
Towards a Holistic Architecture Platform

Tony C Shan1, and Winnie W Hua2

1 Bank of America, 200 N College St,

Charlotte, North Carolina 28255, USA
2 CTS Inc, 10712 Hellebore Rd,

Charlotte, North Carolina 28213, USA

{tonycshan, winniehua}@yahoo.com

Abstract. This paper defines a three-dimensional architectural framework,

named Technology and Information Platform (TIP), to effectively handle the

architecture complexity and manage the architectural assets of enterprise

information systems in a service-oriented paradigm. This comprehensive model

is composed of a Generic Architecture Stack (GAS) comprising a stack of

architecture layers, and the contextual spectrums consisting of the Process,

Abstraction, Latitude, and Maturity (PALM) dimensions. The GAS stack

contains seven interrelated layers: Enterprise Business, Enterprise Technical,

Cross Business-line, Channel Specific, Application Solution, Aspect-Oriented,

and Component Technology Architectures. A concept of Meso-Architecture is

proposed in this work to facilitate the service- and channel-level architecture

modeling in a service-oriented computing style. The key practitioners

responsible for these architectural models in the platform are also specified in

the context. Part of this pyramid blueprint has been extensively utilized in one

form or another to design various IT solutions in different industries such as

finance, telecommunications, and government.

Keywords: Architecture, framework, pattern, model, infrastructure,

application, aspect, component, technique, business process, solution, domain,

stack, reference model, platform, layer, view, practitioner, and perspective.

1 Introduction

As business operations continue growing to face the global competition, the

information technology (IT) division in an organization must adapt and perform to

keep pace with the business expansion. The success of the eCommerce business relies

on higher levels of IT services at a lower cost. It becomes compulsory for the

information systems, though becoming more complex, to be even more scalable,

reliable, flexible, extensible, and maintainable. IT must innovate to produce forward-

thinking technical solutions, to meet the constantly-changing business needs.

Through either organic growth or mergers/acquisitions in the past years, large

organizations typically possess thousands of information systems and applications

using diversified architectures and technologies, which provide external clients and

internal employees with services and products to satisfy a wide variety of functional

requirements from different lines of business. In the financial institutions, for

example, the business process generally contains different business sectors in

consumer, commercial, small business, wealth management, investment banking, and

capital market. The service delivery channels range from traditional brick-and-mortar

branches, call centers, and Automated Teller Machines (ATMs), to online web

browsers, interactive voice response, emails, mobile devices, and so on. A highly

structured solution is of vital importance to abstract concerns, divide responsibilities,

encapsulate the complexity, and manage the IT assets in such a diversified

environment.

2 Challenges of Architecture Complexity

There have been a plethora of previous studies in the last few decades to address the

issue of architecture complexity, which has grown exponentially as the computing

paradigm has evolved from the monolithic to a service-oriented architecture.

Zachman [1] created a pioneering framework in the form of a two-dimensional matrix

to classify and organize the descriptive representations of an enterprise IT

environment. These representations are significant to the organization management

and the development of the enterprise’s information systems. As a planning or

problem-solving tool, the framework structure has achieved a level of penetration in

the domain of business and IT architecture/modeling. However, it tends to implicitly

align with the data-driven approach and process-decomposition methods, and it

operates above and across individual project level. In a similar approach and format

but more technology-oriented, Extended Enterprise Architecture Framework (E2AF)

[2] contains business, information, system, and infrastructure in a 2-D matrix. Both

these two approaches are heavyweight methodologies, which require a fairly steep

learning curve to adopt.

In an attempt to overcome the shortcomings in the above two methods, Rational

Unified Process (RUP) [3] take a different route by applying the Unified Modeling

Language (UML) in a use-case driven, object-oriented and component-based

approach. The overall system structure is viewed from multiple perspectives – the

concept of 4+1 views. RUP is process-oriented to a large extent, and is generally a

waterfall approach in its original root. The software maintenance and operations are

inadequately addressed in RUP, which also lacks a broad coverage on physical

topology and development/testing tools. It mainly operates at the individual project

level. RUP has been recently extended to Enterprise Unified Process (EUP) and Open

Unified Process (OpenUP) in open source form.

