
Daniel Lübke (editor)

Workshop on
Software Engineering Methods for
Service-Oriented Architecture 2007
(SEMSOA 2007)

Proceedings
SEM SOA

Hannover 2007

Preface

Service Oriented Architecture (SOA) is a new emerging style for building business
applications: The software is directly based on the business processes which are used
to compose software services into an application.

SOA has become a hype: Many researchers and practitioners explore this area.
Whereas the ongoing SOA discussion mostly concentrates on dynamic service
discovery, new business methods and the business process side, the development side
is normally neglected. One important question in this regard is which (proven)
software engineering methods can be applied well in SOA implementation projects.
What gaps and pitfalls have been discovered in practice, which remain without
feasible solutions? Since mostly all SE methods have been geared towards object-
oriented software design in the last years, methods and practices have to be adapted to
meet the requirements of the new architectural style.

This workshop therefore aims to bring together researchers and practitioners from
the SOA field in order to exchange ideas and experiences related to adopted or new
software engineering methods for SOA and experiences related to them. This
encompasses methods, models and techniques for the whole software life cycle.
Hopefully, this will result in new ideas and cooperations in this field.

For this workshop, there were 10 submissions. Each submission was reviewed by
at least 3 program committee members. At the end 8 papers were accepted.

Hopefully, this workshop will be successful. I like to thank all the people who
worked towards that goal. Especially, I like to thank all program committee members,
who invested their time in reviewing the submissions, and all the members of the
Software Engineering Group at the Leibniz Universität Hannover for helping to
organize this workshop.

Hannover, May 2007 Daniel Lübke

Program Committee Members

• Luciano Baresi, Politecnico di Milano, IT
• Nico Brehm, University Oldenburg, DE
• Nicolas Gold, King's College London, GB
• Katrina Leyking, DKFI, DE
• Daniel Lübke, Leibniz Universität Hannover, DE
• Jorge Marx Gómez, University Oldenburg, DE
• Jan Mendling, WU Wien, A
• Andreas Schmietendorf, FHW Berlin, DE
• Kurt Schneider, Leibniz Universität Hannover, DE
• Branimir Wetzstein, University Stuttgart, DE
• Uwe Zdun, Vienna University of Technology, A
• Olaf Zimmermann, IBM Zurich Research Laboratory, CH

Table of Contents

Multi-staged and Multi-viewpoint Service Choreography Modelling
 Alistair Barros, Gero Decker, Marlon Dumas ...1

Dealing with User Requirements and Feedback in SOA Projects
 Daniel Lübke, Eric Knauss...16

Semantic Model-Driven Development of Service-centric Software Architectures
 Claus Pahl, Ronan Barrett ...31

Architectural Decision Models as Micro-Methodology for Service-Oriented
Analysis and Design
 Olaf Zimmermann, Jana Koehler, Leymann Frank..46

Towards a Holistic Architecture Platform
 Tony Shan, Winnie Hua..61

Service-oriented Development of Federated ERP-Systems
 Nico Brehm, Jorge Marx Gómez..76

Resource Metrics for Service-Oriented Infrastructures
 Dmytro Rud, Andreas Schmietendorf, Reiner Dumke90

Model Driven Testing of SOA-based Software
 Chris Lenz, Joanna Chimiak-Opoka, Ruth Breu ..99

Multi-staged and Multi-viewpoint Service
Choreography Modelling

Alistair Barros1, Gero Decker2, Marlon Dumas3

1 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

2 Hasso-Plattner-Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

3 Queensland University of Technology, Australia
m.dumas@qut.edu.au

Abstract. Recent approaches to service-oriented systems engineering
start by capturing the interactions between services from the perspec-
tive of a global observer, leading to so-called service choreographies.
The rationale is that such choreographies allow stakeholders to agree
on the overall structure and behaviour of the system prior to developing
new services or adapting existing ones. However, existing languages for
choreography modelling, such as WS-CDL, are implementation-focused.
Also, these proposals treat choreographies as monolithic models, with
no support for multiple viewpoints. This paper proposes a multi-staged
and multi-viewpoint approach to choreography modelling. For the initial
stages, the approach promotes the partitioning of choreography models
and the design of role-based views; while for subsequent stages, milestone
and scenario models are used as an entry point into detailed interaction
models. The paper presents analysis techniques to manage the consis-
tency between viewpoints. The proposal is illustrated using a sales and
logistics model.

1 Introduction

As implementation-level web service interoperability standards mature, the need
for analysis and design methods for service-oriented systems becomes even more
pressing. In early proposals for service-oriented analysis and design methods [8, 2,
22, 16], global models of service interactions, also known as conversation protocols
or service choreographies, play a key role during the initial stages of analysis and
design. Service choreographies capture the interactions in which a collection of
services engage, from the perspective of an ideal observer who would be able
to see every interaction occurring between the involved services. By providing a
“birds-eye” view over interactions, service choreographies allow business and IT
stakeholders to build a common understanding of the structure and behaviour
of the overall system, prior to approaching implementation issues.

