use Case, Business Process, Experience Forum, User
Feedback

1 Introduction

Service-oriented Architecture (SOA) is an emerging style for architecting large
business applications. They promise to better align the business’ IT with the
business processes. However, so far SOA has mostly been seen as a way for
executing fully automated business processes, e.g. by using the Business Process
Execution Language (BPEL) [1]. In reality, users still play a central role in
today’s business processes: Extensions like BPEL4People [10] and generation
of user interfaces [12] try to close the gap on the technical side. Because the
requirements for semi-automatic business processes are heavily influenced by the
users, SOA projects need to address the users’ wishes during the whole software
life cycle. This is even more the case in organizations which are formalizing
their business processes during the “SOAfication” of their infrastructure: These
organizations build up business processes in a very short time. Consequently,
the business processes will likely contain errors and unwanted side effects due to
their immature nature.



2 Daniel Lübke and Eric Knauss

These problems can be addressed by analyzing and improving the project’s
information flows between the users and the developers. This paper will present
a general information flow model for SOA projects in section 2. In this model the
communication between the different parties will be enhanced by better integrat-
ing Use Cases with Business Processes in the Requirements Engineering phase
(see section 3), and an Experience Forum for ongoing refinement of the system by
facilitating user feedback (see section 4). Afterwards, an example project is pre-
sented in section 5, which utilizes the described techniques. Section 6 discusses
how to integrate these measures into different software development processes.
Finally, related work is presented and conclusions are given.

2 Information Flow Model

Software projects, and consequently SOA projects as well, are a very commu-
nication intensive endeavor. Much of projects’ successes is bound to efficient
and well-organized communication. In the end, every information item passed
through a project can be traced back to some requirement. Consequently, the
communication of requirements is essential. In order to illustrate a course-grained
requirements flow through a SOA project, the FLOW notation [16] is used.

SOA projects in business environments are based on business processes. Con-
sequently, these are an integral part of the system requirements. However, they
alone are not sufficient, because they lack details from the users’ points of view.
This gap is closed by Use Cases [4]. Business Processes and Use Cases together
form the representation of a system’s functional requirements. These are passed
on to the design, implementation, and testing phase. Finally, the product is used
by a large, diverse and often distributed user base.

A simplified and generalized information flow model is illustrated in figure 1.

Fig. 1. Simplified FLOW Model for a General SOA Project



Dealing with User Requirements and Feedback in SOA Projects 3

Concerning the requirements, there are two imminent problems in projects
organized this way:

1. Both formalized business processes and Use Cases contain information about
the process to be carried out. While both contain what users of a system
must do they are geared towards different target groups: Use Cases are writ-
ten from the perspective of a single actor while business processes offer an
overview about all participants’ activities. Managing both models mandates
additional effort. If one model could at least be semi-automatically gener-
ated, the development team could invest more resources into actual imple-
mentation activities.

2. After delivering the first version of an application, it is necessary to collect
feedback from users and incorporate the needed changes into the system. The
feedback can relate to the implementation or the new business processes in
place. Since SOA systems are expected to be a long-term investment, the
development should be iterative in order to keep up with occurring changes.
Each iteration should not only try to incorporate new functionality, but
also learn from the experiences the users made with the previous versions.
However, SOA projects normally serve a large user base. Reaching the users
and effectively transporting their feedback into the development organization
is inherently difficult.

Both problems will be addressed in the following sections.

3 Generation of Use Cases and Business Processes

Requirements Engineering (RE) is one of the core Software Engineering activi-
ties. RE aims to identify and document the requirements a system must fulfill.
Over the years, many techniques have evolved in order to support RE-related
activities. Among them are Use Cases which are well-suited to document func-
tional requirements of user-centric systems. Use Cases partition the system into
scenarios related to a main actor. Use Cases are normally written down in a
tabular template as used in the example later on (see figure 3).

The Use Case Template is a good help to prepare interviews with users:
The interviewers know what information they must elicit from the interviewees.
Furthermore, due to their textual nature, Use Cases can be understood by normal
users who are not accustomed to UML and other technical notations.