The Open Group Architectural Framework (TOGAF) [4], as another heavyweight

approach, is a detailed framework with a set of supporting tools for developing

enterprise architecture to meet the business and information technology needs of an

organization. The three core parts of TOGAF are Architecture Development Method

(ADM), Enterprise Architecture Continuum, and TOGAF Resource Base. The scope

of TOGAF includes Business Process Architecture, Applications Architecture, Data

Architecture, and Technology Architecture. The focal point of TOGAF is not at the

level of individual application architecture, but enterprise architecture. On the other

hand, Model-Driven Architecture (MDA) [5] takes a different approach, with an aim

to separate business logic or application logic from the underlying platform

technology. The core of MDA is the Platform-Independent Model (PIM) and

Platform-Specific Model (PSM), which provide greater portability and

interoperability as well as enhanced productivity and maintenance. MDA is primarily

intended for the architecture modeling part in the development lifecycle process.

Other related work on IT architecture frameworks is largely tailored to particular

domains. They can be used as valuable references when an organization plans to

create its own model. There are three prominent frameworks developed in the public

services sector. The comprehensive architectural guidance is documented in C4ISR

Architecture Framework [6], for the various Commands, Services, and Agencies

within the U.S. Department of Defense, in order to ensure interoperable and cost

effective military systems. A counterpart in the Treasury Department is the Treasury

Enterprise Architecture Framework (TEAF) [7], which is intended to guide the

planning and development of enterprise architectures in all bureaus and offices within

that division. The Federal Enterprise Architecture (FEA) framework [8] provides

direction and guidance to U.S. federal agencies for structuring enterprise architecture.

The Purdue Enterprise Reference Architecture (PERA) [9] is aligned to computer

integrated manufacturing. ISO/IEC 14252 (a.k.a. IEEE Standard 1003.0) is an

architectural framework built on POSIX open systems standards. The ISO Reference

Model for Open Distributed Processing (RM-ODP) [10] is a coordinating framework

for the standardization of Open Distributed Processing in heterogeneous

environments. It uses “viewpoints” and eight “transparencies” to describe an

architecture that integrates the support of distribution, interworking and portability.

The Solution Architecture for N-Tier Applications (SANTA) [11] defines a service-

oriented solution model comprising a stack of six interrelated layers, coupled with six

vertical pillars. A comprehensive mechanism is presented in the Solution Architecting

Mechanism (SAM) [12], composed of eight interconnected modules for architecture

design. The Service-Oriented Solution Framework (SOSF) [13] describes a pragmatic

approach designed for Internet banking in financial services, utilizing service patterns,

architecture process, hybrid methodology, service model, and solution platform.

A new model is proposed in the next section, with more detailed descriptions of the

key artifacts and features of the generic architecture stack in Section 4. Section 5

specifies the contextual spectrums and a particular aspect in one of the four

dimensions – practitioners who are responsible for each architecture layer, followed

by the conclusions section.

3 Comprehensive Approach

As discussed in the foregoing section, virtually all previous investigations revealed

the architectural aspects of an information system to some extent from single or

limited perspectives. The necessity of a comprehensive solution to describe the end-

to-end IT solution and portfolio architecture becomes more and more evident,

demanding a systematic and disciplined approach. A highly structured framework is

thus designed in this paper to meet this ever-growing need, and present a

http://www.opengroup.org/architecture/togaf8-doc/arch/p4/others/others.htm#FEAF

comprehensive and holistic model covering the prominent architectural elements,

components, knowledge, and their interrelationships. Operation processes can be

established accordingly based on this model to facilitate the creation, organization,

and management of the architecture assets at different levels in a large firm.