Languages such as BPSS [20] and WS-CDL [14] have been proposed as a basis
for modelling choreographies. However, these languages focus on detailed inter-

1

2 Alistair Barros, Gero Decker, Marlon Dumas

action flows and treat choreographies as monolithic development artifacts. WS-
CDL in particular goes down to supporting the description of choreographies in
a quasi-executable form, using programming constructs such as sequence, block-
structured conditional and loop structures, and variable assignment. While these
languages partly support an implementation-independent approach to service-
oriented system design, it is questionable that they are suitable for the early
phases of the development lifecycle, where the incremental acquisition of a com-
mon understanding by multiple stakeholders with different concerns and back-
grounds is crucial. It is unlikely that business stakeholders and system analysts
operating at a high level of abstraction will benefit from manipulating chore-
ography models that include executable data manipulation steps. Instead, they
are likely to be interested in viewing choreographies without the interaction flow
details (e.g. role-based viewpoints), or to view milestones and specific scenarios.
Only at later stages does the refinement of choreography models into executable
code becomes a concern. Thus, languages and methods for choreography mod-
elling should be compatible with multi-staged and multi-viewpoint design. By
supporting multiple modelling viewpoints, it is possible to break down a ser-
vice design into smaller more manageable parts that are handled by different
stakeholders.

In this setting, the proposition of this paper is an approach to choreography
modelling based on viewpoints layered on top of a choreography modelling lan-
guage, namely Let’s Dance [21]. Let’s Dance has a formal semantics defined in
terms of π-calculus [6] and has been shown to be expressive enough to capture
common service interaction patterns [3] and to serve as a basis for generating lo-
cal views on service interactions for subsequent refinement into executable mod-
els [21]. In this paper, we define role-based, milestone-based, and scenario-based
viewpoints into service choreographies, and propose techniques for managing the
consistency between these viewpoints and the interaction-based viewpoints na-
tively supported by Let’s Dance. The outcome is a set of notational elements
and consistency checking techniques that provide a basis for defining service-
oriented analysis and design methods that bridge the gap between business and
IT concerns. The notational elements have been used to capture a refined ver-
sion of a logistics collaboration model proposed by the Voluntary Inter-industry
Commerce Solutions Association (VICS).4 Meanwhile, the consistency checking
algorithms have been validated through implementation and testing.

After an informal introduction to the proposal using the VICS global logistics
model (Section 2), the paper defines an abstract syntax for each of the proposed
modelling viewpoints (Section 3). Next, the techniques for inter-viewpoint con-
sistency verification are presented in Section 4. Finally, related work is discussed
in Section 5 while Section 6 concludes.

4 See www.vics.org

2

Daniel Lübke
Rechteck

Multi-staged and Multi-viewpoint Service Choreography Modelling 3

2 Multi-view choreography design by example

This section provides the practical setting through which the proposed chore-
ography modelling viewpoints and extensions to the Let’s Dance language are
motivated and developed. Insights are drawn from a case study inspired by the
Sales and Logistics component of the VICS EDI Architecture Guide. The case
study is related to the supply chain between retailers and manufacturers, cov-
ering processes where products are ordered through cyclic stock replenishment
agreements over a time-horizon (e.g. 12 months), shipped and paid for. Along
the way, shipments need to be managed and optimised through different types of
carriers (land, rail, air, ocean), consolidated at intermediaries, crossed through
the “red tape” of customs and quarantine, and delivered to consignment nodes
where they are dispatched to retail stores. As a result of delivery, fulfilment of
an order needs to be assessed with respect to quantity, timeliness and damage
to ensure quick turn-around for payment and reimbursement. To close the loop,
supply and consumer patterns are dynamically fed back into the next cycles of
merchandising and collaborative forecasting, planning and replenishment.
Domains and roles. End-to-end modelling of interactions of value-chains as
vast as Sales and Logistics require a careful scoping of processes being anal-
ysed. To facilitate such scoping and provide a focus on models (e.g. interaction
models) developed for common business objectives, we propose the notion of
collaboration domains. These domains group a set of logically related models.
The set of collaboration domains for the Sales & Logistics case study is depicted
in Figure 1. As apparent from the figure, the collaboration domains (ellipses)
scope different areas of business interest. For example, a distinction is made be-
tween Collaborative Forecasting Product Replenishment (out of which an order
is produced), Logistics (governing shipment of goods), Payments, Exceptions,
Order Release and Product Merchandising. Given the size and complexity of
domains, we propose that they should be arranged in a hierarchical structure.
For example, in Figure 1, we can see that the logistics domain is decomposed
into four sub-domains: Tendering, Carrier Appointment, Delivery, and Claims
& Returns.

To go from collaboration domains into individual processes with detailed in-
teractions, we propose an intermediate viewpoint: the role-based choreography
view. A role-based choreography is defined for each leaf-level domain (since non-
leaf domains are purely used for the purpose of abstraction). This viewpoint
is illustrated for the Delivery domain in Figure 1. This viewpoint shows col-
laborating roles (boxes) and their interaction dependencies, expressed through
channels. A channel captures the fact that there is at least one direct interaction
between two or more roles and the purpose of this/these interactions. Channels
are represented by small circles on lines.

Cardinality constraints on channels are used to express how many partici-
pants of one role can interact with one participant of the other role. As illus-
trated, a Shipper interacts with a number of Carriers for Carrier Planning, while
a Carrier interacts with one Shipper. A Shipper, a Consignee and a Consolida-
tor all interact for the purpose of agreeing on a Detailed Shipment Schedule.