However, SOA projects are normally not based on Use Cases but on busi-
ness processes, because processes can be easily transformed to service compo-
sitions. Therefore, the business processes must be documented as well as part
of RE-related activities – if this has not already been done in the organization.
Consequently, a SOA project can be initiated under two scenarios:

– The organization wants to introduce software but does not know exactly the
underlying business processes. It is important to note that business processes
are performed and therefore in place: Every single person knows what she



4 Daniel Lübke and Eric Knauss

or he is supposed to do. However, a global overview is missing and no pro-
cesses have been formalized. Therefore, the organization in contrast to the
individuals does not know the business processes.

– The organization has defined business processes in place, and wants to sup-
port those by new software systems. This means, management and other
responsible persons have the overview, but details from the users’ point of
view, which are necessary for implementing IT systems, are missing.

In the first scenario, Use Cases can be used to interview users and document
the requirements. If those Use Cases are documented with fine-grained pre- and
postconditions, the Use Cases can easily be transformed into business processes.
It is mandatory to document the Use Cases with literally equal conditions in or-
der to support automatic matching. The following algorithm for achieving a Use
Case transformation to business processes in EPC notation has been presented
in [11]:.

1. Preconditions and triggers are realized as events since their conditions fulfill
the same role as events do. Because all preconditions must be met and the
trigger must occur in order to start the Use Case, all events are joined using
an AND join in the EPC if this rule results in more than one event. The first
step in the main scenario is inserted after the AND join as an EPC function.

2. All steps of the main scenario are mapped to a linear control flow in an
EPC. Each step is mapped to an EPC function. Functions are connected by
using trivial OK-events. The step’s actor becomes the role responsible for
the created EPC function. Objects normally cannot be easily extracted from
the Use Case templates and are therefore not handled by this algorithm.

3. Success Guarantees are – like the preconditions and triggers – conditions
concerning a system. These conditions are true after the successful execution
of a Use Case. They are mapped to EPC events which are inserted after
the last function of the main scenario. Since all guarantees must hold after
completion, all events (in case of multiple guarantees) are connected using
an AND split.

4. Minimal Guarantees are discarded. These guarantees normally represent
non-functional requirements which cannot be visualised using EPCs. Since
they must be valid before, during and after the Use Case, they do not change
the system at all.

5. Extensions are introduced using an XOR connector. After the proceeding
function, an XOR split is introduced which splits into the OK-event and an
start event for each extension. A step with 2 extensions therefore becomes a
function followed with an XOR split to 3 paths.

6. All Extension Steps are handled like steps in the main scenario. Extensions
to Extension Steps are handled recursively using these rules.

7. Jumps typically occurring from one extension step to a step in the main sce-
nario are realized using XOR joins. A join is introduced before the function
representing the step which is the jump target.

For the second start scenario, in which business processes are already avail-
able, the business process needs to be partitioned into Use Cases. Such Use Cases



Dealing with User Requirements and Feedback in SOA Projects 5

represent sub-processes which are owned by only one actor. Only the scenario
with its extensions, the main actor, and the conditions can be extracted from
the business process. All other fields must be filled by interviewing the users of
the envisioned system.

The main problem is to partition the business process into sub-processes
belonging only to one actor. As a starting point, the whole business process
can be partitioned into personal views, as presented in [8]. These sub-processes
can be transformed to a scenario each. The splits in the business process, i.e.
decision points and parallel activities must be mapped to extensions. In [6] an
algorithm is presented, which uses logical transformations to change an EPC to
a representation, that can be mapped to a Use Case scenario and corresponding
extensions:

After this transformation, all Use Cases have been converted to a set of busi-
ness processes. These sub-processes need to be joined into one large business
process. This is done by joining the start events and end events by assuming
that events with the same name are actually the same. Only the correspond-
ing boolean connectors (e.g. a parallel and-split) have to be introduced. Two
methods for doing this are covered in [11].

In order to practically create Use Cases conforming to the described con-
straints, tool support is necessary. Intelligent Use Case Editors, like the Use
Case DODE [5], can help the Use Case creator to follow these rules by giving
instant feedback. Such an editor needs to provide at least (a) the presented tem-
plate, (b) must warn whenever the conditions do not match the given format,
and (c) must detect similar condition names which may indicate typing errors.

4 User Feedback

Development of complex software systems is a knowledge-intensive endeavor.
Developers do not only need technical skills, but also domain knowledge, user
interface design capabilities, and so forth. Whenever many roles and stakeholders
are involved, large projects will rarely meet all customer requirements at the first
attempt. There is usually a lengthy period of building, using, and improving the
system.