3.1 Design Philosophy

The design principles that are applied to develop the overarching model are as

follows:

 A model should have flexibility to be not only adaptive but also proactive.

 A model should provide multi-perspective views of all architecture artifacts.

 A model should be independent of specific technology choices and therefore

can operate on a variety of technology platforms.

 A model should be based on an open structure, following the industry best

practices.

 A model should be dynamic and allow users to visualize details on demand

while retaining the overview.

 A model should enable users to define the correlations between the artifacts,

and provide an easy navigation to identify dependencies.

 A model should leverage the maximum support from the existing

architecture standards and tools.

 The domain layering technique should be considered.

 A layer or spectrum should be created where a different level of abstraction

is needed.

 Each layer should perform a well-defined function, and focus on a particular

scope.

 The function of each layer should be chosen with an eye toward

incorporating industry standards.

 The layer boundaries should be chosen to minimize the information

exchange across the interfaces.

 The number of layers should be large enough that distinct functions need not

be thrown together in the same layer out of necessity, and small enough that

the architecture does not become unwieldy.

 The layers are loosely coupled.

 The layers are service-oriented, leveraging software patterns and

frameworks.

 A layer should only know and interact with the neighboring layers.

 The contextual spectrum should cover a broad range of artifacts in each

layer, and group them in appropriate categories.

3.2 Conceptual Model

The Technology and Information Platform (TIP) model is designed in this work as a

systematic solution. It employs a divide-and-conquer strategy to abstract concerns,

separate responsibilities and encapsulate complexity from one level to another. The

TIP model is a comprehensive framework to organize and visualize the architectural

artifacts, and further help analyze and optimize the strategy, resources, process,

systems, and applications. TIP comprises a Generic Architecture Stack (GAS) and

contextual spectrums. Figure 1 shows a graphical representation of the platform in a

pyramid shape. GAS is organized as a series of layers, each one built upon its

predecessor, as illustrated in the vertical direction in the diagram. Every layer has a

contextual spectrum, which consists of Process, Abstraction, Latitude, and Maturity

(PALM) dimensions, as shown on the four sides of the pyramid bottom in Figure 1.

Fig. 1. TIP Pyramid Model

The TIP model provides multi-perspective views of the architecture assets in a

large organization from both business and technical standpoints. The contextual

spectrum is depicted in Figure 2, which contains four core parts: Process, Abstraction,

Latitude, and Maturity (PALM). The Process dimension covers operations, risk,

financial, resources, estimation, planning, execution, policies, governance,

compliance, organizational politics, and so forth. The Abstraction dimension deals

with what, why, who, where, when, which and how (6W+1H). The Latitude

dimension includes principles, functional, logical, physical, interface, integration &

interoperability, access & delivery, security, quality of services, patterns, standards,

tools, skills, and so forth. Finally the Maturity dimension is about performance,

metrics, competitive assessment, scorecards, capacity maturity, benchmarks, service

management, productivity, gap analysis, transition, etc.

Fig. 2. Contextual Spectrum in TIP Model

Even though it is primarily targeted towards traditional online transaction

processing (OLTP) systems by design, this model is extensible to be utilized in other

areas such as enterprise resource planning (ERP) and analytics (business intelligence),

with minor modifications or expansions.

4 Generic Architecture Stack

Various architectures have been used to describe the application structure in the

design practices, such as data architecture, network architecture and security

architecture. The need for a stack of multiple architectures within the enterprise is

evidently indispensable, as the stack represents progressions from logical to physical,

horizontal to vertical, generalized to specific, and an overall taxonomy. The

architecture stack in the TIP model provides a consistent way to define and

understand the generic rules, representations, and relationships in an information

system portfolio. It represents categorization for classifying architecture assets – an

aid to organizing reusable solution assets. It assists communications and

understanding, within enterprises, between enterprise partners, and with vendor

organizations. It is not uncommon that IT professionals talk at cross-purposes when

discussing architecture issues because they are referencing different points in the

architecture stack at the same time without realizing it. The stack helps avoid

unnecessary misunderstandings and miscommunications.