3

Daniel Lübke
Rechteck

4 Alistair Barros, Gero Decker, Marlon Dumas

Exceptions

Consignee

Carrier

Land
Carrier

Rail
Carrier

Ocean
Carrier

Air
Carrier

Breakdown
Service

Locative
Service

Insurance

Shipper

Manu-
facturerRetailer

Distribution
Center

Store

Consolidator

Customs /
Quarantine

Delivery Negotiation

Detailed Shipment Schedule

Carrier Planning

Coverage
Notification

Detailed Ship-
ment Schedule

Clearance Pre-
notification

Clearance
Monitoring

Delivery
Monitoring

Truck Breakdown
Provision

Traffic Optimization
Guidance

Arrival/Pickup Conf.

Special
Cover

Delivery
Planning

1

1

1

1

1

1 1

1

1

1

1

Delivery /
Dispatch Plan

Shipment
Schedule

1

1 1

1

1

* 1

1

1

*

* 1*

1 *

1 11 *

* *

Dispatch
*

Product
Merchandising

Order Release

Payments

Collaborative
Forecasting Product

Replenishment

Tendering

Carrier
Appointment

DeliveryClaims &
Returns

Logistics

Fig. 1. High-level role-based view for Delivery domain of Logistics

Multiplicity of roles can be explicitly shown, as with Shipper and Carrier for
instance. This indicates that several participants of role Carrier (overlaid boxes)
are involved in one choreography instance as opposed to only one participant of
role Shipper taking part (single box).

Another notational element, used in the representations for the Carrier and
the Consignee roles, is that of role hierarchies (roles within roles). Role hierar-
chies can be used to express different relationships, and the exact relationship
being represented needs to be specified by the modeller. In the case of the Con-
signee, the hierarchies mean that at least one of the sub-roles is involved in the
interaction expressed against the super-role, i.e. a part-of relationship. Consignee
also illustrates that further interaction dependencies can be expressed between
sub-roles. Alternatively, the relationship between super- and sub-roles could re-
flect specialisation, where all sub-roles carry the same interaction dependencies
as the super-role, and each may carry additional dependencies. This applies to
the Carrier and its sub-roles.

With interaction dependencies between roles, through channels, in place,
individual message exchanges can be captured. We propose that channels are
assigned a set of message interactions in terms of message type and direction of
flow. By this assignment to channels, the message interactions between collabo-
rating roles is captured, although they remain unordered.

Milestones, scenarios and interactions. The models described so far are
static: they do not describe control flow relationships between interactions. Be-
low, we introduce viewpoints where interactions and their relationships are cap-
tured in more detail. Since the number of participants and interactions can be
very large, these detailed viewpoints can be difficult to build and comprehend.
Thus, a mechanism is needed to partition these models. This is achieved through
the notion of milestones depicted in Figure 2.

Milestones (diamonds) represent the main global states choreography in-
stances can be in and as such are used as “sign-posts”. In complex choreogra-

4

Multi-staged and Multi-viewpoint Service Choreography Modelling 5

Payments Exceptions

Collaborative
Forecasting Product
Replenishment

Carrier
Appointment

Delivery

Carriers
Selected

Operational
Delivery
Contract
Established

Delivery
Event
Planning

Variations
from Delivery
Contract Finalised

Ad-hoc
Requests
Finalised

Shipment
Schedule
Prepared

Carrier
Variations
Processing

Shipment
Schedule
Finalised

Variations
Prepared

Carrier
Variations
Identified

Varied
Carriage
Issued

Final
Shipment
Schedule
Issued

Customs/
Quarantine
Pre-Clearance
Processing

Carrier
Pick-up/
Delivery
Confirmation

Consolid.
Pick-up/
Delivery
Confirmation

Shipment
Commenced

Claims & Returns

Fig. 2. Milestones related to Delivery domain

phies, milestones are useful since the details of processes which lead to milestones
being reached can be omitted. To illustrate the point, Figure 2 depicts milestones
primarily concerning Delivery, with some links to related milestones in processes
of other domains shown. In this example, some milestones are related through
Precedes relationships (arrowed lines). Some milestones might never be reached
for a particular instance of a choreography. For example and as explained in de-
tails later, if a guard attached to an interaction evaluates to false, the interaction
is skipped, and so are all other interactions that directly or transitively follow it
according to the Precedes relation. Also, some milestones may be skipped as a
result of Inhibits relationships. An Inhibits relationship (line crossed by a bar)
expresses that if a milestone is reached, the target milestone can no longer be
reached for the current instance of the choreography (i.e. it will be skipped). In
the example, a Shipment Schedule Prepared milestone being reached will result
in either a Shipment Schedule Finalised (SSF) or Carrier Variations Identified
(CVI) milestone being eventually reached, but not both since these milestones
“inhibit” each other. If we want to express that a milestone can still be reached
even if a “preceding” milestone has been skipped, we should use a Weak Precedes
relationship (arrowed dashed line) instead of a Precedes ones. Following the same
example, Final Shipment Schedule (FSS) is “weak preceded” by the both the
SSF and CVI milestones, and thus the FSS milestone will be reachable after one

5

6 Alistair Barros, Gero Decker, Marlon Dumas

of these two milestones has been reached and the other has been skipped. This
example corresponds to a more general pattern where a Weak Precedes relation-
ship is used to join two mutually exclusive paths. Another example of a Weak
Precedes is given by the Delivery Event Processing milestone (e.g. next week’s
delivery) which is reached after the Operational Delivery Contract Established
milestone is reached, whether or not the milestones Variations from Delivery
Contract Finalised and Ad-Hoc Requests Finalised have been reached.