With SOA, such a complex system is structured in a number of independently
developed services that need to cooperate as an integrated system. There is an
abundance of aspects that developers need to consider when they create SOA
systems or services.

However, they typically lack domain knowledge: They do not and cannot
know what customers and users really want. At the same time, customers and
users do not know what could reasonably be expected from such a system. Fischer
has called this the “symmetry of ignorance” [7]. Due to the wicked nature of the
problem, and the symmetry of ignorance, several iterations and improvement
steps will be needed to produce a satisfactory SOA system [15].

The problem is even harder with most SOA projects, because the software
serves a large and often distributed user base.



6 Daniel Lübke and Eric Knauss

To connect users and the development organization an Experience Forum,
as presented in [13] can be used to facilitate feedback: An Experience Forum is
integrated into the client application. At each step, the user is shown the hand-
book and experiences of other users relevant to the current step. Additionally,
the user can submit feedback to the activity she or he is currently performing.
Feedback can be of three types:

Bug Reports: Users can instantly submit software defects they find. These can
be propagated into the development process. Bug Reports affect only one Use
Case as they will address defects in a screen which affects the current user.

Feature Requests: Users observe features which would improve their daily
tasks during their work. They can submit these feature requests via the Ex-
perience Forum as well. Those requests are fed as well into the development
process.

Process Shortcomings and Improvements: Users can leave comments con-
cerning the business process. For example, documents which are forwarded
to them but never used can be criticized. Such feedbacks affect the overall
process. The development organization together with the business process
designers need to take those comments into account.

Process Experiences: The users are actually the ones who perform the busi-
ness process. They have experiences how to interpret certain rules and how
to handle unexpected situations. If they have mastered a new situation, they
can enter their newly gained experience into the Experience Forum and let
all other users profit from it. This kind of feedback founds a new Community
of Practice among the relevant users.

The main advantage of an Experience Forum is the possibility to automati-
cally capture the context of feedback in a SOA: The system knows which function
in which process is currently performed by which user because the service com-
position already has this information. Therefore, the feedback can automatically
be assigned to the underlying business function and retrieved whenever another
user performs the same business function.

As stated above, the context contains the reference to the business process
position it was made in and the submitter. Additionally, the language is stored
in the context. Only feedback understandable by a certain user is retrieved and
presented.

Figure 2 shows an Experience Forum integrated into a client application. On
the right hand side, it is readily accessible and usable with only some mouse
clicks. This low threshold is very important in order to improve user acceptance.
If the Experience Forum was somewhere hidden in the menus or hard to use, it
would not be put into use by the users.

5 Example Project

The example project is taken from a university project. The software and the
process for managing student exams and thesis had to be newly designed. Partic-



Dealing with User Requirements and Feedback in SOA Projects 7

Fig. 2. Example screen shot of an Experience Forum

ipants of this process are the professors, the personnel of the Academic Exami-
nation Office, and of course the students. Because no formalized business process
was in place, Use Cases have been used to elicit and document the requirements
from the point of view of each actor. An extract of the Use Cases are illustrated
in figure 3.

Using the described algorithm these Use Cases are transformed into an EPC
model, which is illustrated in figure 4. Afterwards, the system has been developed
and put into production. Example feedback given via the Experience Forum
could have been e.g.:

– The secretary of the Academic Examination Office observes that a mark 2.7
of an exam is incorrectly rounded to 3.0 instead of 2.75 (bug report).

– A professor observes, that she can access the student’s name in the applica-
tion. However, the email address is not visible to her. This feature would be
handy for contacting the student. Currently, she has to ask the students for
the email addresses which she has to store separately (feature request).

– A student, who already registered for a thesis, had to choose a topic for his
thesis first. However, the topic has not been finalized before due to organiza-
tional issues. It would be good, if theses could be registered without a topic,
which has to be inserted later on (process improvement).

– It took another professor a long time to decide how to grade a problematic
thesis. He put his criteria and his reasoning into the Experience Forum. A
new professor read the comment, which helped her grading her first thesis
at the new university (process experience).