The Generic Architecture Stack (GAS) in the TIP model comprises seven

interrelated layers:

 Layer 1 – Enterprise Business Architecture.

 Layer 2 – Enterprise Technical Architecture.

 Layer 3 – Cross Business-line Architecture.

 Layer 4 – Channel Specific Architecture.

 Layer 5 – Application Solution Architecture.

 Layer 6 – Aspect-Oriented Architecture.

 Layer 7 – Component Technology Architecture.

The definitions and features of each layer will be articulated in the following

sections.

4.1 Enterprise Business Architecture

The bottom layer in GAS is Enterprise Business Architecture (EBA), which deals with

the goodness-of-fit between information systems and the business operations they are

meant to facilitate. EBA is the business driver to all other technical models in the

stack, forming the foundation of the strategic alignment of technical models with the

business process mission. Driven by the business vision and strategy, EBA includes

business operation model, process analysis and, where appropriate and feasible,

business process re-engineering. The goals are common solutions for business process

needs shared by multiple entities within the organization, development of business

service models and components that can be reused across multiple applications, and

increase of the efficiency of enterprise business processes. Business patterns are

generally identified to group processes into different categories based on common

ontology and taxonomy in the business domain.

4.2 Enterprise Technical Architecture

The layer next to the bottom is Enterprise Technical Architecture (ETA), which

serves as the technical foundation to all enterprise applications. It deals with the

overall architecture and infrastructure at a high level across the enterprise. ETA

provides firms with methods, processes, governance, disciplines, and structure to

create, organize, and use architecture-based assets, policies, strategies, and

techniques. A ratification process is usually imposed in the governance. It generally

includes four perspectives: business, application, information, and technology. The

interrelated core architectures making up the ETA are the infrastructure architecture,

system architecture, integration architecture and information architecture. The

primary elements in ETA are guiding principles, architecture models, architecture

frameworks, architecture patterns, technology policies, technology standards, and

product/tool standards. The core architectures comprise a number of key components:

business process, system development, shared services, middleware, integration,

interoperability, technology patterns/frameworks, data access, data management, data

design/modeling, system management/deployment, network, information security,

and platform.

4.3 Cross Business-line Architecture

The next layer in the stack is Cross Business-line Architecture (XBA), which

accounts for the core and composite business functionalities sharable across lines of

business. XBA describes a business-line-agnostic architecture that can be leveraged

by multiple business-delivery applications to improve the complete customer

experience and reduce overall expenses. The architecture also addresses the cross-

channel concerns if a business unit delivers services through multiple channels like

Internet, voice, Personal Digital Assistant (PDA) and mobile devices. It defines

service patterns, state data, service layers, and deployment models. Core business

services and common functional services are constructed as basic services. Advanced

feature-enriched services are built as composite shared services, consumed by

different business units.

XBA becomes increasingly important in the service-oriented computing paradigm.

The business services and corresponding IT implementations must be carefully

identified and specified in a top-down approach. A service repository should be

established to document the available services defined in this architecture, in order to

maximize the reuse of the services across the lines of business, domains and channels.

Service attributes and applicable policies are also captured and stored in a semantic

fashion. Guidelines and patterns are created as well.

4.4 Channel Specific Architecture

Channel Specific Architecture (CSA) lies on top of XBA, which addresses the

cross-application concerns and operational quality of services in a particular channel

or line of business. A typical implementation is a common portfolio baseline to deal

with the universal architectural concerns in an application set. The key architecture

points addressed are the application dependency, interaction patterns, integration

methods, cross-portfolio data management, service reusability, cross-application

monitoring and management, single sign-on (SSO), unified authorization, cross-

channel session management, and other infrastructural services. In addition, an

architecture template is defined to specify the solution patterns for various system

attributes such as load balancing, scalability, high availability, disaster recovery,

capacity, storage, security, reliability, performance, collaborations, traceability, and

deployment.