The last extension is to introduce scenarios, or specific “threads” of interac-
tions, and to merge these scenarios to obtain detailed interaction-based chore-
ography models (also called interaction models for short). The modelling of in-
teractions is the central theme of choreography languages, however support for
capturing scenarios (a well-established feature of analysis and design) is left
open. With milestones in place, under our approach, scenarios identify interac-
tions which serve to progress the milestones. Figure 3 illustrates how scenarios
relate to milestones drawn from Figure 2, starting with a scenario yielding a
milestone that is used as input for a second scenario. In the third scenario de-
tailed in the example, the Retailer and Manufacturer negotiate required stock,
and finally the Manufacturer releases order quantities. The Manufacturer then
determines through the Shipper whether the allocated Carriers have capacity or
not for the shipment, and accordingly two exclusive milestones result from the
scenario. How large or small a scenario is, should reflect user requirements. In
addition, scenarios might be split into sub-scenarios in order to allow for different
variants of parts of a scenario.

Store/inventory report

Retailer Manufacturer

Final delivery replenishment

Manufacturer Retailer

Replenishment acknowledgement

Retailer Manufacturer

Carrier capacity sufficient

Manufacturer Retailer

Carrier capacity insufficient

Manufacturer Retailer

Shipment
Schedule
Prepared

Carrier
Variations
Identified

Shipment
Schedule
Finalised

Investigate
Replenishment for
Delivery Event

Fig. 3. Scenario for replenishment

Design method. The above considerations are summarised as a choreography
design method in Figure 4. The rounded rectangles in this figure depict the ac-
tivities of the choreography design method. The arrows describe which other
activities are influenced by the outcome of an activity. First, domains need to
be identified and decomposed into sub-domains. Next comes the identification of
participants in the different domains. This identification mostly takes place early
in the process but participants can also be included in later stages. With par-
ticipants in place, role-based choreography models can be obtained by defining
interaction dependencies between them.

6

Multi-staged and Multi-viewpoint Service Choreography Modelling 7

Domain scoping

Participant
identification

Milestone
definition

Scenario
modeling

Message
identification

Choreography
finalization

Service
implementation

for Role N

Service
implementation

for Role 1

Choreography
View for Role N

Choreography
View for Role 1

Fig. 4. Method for choreography design

Milestone models provide a high-level view of the behavioural aspect of chore-
ography models, describing the main global states choreography instances can
be in. Scenarios describe which interactions are needed to get from one mile-
stone to another and thus only focus on one part of a choreography. During
scenario modelling the designers might realise that they have to introduce more
participants than they have considered so far. Furthermore, re-discussing the
scope of a domain might be needed when scenario modelling goes down to the
level of message exchanges. It might not be obvious to what domain a certain
interaction belongs to, and this may affect the grouping of scenario models and
interaction models into domains. For example, does a scenario triggered by an
interaction “Pickup Appointment Change Request” belong to the domain “Car-
rier Appointment” or to “Delivery”? Message exchanges between the different
participants are identified in this activity. First, only high-level descriptions are
given. Later, message structures and contents are specified in detail.

The domain-relevant parts of the scenarios are aggregated into an integrated
interaction model for the domain. Therefore, all participants, milestones, inter-
actions and relationships between them are captured in this integrated chore-
ography. Subsequently, the individual participants’ views on the choreography
model are generated and distributed to the participants who now proceed to
design and implement their parts of the choreography. In our previous work [21],
we have proposed algorithms for generating such local participants’ views in the
context of the Let’s Dance language. Finally, existing implementations might be
checked to determine if they already comply with the choreography model or if
changes have to be made.

3 Choreography modelling viewpoints

The top-level viewpoint of the proposed choreography design method is the do-
main model. A domain model is composed of a set of domains arranged in a
hierarchical relation. Leaf-level domains are mapped to different models corre-
sponding to the proposed viewpoints on a choreography. Specifically, each leaf
domain maps to: (i) a role-based model, (ii) a milestone model, (iii) a set of in-
teraction models corresponding to scenarios, and (iv) an integrated interaction

7

8 Alistair Barros, Gero Decker, Marlon Dumas

model. In this section, we present an abstract syntax for each of these types of
models.

3.1 Role-based choreography models

The previous section has already motivated role-based models and has intro-
duced the intended meaning of the different elements of such models. Figure 5
summarises the corresponding graphical representations: Rectangles represent
roles. Concrete participants are bound at design-time or at run-time. Small

Role2

G

E FA B C Dm11 *

1 1

Fig. 5. Diagram elements for role-based models

circles represent channels while message links are depicted as dashed arrows.
Message links are directed channels with a particular message type assigned.
Cardinality of channels is represented by either “1” or “*” attached to the end-
point of a channel. Multiplicity of roles is represented by a double rectangle like
for role B. Hierarchy is represented by containment in the diagram.