8 Daniel Lübke and Eric Knauss

Use Case #1: Student applies for Thesis

Primary Actor Student

Stakeholders Student: wants to apply easily
Secretary (Academic Examination
Office): wants easy to use/read forms
for further handling registration

Minimal Guarantees none

Successs
Guarantees

Application is submitted

Preconditions none

Triggers Student wants to write thesis

Main Success
Scenario

1 Student fills out form with personal
data

2 Student submits form to Academic
Examination Office

Extensions none

Use Case #2: Academic Examination Office
approves Thesis

Primary Actor Secretary (Academic Examination Office)

Stakeholders Secretary (Academic Examination Office):
wants easy to use/read forms for further
handling registration
Manager (Academic Examination Office):
wants short handling times

Minimal Guarantees Student's data are handled according to
regulations

Successs
Guarantees

Student may write Thesis

Preconditions none

Triggers Application is submitted

Main Success
Scenario

1 Secretary checks if student has 80% of
Credit Points

2 Secretary approves application

Extensions 1a If Student has less than 80% of Credit
Points then
Secretary denies Application

Fig. 3. Use Cases for describing the new System

The first three feedbacks have been fed into the development cycle. How
to proceed from having the feedback to actually using it, is dependent on the
development methodology used. In the next section, integration into several
development processes is presented.

6 Development Process Integration

While an Experience Forum is a technical mechanism for collecting and facil-
itating user feedback, it needs to be carefully integrated into the development
process used within the project to be successful. The Experience Forum is to
be used after the first release used by real users. This will normally be the first
production release but can also be a preview version in use by a limited number
of users.

Figure 5 shows an overview of the activities in requirements engineering. The
following list explains how the Experience Forum can generally be integrated into
each activity:

Requirements Analysis (or: system analysis)
Elicitation The Experience Forum supports the activity of requirements

elicitation by encouraging users to write down their issues. Nevertheless
a requirements engineer has to sort the issues by their different types:
requirements that affect the software (real requirements like bug-reports
or new requirements), requirements that affect the business model and
issues that support the business process with domain knowledge.

Interpretation In this activity the requirements engineer has to refine the
raw requirements to make them tangible (ideally making them testable).
The benefit of using the Experience Forum is the link between the raw



Dealing with User Requirements and Feedback in SOA Projects 9

Student wants to 
write thesis

Student fills out 
form with 

personal data

Student looks 
through list of 

available topics

Ok: Student fills 
out form with 
personal data

Ok: Student 
looks through list 

of available 
topics

Student submits 
form to 

Academic 
Examination 

Office

Student chooses 
most interesting 

topic

Application is 
submitted

Ok: Student 
chooses most 

interesting topic

Secretary checks 
if student has 
80% of Credit 

Points

Student asks 
supervisor to get 

the topic

Student has 
picked a topic

XOR

Student has less 
than 80% Credit 

Points

Ok: Secretary 
checks if student 
has 80% of Credit 

Points

Secretary 
approves 

application

Secretary denies 
application

Ok: Secretary 
denies 

application

Student may 
write thesis

V

Supervisor 
hands out topic

...

Fig. 4. Business Process extracted from Use Cases

Fig. 5. Overview of requirements engineering and its activities.



10 Daniel Lübke and Eric Knauss

requirements and the location in the business process or software ap-
plication it applies to. This helps the requirements engineer to identify
stakeholder. representatives. The ambiguities and inconsistencies in the
comments and experiences still have to be clarified by the requirements
engineer.

Negotiation The identification and resolution of inconsistencies and con-
flicts in the requirements as well as the prioritization of requirements
define this activity. Obviously this activity demands flair, a fact that is
even aggravated by the transparency the Experience Forum introduced
(see section 6.3) – especially, if bugs and feature requests are assigned a
low priority.

Documentation This activity transforms the raw requirements of the Ex-
perience Forum into a form best suited for the software development
process.

Verification / validation The inspection of form and content is supported
by the Experience Forum’s context information.

Requirements Management All activities that deal with requirements man-
agement should incorporate the Experience Forum:
Change Management Solved issues have to be labeled or deleted, issues

that apply to parts of the software or business process that have been
changed must be revised.

Tracing The Experience Forum contains valuable information about the
context of requirements. So solutions that aim at traceability should
take the Experience Forum in account, too.