4.5 Application Solution Architecture

The fifth layer is Application Solution Architecture (ASA), which copes with the

system architecture for individual applications. It covers the overall solution

architecture, realization of business functionalities, process orchestration, workflow,

rule management, business logic implementations, user interface, logical layering,

service access interfaces, interaction mechanisms, multi-tier physical topology,

networking for distributed solutions, storage management, product and technology

selections, etc. ASA is generally project-based at the system level and is aimed at a

specific solution domain.

To make the software portion of a solution more flexible and adaptive, the

inversion of control is often applied in ASA. The dependency injection can be

realized declaratively via annotations or deployment descriptors, to minimize the

coupling between the application components and the underlying implementation

technologies. In addition, application architecture patterns and models are leveraged

to design and build SOA applications. For example, Service Component Architecture

(SCA) [14] describes a model for building applications and systems using a SOA

style. SCA extends and complements prior approaches to implementing and

assembling services, and SCA builds on open standards such as web services.

4.6 Aspect-Oriented Architecture

Aspect-Oriented Architecture (AOA) is the sixth layer, which deals with various

application-wise aspects, largely software-related. It includes module-level

frameworks such as Model-View-Controller (MVC) pattern-based structures,

programming models such as Object-Oriented design (OOD), development tools such

as Integrated Development Environment (IDE) workbenches, and automated unit

testing such as JUnit and NUnit. Additionally, it deals with the classic crosscutting

concerns via Aspect-Oriented Programming (AOP), like exception handling, logging,

transactions, caching, data validation, session and state management, threading,

synchronization, and remote access.

4.7 Component Technology Architecture

At the top of the pyramid is Component Technology Architecture (CTA), which

handles the component-level internal structures and specialized technologies for

specific technical concerns. These solutions can be in the format of packages, utilities,

libraries, techniques, patterns, and implementation styles. Examples include Object-

Relational (OR) mapping for data persistence, data access services, presentation-

rendering mechanisms like XSL and template engines, page flow navigation, UI Look

& Feel, XML parsing, service aggregation, Ajax, REST, and Gang-of-Four design

patterns.

4.8 Interrelationships of the Layers

The layers in the GAS stack reveal the architecture artifacts gradually at the macro,

meso, and micro level.

 Macro-Architecture: “global” vision – the overall structure in an enterprise

(Layer 1 and 2)

 Meso-Architecture: “division” vision – the service and channel level

properties and interactions across the application portfolios and domains

(Layer 3 and 4)

 Micro-Architecture: “local” vision – the system attributes, relationships

between components and component composition at the individual project

and application level (Layer 5, 6, and 7)

The concept of Meso-Architecture defined in this paper has rarely received

sufficient attention in the IT solution design in past practices. With the primary focus

being only on the macro and micro designs, variants in one format or another of the

Meso-Architecture might be scarcely crafted randomly, but then left in the dust. A lot

of IT shops have not even recognized the significance of this artifact in their

blueprints, let alone any formal design or patterns about it. However, the Meso-

Architecture is a critical continuum between the macro-level and the micro-level

concerns. The gap is bridged by the Meso-Architecture in terms of disciplined

specification and validation of static structure and dynamic behavior of IT solutions at

the service and channel levels. This part is becoming increasingly important in the

lifecycle process of IT asset management and optimization. It is also critical to

employ a hybrid methodology that combines both the top-down and bottom-up

approaches in defining the service- and channel-level models to transform the existing

IT portfolio into a service-oriented computing paradigm.

Each layer in the GAS is focused on particular technical and business domains and

the granularity grows progressively from the bottom up to become more application-

specific and technology-oriented. The upper layers leverage the services and solutions

built in the lower layers. The lower layers are not tied with any upper layers, but they

contain common architectural disciplines and shareable artifacts for the upper layers.