We define a role-based choreography model CR to be a tuple (R, RM , C,
Senders, Receivers, Card, Msg, CM , Parent) where:

– R is the set of all roles,
– RM : R → {one,many} is a function assigning a multiplicity to a role,
– C is the set of all channels,
– Senders, Receivers : C → ℘(R) assign the set of roles to a channel who can

send / receive messages over the channel, if the sets of senders and receivers
are disjunct, the channel is a message link (ML := {ml ∈ C | Senders(c) ∩
Receivers(c) = ∅}),

– Card : {(c, r) ∈ C × R | r ∈ Senders(c) ∪ Receivers(c)} → {one,many} is
a function assigning a cardinality to role r for channel c,

– Msg is the set of all message types,
– CM : ML → Msg is a partial function linking message links to message

types,
– Parent ⊆ R × R specifies the hierarchical relationships between a role and

its sub-roles (Parent must be acyclic) and
– the cardinality “many” is only used in the presence of the multiplicity

“many” of the corresponding role: ∀(c, r) ∈ Card [c = many ⇒ RM(r) =
many].

3.2 Milestone, scenario and interaction models

In previous work [21] we have presented Let’s Dance as a language for modelling
service interactions and their dependencies. Below, we enrich the language with

8

Multi-staged and Multi-viewpoint Service Choreography Modelling 9

milestones. That way models like they were motivated in section 2 are specified.
Figure 6 contains the graphical elements for representing milestone and inter-
action models. Milestones are represented by diamond shapes and interactions

m1 {A, B}

message msg5

A B

message msg6

B C
repeat until x msg sent (B)

If condition X fulfilled (B)

message msg3

A B

message msg4

B C

message msg1

A B

message msg2

B C

m2 {all} m3 m4 m5 m6

Fig. 6. Diagram elements for milestone and interaction diagrams

using rectangles. These roles indicated in brackets describe which participant
has to be notified as soon as the milestone is reached. If all participating roles
are to be synchronised “all” appears in brackets or the brackets are omitted.

The Precedes relationship between two elements (milestones or interactions)
e1 and e2 indicates that e1 must have been executed / reached before e2 can be
executed / reached. A WeakPrecedes relationship between e1 and e2 indicates
that e2 can only be executed / reached after e1 has been either executed /
reached or after it has been skipped. An Inhibits relationships between e1 and
e2 indicates that e2 cannot be executed / reached after e1 has been executed
/ reached (i.e. e2 is then skipped). Two-directional Inhibits relationships are
represented like in the case of m3 and m4.

Interactions can either be elementary or composite. In the case of elementary
interactions a participant of a certain role sends a message of a given type to
another participant. In Figure 6 a participant of role A sends a message of type
m1 to a participant of role B. Composite interactions allow for grouping of one
or more interactions. Interactions can be guarded, i.e. they may only occur if a
guard condition evaluates to true, or they can be repeated. It is specified which
participant evaluates the guard condition and the repetition expression.

Below, we introduce three types of models corresponding to different view-
points into a choreography: milestone, scenario and interaction models. Milestone
models are composed only of milestones and relationships between them. Mean-
while, scenario models are composed of milestones, interactions and relationships
between them. The purpose of a scenario model is to show how to go from a
set of milestones to another. Scenario models are not limited to one domain and
may be used to show dependencies between milestones and interactions from dif-
ferent domains. Scenario models can be nested, i.e. different sub-scenario models

9

10 Alistair Barros, Gero Decker, Marlon Dumas

may refine a given scenario model, showing specific variants. A similar notion
can be found in Message Sequence Charts [18] which capture specific paths of
interactions between a number of parties. But in contrast to traditional MSCs,
we allow scenario or sub-scenario model to show alternative paths (i.e. we allow
conditional branching in scenario models)5. Finally, interaction models show all
milestones and interactions from one domain as well as their relationships.

We introduce a unified abstract syntax for milestone, scenario and interaction
models by defining interaction models as the most general viewpoint, and the
other two as special cases. An interaction model CI is a tuple (I, M , RI, RT ,
GI, R, RM , c0, Precedes, WeakPrecedes, Inhibits, Parent, Sends, Receives,
MR, Msg , IM) where

– I is the set of milestones and interactions,
– M ⊆ I is the set of milestones,
– RI ⊆ I \M is the set of repeated interactions,
– RT : RI → {w, r, fs, fc} links a repeated interaction to a repetition type

(either while, repeat, for each (sequential) or for each (concurrent)),
– GI ⊆ I \M is the set of guarded interactions,
– R is the set of roles,
– the function RM : R → {many, one} specifies whether many or just one

participant of a role is involved in the choreography,
– c0 ∈ I \M is the top-level interaction of the choreography,
– Precedes,WeakPrecedes, Inhibits ⊆ I × I are binary relations over I,
– Parent ⊆ (I \ M) × I is the relation between interactions and their direct

sub-interactions and milestones, defining the set of elementary interactions
EI := {i ∈ (I \M) | i /∈ range(Parent)}

– the partial functions Sends,Receives : EI → R link elementary interactions
to sending and receiving roles,

– MR : M → ℘(R) links milestones to sets of roles that are to be synchronised,
– Msg is the set of all message types and
– IM : EI → Msg links elementary interactions to message types.

A milestone model CM is an interaction model where I = M ∪ {c0}. Mean-
while, a scenario model is an interaction model where no milestone is both the
source and the target of Precedes and/or WeakPrecedes relationships, that is:
∀m ∈ M [¬∃i, j ∈ I ((i Precedes m ∨ i WeakPrecedes m) ∧ (m Precedes j ∨
m WeakPrecedes j))]

4 Consistency analysis

Consistency checking is an essential aspect in multi-viewpoint approaches [8].
In this section we introduce consistency rules between role-based choreography
models and interaction models as well as between milestone models and inter-
action models based on the abstract syntaxes given in the previous sections.
5 While this feature is not supported in traditional MSCs, it is supported in various

extensions to MSCs such as Live Sequence Charts (LSCs) [10].