The development process itself is supposed to be an iterative development
process. Since feedback can only be collected from a first working software ver-
sion, improvements originating from the Experience Forum can consequently
only be added from the second iteration or software version onwards.

6.1 A Document-Based Process

An Experience Forum can enhance the communication flow between the users,
the responsible persons for requirements and the development team in document-
based development processes. The new communication structure can be seen in
figure 6.1.

Our example process defines the role of the experience and requirements en-
gineer. This role is responsible for refining the working experiences in the forum
into requirements. Another responsibility is to sort the new requirements and
give them as change request either to the process designers or to the software
change control board.

The process designers will adjust the business process which will normally
generate additional change requests for the software.

The software change control board gives the clearance for the change requests
to the software developers. Now the new release of the software is created. Before
it can finally be made available for the users, the experience and requirements



Dealing with User Requirements and Feedback in SOA Projects 11

Fig. 6. Experience Base integrated into a SOA project

engineer has to adjust the experiences of the forum to the new release. At this
point a refinement of the experiences in the Experience Forum of the old release
into best practices (and similar activities proposed in [2]) can be made. For the
requirements management process it is important to mark the experiences that
lead to the new requirements as closed issues at this point.

Developers will normally have read access to the information necessary to
complete their assignments and the users can access their information as well,
possibly forming a Community of Practice.

With the introduction of the new software release the next iteration is started.
The Experience Forum is seeded with the refined experiences from the last release
and the software reflects the latest version of the business process.

6.2 Scrum

Whenever a development process is in place which is not iterative by default,
the Experience Forum approach cannot be used because it requires multiple
iterations to incorporate the feedback into the later software versions. When
organizations have non-iterative processes in use, one way to make these devel-
opment processes iterative is wrapping them in Scrum.

Scrum [3] is an agile management methodology, partitioning the whole de-
velopment project into 30 day iterations called Sprints. The product-owner
maintains a list of requirements ordered by priorities, the product-backlog. The
development-team takes as much of the requirements from this list as they want
to implement in the next 30 days and puts them into the sprint-backlog. Within
a sprint the requirements in this sprint-backlog cannot be changed from outside
the team. However, the product-owner may append new requirements to the
product-backlog during a sprint.

Therefore, the product-owner is responsible for requirements analysis and to
incorporate information gathered by the Experience Forum into the product-
backlog. Due to the fixation of requirements during a Sprint, information gath-
ered by the Experience Forum can only be implemented during the third or a
following Sprint.



12 Daniel Lübke and Eric Knauss

6.3 Advantages and Pitfalls

The concept of an Experience Forum has – independent of the development pro-
cess – many advantages: Users are able to give easily and quickly feedback during
their daily work. The threshold is thereby reduced improving the probability of
getting feedback. While the user submits information, the application’s and pro-
cess contexts are automatically captured: Issues are linked to the user interface
and the current process element. This is especially easy if - as in our prototype
system - the user interface is generated from the process description. Therefore,
the system can automatically link between user interface elements and the part
of the process it supports. Requirements Engineers or similar roles are thereby
supported in the requirement interpretation because they can better understand
and realize the feedback without needing to recreate the whole situation which
normally is not well-described. This also applies to the developers: Whenever
they get a defect assigned, they can also see the context to which the defect
applies to.

However, Experience Forums - if used wrongly - can have negative effects: If
users are willing to give feedback to the software and processes they are using and
they are affected by, they expect that things are getting better. If the feedback
is not used or seems to be not used due to long response times, the motivation
of the user-base may degrade and acceptance may decrease. These risks must be
guarded against which in essence means the process integration must be carefully
done. Especially, a user notification, what status the user’s feedback has, if and
when it will be considered, can mitigate that risk.

Furthermore, one should be aware of that an Experience Forum can only
assist in making existing processes and software incrementally better but will not
lead to radically new processes. If a company wants to completely re-engineer
their processes it may not be the tool of choice. However, in this case an already
used Experience Forum can be beneficial: Process Designers can use the gathered
experiences and information to learn from prior weaknesses and problems.

7 Related Work

Profiting from information contained in Use Cases for other models and devel-
opment phases has always been a goal in software development projects, which
often deal with business processes.