The architectural rules are enforced so that the lower levels do not “call” the upper

layers. The relationships between the layers are very loosely coupled, which makes

this model adaptive and expandable. Each layer is self-encapsulated, and strictly

adheres to the interfaces designed. The technologies and platforms that are used in

one layer can be easily swapped, without affecting other adjacent layers. The

architectures in the upper layers may augment or aggregate the customized

implementations of the functionalities in the lower layers and incorporate other

modular extensions for particular business domains.

5 Contextual Spectrum

The TIP model presents a holistic framework to describe the key artifacts in an IT

environment from a variety of viewpoints. Figure 3 illustrates a top-down view from

the tip of the pyramid model, which shows the multiple layers in the architecture stack

as well as the major attributes in the four dimensions of the contextual spectrum. To

exemplify the key characteristics of the attributes in these dimensions, we will

concentrate on the Who attribute in the Abstraction dimension, and discuss the

primary practitioners across the architectural layers in the GAS stack.

As each layer is focused on different architectural concerns and artifacts, it is

natural that distinctive domain knowledge and practices as well as skillsets/tools are

needed to design the architecture models at various levels. The key technical

stakeholders who are responsible for each layer in GAS are listed as follows:

 EBA – Strategy Architect, Business Architect, Governance Architect,

Information Architect, and Enterprise Architect.

 ETA – Enterprise Architect, Infrastructure Architect, Information Architect,

Security Architect, Network Architect, Storage Architect, Governance

Architect, and Data Architect.

 XBA – Enterprise Architect, Infrastructure Architect, Security Architect,

Network Architect, Storage Architect, Domain Architect, and Data

Architect

 CSA – Enterprise Architect, Solutions architect, Infrastructure Architect,

Security Architect, Network Architect, Storage Architect, Channel

Architect, Information Architect, Systems Architect, and Data Architect.

 ASA – Solutions architect, Systems Architect, Application Architect,

Infrastructure Architect, Network Architect, Information Architect,

Portfolio Architect, and Data Architect.

 AOA – Software Architect, Solutions architect, Application Architect,

Information Architect, and Data Architect.

 CTA – Technology Architect, Component Architect, and Software Architect.

Who Which HowWhy Where WhenWhat

CTA

AOA

ASA

CSA

XBA

ETA

EBA

Abstraction

Maturity

P
ro

ce
ss

L
a
ti

tu
d

e

Principles

Metrics Benchmark QualityCapacity Productivity PerformanceScorecard

Patterns

Security

Inter-

operability

Integration

Interface

Standards

Polices

Operations

Execution

Planning

Compliance

Governance

Resources

Fig. 3. Key Aspects in Contextual Spectrum

Different architects play distinct roles in the architectures at each layer. In practice,

appropriate practitioners should be engaged in the architecting process to plan,

analyze, specify, evaluate, validate, optimize and manage the models in the stack.

Incorrect or insufficient staffing of qualified architects possessing the right skillsets

would impose great risks in the architecture design, which most likely would lead to

project setbacks later in the development lifecycle. Collaborations between the

architects are critically important in large-scale system and infrastructure

developments, particularly on the relationship, integration, and interoperations of

different models in the architecture stack.

Table 1 summarizes the major features and functions of the GAS in the TIP

framework, along with the practitioners and practices/patterns.

In contrast with existing frameworks as reviewed in Section 2, our model is more

coherent and rational, covering a wide range of complex aspects represented in a three

dimensional fashion. The logical grouping via a stack helps separate concerns and

more accurately define roles and responsibilities in the architecting practices.