10

Multi-staged and Multi-viewpoint Service Choreography Modelling 11

4.1 Role-based choreography models vs. interaction models

Consistency between a role-based choreography model CR = (RR, RMR, CR,
SendersR, ReceiversR, CardR, MsgR, CMR, ParentR) and an interaction
model CI = (II , MI , RII , RTI , GII , RI , RMI , c0, Precedes, WeakPrecedes,
Inhibits, ParentI , SendsI , ReceivesI , MRI , MsgI , IMI) is given if:

– all roles of CI are present in CR and have the same multiplicity: RI ⊆ RR

and RMI ⊆ RMR,
– for all elementary interactions there is a corresponding channel (one channel

can correspond to many interactions): ∀i ∈ EII [∃c ∈ CR (SendsI(i) ∈
SendersR(c) ∧ ReceivesI(i) ∈ ReceiversR(c) ∧ (CMR(c) = IMI(i) ∨ c /∈
dom(CMR)))] and

– each role has to be involved in at least one corresponding elemen-
tary interaction for every channel it is connected to: ∀c ∈ CR∀r ∈
SendersR(c)∪ReceiversR(c) [∃i ∈ EI ((r ∈ {SendsI(i)}∩SendersR(c)∨r ∈
{ReceivesI(i)} ∩ReceiversR(c)) ∧ (CMR(c) = IMI(i) ∨ c /∈ dom(CMR)))].

4.2 Milestone models vs. interaction models

Consistency between a milestone model CM = (IM , MM , RIM , RTM , GIM ,
RM , RMM , c0M , PrecedesM , WeakPrecedesM , InhibitsM , ParentM , SendsM ,
ReceivesM , MRM , MsgM , IMM) and an interaction model CI = (II , MI ,
RII , RTI , GII , RI , RMI , c0I , PrecedesI , WeakPrecedesI , InhibitsI , ParentI ,
SendsI , ReceivesI , MRI , MsgI , IMI) is given if all constraints defined in the
milestone model are ensured in the interaction model. Constraints are given by
the PrecedesM , WeakPrecedesM and InhibitsM relationships.

1: I(1,1) := {i ∈ II | ¬∃j ∈ RII (j Parent∗I i ∧RTI(j) 6= r)∧
2: ¬∃j ∈ II(j Precedes∗I i ∧ (j ∈ GII ∨ (∃k ∈ II(k Inhibits+ j))))}
3: ∀(m1, m2) ∈ PrecedesM [m1 Precedes+

I m2∨
4: (m1 ∈ I(1,1) ∧m1(PrecedesI ∪WeakPrecedesI)

+m2)]
5: ∀(m1, m2) ∈ WeakPrecedesM [m1(PrecedesI ∪WeakPrecedesI)

+m2]
6: ∀(m1, m2) ∈ InhibitsM [∃i, j ∈ II(i InhibitsI j ∧ j Precedes∗I m2∧
7: (i Precedes∗I m1 ∨ (i ∈ I(1,1) ∧ i(PrecedesI ∪WeakPrecedesI)

∗m1)))]

Fig. 7. Consistency checking between milestone models and interaction models

Figure 7 presents how consistency between a milestone model CM and an
interaction model CI can be checked. We assume that all composite interactions
are repeated and that all interactions and milestones are reachable. Further-
more, all Inhibits relationships must have an effect. In previous work [21] we
have introduced algorithms for expanding choreography models and for identify-
ing unreachable interactions and obsolete Inhibits relationships. A PrecedesM

relationship is ensured in CI if there is a path of PrecedesI relationships from
one milestone to the other or if the first milestone is always eventually reached
(m1 ∈ I(1,1)) and there is a path of PrecedesI and WeakPrecedesI relation-
ships (lines 3-4). Lines 1-2 present how I(1,1) can be identified: There must be

11

12 Alistair Barros, Gero Decker, Marlon Dumas

no preceding guarded interaction or an InhibitsI relationship targeting a pre-
ceding interaction. A WeakPrecedesM relationship is ensured if there is a path
of PrecedesI and WeakPrecedesI relationships. Finally, an InhibitsM relation-
ship is ensured if a preceding interaction of m1 is the source of an InhibitsI

relationship targeting a preceding interaction of m2.
Additional constraints can be added in the interaction model. For example,

if two milestones m1 and m2 are not ordered in the milestone model, we can
introduce a PrecedesI relationship between m1 and m2 in the interaction model
without violating the consistency rules.

5 Related work

Service choreography description has been the subject of intensive research and
standardisation. An early attempt was BPSS [20] where global models are cap-
tured as flows of interactions using flowchart-like constructs. WSCI [1] represents
another approach wherein global service interaction models are defined as col-
lections of inter-connected local models (as opposed to a single global model).
Control dependencies are described within each individual local model. More
recently, the WS-CDL initiative [14] led to a language that follows the line of
BPSS insofar as global service behaviour is described as flows of interactions.
WS-CDL goes further than BPSS in the level of details at which interaction flows
are described. In fact, WS-CDL can be seen as a programming-in-the-large lan-
guage for Web services since it relies on imperative programming constructs. The
work presented in this paper is complementary to these initiatives, as it defines
viewpoints and notational elements that operate at a higher level of abstraction.