Cockburn himself only mentions the possibility of applying Use Cases for
deriving business processes. He offers a template in [4] but no rules or advise
how to proceed from there.

The field of model-driven development has tried to combine the concept of
Use Cases with its models. Instead of tabular and textual descriptions, UML
sequence diagrams or similar models are used [9]. A Use Case is consequently
denoted in Use Case diagrams and refined in other models thereby eliminating
the textual description. This can pose a problem when communicating with non-
technical users. A process for UML-based development of business processes



Dealing with User Requirements and Feedback in SOA Projects 13

is given in [14]. Missing from such approaches are capabilities for expressing
control flow between Use Cases and therefore the generation of business process
models. The only way to achieve business process generation is to explicitly
model the control flow between Use Cases in at least one additional model. With
the introduction of Use Case Charts and their formalization [17], it is possible
to define control flow dependencies between Use Cases and refine them in UML.
From such descriptions other models can be generated, e.g. Hierarchical State
Machines [18].

The Experience Forum presented in this paper has many similarities to the
Experience Base in Basili’s Experience Factory [2]. In fact, it offers the same
functionality, e.g. it helps users finding applicable experiences by the context of
their work. The Experience Base in a Learning Software Organization however
supports the software development-team to optimize their development process.
Note that the Experience Base is maintained by developers for developers.

In contrast, our Experience Forum serves the users of the software as an
annotated online manual and supports them to optimize their daily work. As a
by-product it helps with the elicitation of requirements for the next release: the
parts of the software that have the most comments are good candidates for the
next changes. The fact that the Experience Forum is maintained by the users,
but leveraged by users and developers implies new chances and threats.

Change Management is also related to the Experience Forum. When enough
comments exist in the Experience Forum, they have to be transformed into
new requirements. These requirements have to be introduced into the software
development process. Our approach does not strive to replace traditional change
management. Instead it supports generating the new requirements that represent
the changes in change management.

Closer to the intended purpose of the Experience Forum are feedback facilities
nowadays commonly found in many software products (like e.g. in Microsoft
Windows, KDE or Mozilla). These facilities also try to collect information about
when and how potential bugs and unwanted situations (like maintenance error
or malfunction) occurs. Similar to our approach they depend on the help of the
users. The Experience Forum is different in that it allows the users to see reports
of other users as well. Therefore, users can profit from tips and help each other to
avoid certain misconducts of the information system. Of course this transparency
makes bugs highly visible throughout the user community. This is certainly an
unwanted effect for many software products. In section 6.3 we described how
this effect can be used to positively influence the acceptance and maintenance
of the software.

The idea of giving users the chance to help themselves is neither surprising
(users are experts in their domain) nor new. There is a tendency to introduce
this idea for example in online software documentation. In the online documen-
tation of Postgresql or PHP the user can annotate the documentation and enrich
it with examples or longer explanations. This approach has many similarities to
online communities like forums, wikis or blogs. The difference is that the context
of the observation is included in the editable online documentations as well as



14 Daniel Lübke and Eric Knauss

in our Experience Forum. When an explanation in an online documentation is
wrong, users will notice this fact while working in this chapter. They can quickly
annotate the misleading passage. If users have to write their comments into a
simple forum, they normally formulate them as general questions or solutions.
The problem is that there is no link to the bad documentation that caused the
problem. Therefore, the forum will evolve in parallel to the documentation which
introduces new efforts to avoid inconsistencies. In contrast editable online docu-
mentation present documentation and its user annotations together, preserving
the context of the comments. Our approach takes the user commented documen-
tation one step further. Not the documentation is annotated but the application
itself.

8 Conclusions and Outlook

Within this paper, a requirements round-trip from the initial requirements for
SOA projects to the integration of user feedback has been presented. Since SOA
tries to combine the business side and the technical side, SOA projects must
integrate business process modeling and traditional requirements engineering.
An approach how to derive business processes from Use Cases and vice versa
has been presented in order to save effort in such environments which can be
useful for more general process-driven projects as well.

However, the initial requirements will not be perfect – despite all the effort
to do them “right”. Fine-tuning can be done in iterative development processes,
when user input is available. However, asking hundreds of users for their opinion
and their problems is practically not feasible. Instead, we propose an Experience
Forum, which is integrated into the client application. Users can easily enter their
feedback and retrieve others’ experiences. This way, not only the development
team can better understand and fix problems, but also the users can share with
each other their experiences related to their daily work, which is carried out
using the application.