Moreover, the aspect-oriented architecture and component technology architecture in

this model reformulate the scope and emphasis of the traditional application solution

architecture, expanding the breadth and depth of what architecture covers in the

service-oriented design paradigm. This promotes the design-by-contract principle to

another level, and facilitates the decision making and objective tradeoff justifications

in solution design. Another key contribution in this framework is the Meso-

architecture, composed of cross business-line architecture and channel-specific

architecture, which lays out the crucial foundation for service-oriented engineering

and portfolio rationalization.

Due to space constraints, other artifacts in the contextual spectrums of Process,

Abstraction, Latitude, and Maturity (PALM) in each layer are articulated in a separate

publication [15]. Additionally, a reference model has been developed to demonstrate

the application of the key aspects and capabilities of the TIP framework in a financial

institution scenario, which is to be presented in another paper.

6 Conclusions

To effectively manage the architecture complexity and organize diverse architectural

assets in large organizations, a comprehensive solution is a necessity to abstract

concerns, define responsibilities, and present a holistic view of the architectural

aspects in a highly structured way. The Technology and Information Platform (TIP)

model is designed as a multi-layered framework to facilitate architecting information

systems. It provides comprehensive perspectives of the architecture designs from both

business and technical standpoints. It builds concrete architecture solutions focused

on different domains and portfolios, and in the meantime keeps the agility, flexibility

and adaptiveness of the overall model.

Table 1. Feature summary of GAS in TIP model

Layer Name Features Practitioners Practices/Patterns
1. EBA Enterprise

Business

Architecture

 High-level enterprise-wide

 Business-oriented

 Business process analysis

and design

 Business logic models and

components

 Business analysis patterns

- Business

Architect

- Strategy
Architect

- Governance

Architect

- Enterprise

Architect

- Information
Architect

 Business operations

model

 Business process
architecture

framework

 Zachman

Framework

 Industry models

(e.g. ACORD, IFX,
eTOM, IFW)

2. ETA Enterprise

Technical
Architecture

 High-level technology-

oriented

 Policies & governance

 Corporate standards &
strategies

 Infrastructure, system,
integration and data

 Business, application,
information, and technology

- Enterprise

Architect
- Infrastructure

Architect

- Information
Architect

- Security

Architect
- Network

Architect

- Storage
Architect

- Governance

Architect

 Zachman

Framework
 MSA blueprints

and reference

guides
 TOGAF

 E2AF

 FEA

3. XBA Cross
Business-

line

Architecture

 Business-line-independent
functionality

 Service patterns

 State data

 Service layers

 Deployment

 Channel patterns

- Enterprise
Architect

- Infrastructure

Architect
- Security

Architect

- Network
Architect

- Storage

Architect
- Information

Architect

 TOGAF
 MSA blueprints

and reference

guides
 FEA

 Service-Oriented

Architecture (SOA)
 BPM

 Industry models

(e.g. ACORD,
IFW, eTOM)

4. CSA Channel
Specific

Architecture

 Channel-dependent
architecture

 Common baseline to address
major cross-application

concerns

 Quality of services

 Best practices

 Application patterns and
frameworks

 Inter-application
collaborations and

integration

- Enterprise
Architect

- Solutions

architect

- Infrastructure

Architect

- Security
Architect

- Network

Architect
- Storage

Architect

- Information
Architect

- Systems

Architect

 TOGAF
 MSA blueprints

and reference

guides

 FEA

 MDA

 Service-oriented
business service

model

 BPM
 Industry models

(e.g. ACORD,

IFW, eTOM)

5. ASA Application
Solution

Architecture

 Application-specific
architecture

 Business functionality
realization

 Business logic
implementation

 Technology & system
architecture

 Service access and n-tier

model

 Networking, storage, &

resource integration

- Solutions
architect

- Systems

Architect
- Application

Architect

- Infrastructure
Architect

- Network

Architect
- Information

Architect

- Portfolio
Architect

 MDA
 SCA

 Java EE platform

 Application
Architecture for

.NET

 Architectural styles
 LAMP

 Ruby on Rails

6.