In [4], the authors consider the use of state machines for describing local
models of service interactions. While state machines lead to simple models for
highly sequential scenarios, they may lead to spaghetti-like models when used to
capture scenarios with parallelism and cancellation (e.g. scenarios where a given
interaction may occur at any time during the execution of another set of inter-
actions). Nonetheless, state machines have been shown to be a suitable formal
foundation for reasoning about service models, e.g. determining the bounded-
ness of service queues in service conversations [11]. This latter reference surveys
a number of approaches for describing service interaction models based on com-
municating state machines.

The concept of multi-viewpoint modelling of distributed systems has been ad-
vocated in the RM-ODP reference model [12], which defines various viewpoints
such as enterprise viewpoint (high-level purpose and policies), computational
viewpoint (functional decomposition and interface definition), information view-
point, etc. Dijkman [7] defines a framework for capturing multiple viewpoints
over distributed systems and applies the framework to formalise RM-ODP’s en-
terprise and computational viewpoints. Dijkman’s framework is defined as an
extension to an Architecture Description Language (ADL), namely ISDL, that
includes notational elements similar to those found in the role-based and inter-
action viewpoints considered in this paper, although ISDL does not directly sup-

12

Multi-staged and Multi-viewpoint Service Choreography Modelling 13

port our role decomposition construct. A discussion on the application of ISDL
for service choreography modelling is presented in [17]. However, the suitabil-
ity of ISDL for capturing complex service interactions (e.g. involving multicast)
is unproven. Also, ISDL does not have a counter-part for the milestone-based
viewpoint which is useful when dealing with large service choreographies.

Colombo et al [5] propose a methodology for service composition that starts
with the definition of so-called social models that capture business entities and
their dependencies. These models are similar to our role-based models, with the
difference that our role-based models capture more detail than social models,
e.g. role-based models capture the multiplicity of interaction dependencies be-
tween roles. In the second phase of the methodology of Colombo et al., a process
model capturing the behaviour of a service composition is constructed. This
process model is derived from a set of ECA rules and it is encoded as a finite
state machine. This approach is suitable for capturing sequential interactions,
but arguably not for capturing concurrent interactions. In contrast, we take as
starting point a language in which concurrent interactions can be naturally cap-
tured. Indeed, if two interactions in a Let’s Dance model are not related through
a “Precedes” dependency, either directly or transitively, these interactions may
occur in any order or concurrently.

Foster et al. [9] propose a method for Web service composition in which
scenario models expressed as MSCs are compared with orchestration models ex-
pressed in BPEL. In this context, orchestration models are choreography models
projected over a single role (i.e. a local view on a choreography model). To check
consistency between scenario models and orchestration models, these models are
compiled into Labelled Transition Systems (LTSs). The resulting LTSs are com-
pared in terms of their traces to check that the behaviour of the scenario model
is contained in the behaviour of the orchestration model. Our proposal is com-
plementary insofar as we focus on capturing the relationships between scenario
models and higher-level models (i.e. milestone models and role-based models).

Seel et al. [19] present a requirements framework for inter-organizational
business process models. A distinction is made between interaction points for
collaborating employees and departments and interaction points for information
systems. Corresponding extensions to Event-driven Process Chains (EPC [15])
are introduced.

The role-based view presented in this paper can be seen as a formalized
representation of the “service decomposition” diagrams proposed in [13]. Our
role-based views contain more information than those of [13] and they can be
directly linked with milestone, scenario and detailed interaction models.

6 Conclusion and outlook

We motivated the need for choreography languages to unhinge from present fo-
cus on implementation considerations concerning message interactions, in service
to analysis and design of wide-spanning B2B domains, and the collaborations
of interacting participants in particular. Our proposal was illustrated using the

13

14 Alistair Barros, Gero Decker, Marlon Dumas

VICS global supply chain standard, offering insights into the large and intricate
landscape that needs to be penetrated to get down to detailed interaction-based
choreography models. We developed domain scoping (essentially equivalent to
process hierarchies) and role-based choreography models as horizontal parti-
tions, together with milestones as vertical partitions. For lower levels, we refined
interaction-based choreography modelling to support scenarios through which
milestones are progressed. Consistency of models was formally analysed, with
one question being left open: how to integrate a set of scenario models for a
given domain into a single choreography model? This integration, which is left
as future work, should be guided by the milestone model of the domain, given
that each scenario model covers a different set of milestones.

Further research will spawn in two directions which are relevant for impact
in web services composition environments. The first is to validate the modelling
views against further use cases and to refine the modelling proposals accordingly.
The second is to determine how well such extended considerations of choreogra-
phy modelling can be mapped into intermediate, more implementation focused
languages such as WS-CDL and WS-BPEL. Along the way, the Let’s Dance tool
will be extended to support the extensions proposed.
Acknowledgement. The authors wish to thank Remco Dijkman for valuable
feedback on a draft of this paper. The third author is funded by a fellowship
from Queensland Government and SAP.

References

1. Assaf Arkin et al. Web Service Choreography Interface (WSCI) 1.0. Technical
report, Aug 2002. http://www.w3.org/TR/2002/NOTE-wsci-20020808.

2. K. Bäına, B. Benatallah, F. Casati, and F. Toumani. Model-driven web services de-
velopment. In Proceedings of the 16th International Conference on Advanced Infor-
mation Systems Engineering (CAISE’04), Riga, Latvia, 7-11 June 2004. Springer.