Currently, there is no other approach known to us, which tries to cover the
whole requirements life-cycle for SOA projects. In our opinion, integrating initial
requirements and constant feedback are the basis for sustainable successful SOA
projects. The initial requirements should be formed of focused requirements in
the form of Use Cases and business processes, which offer an overview about the
system and are the foundations for easy implementation of service compositions.

The next step is to combine the Experience Forum with existing approaches
for generating user interfaces. This would result in a platform which is very
flexible and easy to change. That way, changes in business processes, possibly
initiated by the Experience Forum, can easily be incorporated into a strong and
enduring SOA implementation.

References

1. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana



Dealing with User Requirements and Feedback in SOA Projects 15

Trickovic, and Sanjiva Weerawarana. Business Process Execution Language for
Web Services Version 1.1, May 2003.

2. V.R. Basili, G. Caldiera, and H.D. Rombach. The Experience Factory. In John J.
Marciniak, editor, Encyclopedia of Software Engineering, volume 1, pages 469–476.
John Wiley & Sons, 1994.

3. Mike Beedle and Ken Schwaber. Agile Software Development with Scrum. Prentice
Hall, 2001.

4. Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 14th edition,
August 2005.

5. Christian Crisp. Konzept und Werkzeug zur erfahrungsbasierten Erstellung von
Use Cases. Master’s thesis, Leibniz Universität Hannover, October 2006.

6. Dimitri Diegel. Konzept zur Verknüpfung von Use Cases mit ereignisgesteuerten
Prozessketten. Master’s thesis, Gottfried Wilhelm Leibniz Unversität Hannover,
September 2006.

7. Gerhard Fischer. Symmetry of ignorance, social creativity, and meta-design. KBS
Special Issues C&C99, 13(7–8):527–537, 2000.

8. Florian Gottschalk, Michael Rosemann, and Wil M.P. van der Aalst. My own
process: Providing dedicated views on EPCs. In Markus Nüttgens and Frank J.
Rump, editors, EPK 2005 - Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, pages 156–175, 2005.

9. Object Management Group. Unified Modeling Language: Superstructure. WWW:
http://www.omg.org/cgi-bin/doc?formal/05-07-04, 2004.

10. Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard Pfau, Alan Rick-
ayzen, Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL Exten-
sion for People BPEL4People A Joint White Paper by IBM and SAP. IBM/SAP,
August 2005.

11. Daniel Lübke. Transformation of Use Cases to EPC Models. In Proceedings of the
EPK 2006 Workshop, Vienna, Austria, 2006.

12. Daniel Lübke, Tim Lüecke, Kurt Schneider, and Jorge Marx Gómez. Using EPCs
for Model-Driven Development of Business Applications. In Franz Lehner, Holger
Nösekabel, and Peter Kleinschmidt, editors, Multikonferenz Wirtschaftsinformatik
2006, volume 2, pages 265–280. GITO Verlag, 2006.

13. Daniel Lübke and Kurt Schneider. Leveraging Feedback on Processes in SOA
Projects. In Proceedings of the EuroSPI 2006, pages 195–206, 2006.

14. Bernd Oestereich, Christian Weiss, Claudia Schröder, Tim Weilkiens, and Alexan-
der Lenhard. Objektorientierte Geschftsprozessmodellierung mit der UML. d.punkt
Verlag, 2003.

15. W.J. Rittel and M.M. Webber. Planning Problems are Wicked Problems, pages
135–144. John Wiley & Sons, 135-144, New York, 1984.

16. Kurt Schneider and Daniel Lübke. Systematic Tailoring of Quality Techniques. In
Proceedings of the World Congress of Software Quality 2005, 2005.

17. Jon Whittle. A Formal Semantics of Use Case Charts. Technical Report ISE-TR-
06-02, George Mason University, http://www.ise.gmu.edu/techrep, 2006.

18. Jon Whittle and Praveen K. Jayaraman. Generating Hierarchical State Machines
from Use Cases. In Martin Glinz and Robyn Lutz, editors, Proceedings of the
14th IEEE International Requirements Engineering Conference, pages 19–28. IEEE
Computer Society, 2006.