AOA

Aspect-

Oriented
Architecture

 Application-wise aspects

 Crosscutting concerns

 Module framework, e.g.
MVC

 Module technology (data

validation)

 Programming model (OOD)

 Development/Testing tools

 Exception handling

 Data caching

 Session and state
management

 Transactions

 Threading

 Workflow

 Business rules

 Authentication &
authorization

- Software

Architect
- Solutions

architect

- Application
Architect

- Information

Architect
- Data Architect

 Struts, JSF,

Tapestry, Rife
 Ajax

 EJB

 MQ, JMS,
ActiveMQ

 AspectJ,

AspectWerkz,
Spring AOP, JBoss

AOP

 Log4J
 ESB

 WS-BPEL

 OFBiz
 Patterns

 MS UIP application

block
 Genetics

 Annotations

7. CTA Component

Technology
Architecture

 Component-level internal
structure and technologies

 Object-Relation (OR)
mapping

 Presentation-rendering

mechanisms like XSL and
template engines

 Page flow navigation

 Look & Feel

 XML parsing and

construction

 Persistent data model

 Web Services invocation

 Collaboration

 Integration

- Technology

Architect
- Software

Architect

- Component
Architect

 Design patterns

 SDO, JDO,
Hibernate

 Beehive, Spring

WebFlow
 JAX-WS, Axis

 WS-Security,
WSRP, WS-*

 JAXP, DOM/SAX,

StAX
 XDoclet

 JUnit, HttpUnit,

NUnit, Cactus
 MySQL, mSQL,

Derby

 Application blocks
in MS Enterprise

Library

The design principles of the pyramid platform are discussed in this context. A

concept of Meso-Architecture is introduced, which emphasizes the important

architectural artifacts at the service and channel levels in the architecture modeling

practices. Seven interrelated layers are defined in the Generic Architecture Stack.

The strength of this comprehensive platform is its loose-coupling nature and

interoperability. In our practices, different formats and variants of this model have

been successfully used in developing and integrating various IT solutions in a SOA

fashion. Furthermore, this framework is scalable and flexible for dynamic expansions

and customization.

References

1. John Zachman: Zachman Framework, http://www.zifa.com

2. Institute for Enterprise Architecture Developments: Extended Enterprise Architecture

Framework

3. Philippe Kruchten: The Rational Unified Process: An Introduction, 3rd Edition, Addison

Wesley, Massachusetts (2003)

4. The Open Group: The Open Group Architecture Framework,

http://www.opengroup.org/architecture/togaf8/index8.htm

5. Object Management Group: Model Driven Architecture, http://www.omg.org/mda

6. DoD C4ISR Architecture Working Group: C4ISR Architecture Framework, Version 2

7. Treasury Department CIO Council: Treasury Enterprise Architecture Framework. Version 1

8. Federal Office of Management and Budget: Federal Architecture Framework,

http://www.feapmo.gov/fea.asp

9. Purdue University: The Purdue Enterprise Reference Architecture, http://pera.net

10. Janis R Putman: Architecting with RM-ODP, Prentice Hall PTR, New Jersey (2001)

11. Tony Shan, and Winnie Hua: Solution Architecture of N-Tier Applications, 3rd IEEE

Conference on Services Computing (SCC 2006), September 2006, 349-256

12. Tony Shan, and Winnie Hua: Solution Architecting Mechanism, 10th IEEE Enterprise

Distributed Object Computing Conference (EDOC 2006), October 2006, 23-34

13. Tony Shan and Winnie Hua: Service-Oriented Solution Framework for Internet Banking,

International Journal of Web Services Research, Vol. 3, No.1 (2006), 29-48

14. The Open Service Oriented Architecture Collaboration: Service Component Architecture,

http://www.osoa.org

15. Tony Shan, and Winnie Hua: Contextual Spectrums in Technology and Information

Platform, 3rd IEEE Conference on Services Computing (SCC 2006), September 2006, 508