3. A. Barros, M. Dumas, and A. ter Hofstede. Service interaction patterns. In Pro-
ceedings of the 3rd International Conference on Business Process Management,
Nancy, France, September 2005. Springer.

4. B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual modeling of web
service conversations. In 15th International Conference on Advanced Information
Systems Engineering (CAiSE), volume 2681 of LNCS, pages 449–467, Klagenfurth,
Austria, June 2003.

5. E. Colombo, J. Mylopoulos, and P. Spoletini. Modeling and analyzing context-
aware composition of services. In Proceedings of the 3rd International Confer-
ence on Service-Oriented Computing (ICSOC), pages 198–213, Amsterdam, The
Netherlands, December 2005. Springer.

6. G. Decker, J. M. Zaha, and M. Dumas. Execution semantics for service choreogra-
phies. In Proceedings 3rd International Workshop on Web Services and Formal
Methods (WS-FM 2006), Vienna, Austria, Sept 2006. Springer.

7. R. Dijkman. Consistency in Multi-Viewpoint Architectural Design. PhD thesis,
University of Twente, The Netherlands, 2006.

8. R. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint approach.
International Journal of Cooperative Information Systems, 13(4):337–368, Decem-
ber 2004.

14

Multi-staged and Multi-viewpoint Service Choreography Modelling 15

9. H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a tool for model-
based verification of web service compositions and choreography. In Proceeding
of the 28th international conference on Software Engineering (ICSE) – Research
Demonstration, pages 771–774, Shanghai, China, May 2006. ACM Press.

10. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, 2003.

11. R. Hull and J. Su. Tools for composite web services: a short overview. SIGMOD
Rec., 34(2):86–95, 2005.

12. ITU-T/ISO. Open distributed processing reference model. Technical Report ITU-
T X.901..904 – ISO/IEC 10746-1.4, ITU-T/ISO, 1994–1997.

13. S. Jones. Enterprise SOA Adoption Strategies. InfoQ Enterprise Software Develop-
ment Series, 2006. Available at: http://www.infoq.com/minibooks/enterprise-soa.

14. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web services choreography
description language version 1.0, w3c candidate recommendation. Technical report,
November 2005. http://www.w3.org/TR/ws-cdl-10.

15. G. Keller, M. Nttgens, and A.-W. Scheer. Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). Verffentlichungen des
Instituts fr Wirtschaftsinformatik (IWi) 89, Universitt des Saarlandes, January
1992.

16. M. Papazoglou and W. van den Heuvel. Service-oriented design and development
methodology. International Journal of Web Engineering and Technology (IJWET),
2006.

17. D. Quartel, R. Dijkman, and M. van Sinderen. Methodological support for service-
oriented design with ISDL. In Proceedings of the 2nd Intenational Conference on
Service-Oriented Computing (ICSOC), pages 1–10, New York NY, USA, November
2004. Springer.

18. E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence
Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

19. C. Seel and D. Vanderhaeghen. Meta-Model based Extensions of the EPC for
Inter-Organisational Process Modelling. In Proceedings 4th Workshop on Geschft-
sprozessmanagement mit Ereignisgesteuerten Prozessketten (EPK 2005), volume
167 of CEUR, pages 117–136, Hamburg, Germany, December 2005.

20. UN/CEFACT and OASIS. ebXML Business Process Specification Schema (Version
1.01). http://www.ebxml.org/specs/ebBPSS.pdf, 2001.

21. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker. Service in-
teraction modeling: Bridging global and local views. In Proceedings 10th IEEE
International EDOC Conference (EDOC 2006), Hong Kong, China, October 2006.

22. O. Zimmermann, P. Krogdahl, and C. Gee. Elements of service-oriented analysis
and design. Available at: www.ibm.com/developerworks/library/ws-soad1, 2004.

15

Dealing with User Requirements and Feedback
in SOA Projects

Daniel Lübke and Eric Knauss

Leibniz Universität Hannover, FG Software Engineering
Welfengarten 1

D-30167 Hannover, Germany
{daniel.luebke,eric.knauss}@inf.uni-hannover.de

http://www.se.uni-hannover.de

Abstract. SOA projects normally influence the work of many people –
especially in large organizations. The software will alter the way people
will work in the future and it will hopefully support the accomplishment
of their tasks. However, for building a SOA, business processes need to be
formalized. Using wrong process descriptions is going to hinder instead
of support people’s work. Therefore, integrating the future users into the
development project is crucial: Requirements need to be gathered and
the system needs to be refined over time in order to improve and adapt
to new situations. In this paper, we propose a methodology combined
of Use Cases and an Experience Forum to better communicate with
the system’s users. Use Cases are used for elicitating requirements and
deriving business processes in the requirements phase. Afterwards, the
Experience Forum is used for collecting feedback in order to improve the
system over time.

Key words: SOA, Use Case, Business Process, Experience Forum, User
Feedback

1 Introduction

Service-oriented Architecture (SOA) is an emerging style for architecting large
business applications. They promise to better align the business’ IT with the
business processes. However, so far SOA has mostly been seen as a way for
executing fully automated business processes, e.g. by using the Business Process
Execution Language (BPEL) [1]. In reality, users still play a central role in
today’s business processes: Extensions like BPEL4People [10] and generation
of user interfaces [12] try to close the gap on the technical side. Because the
requirements for semi-automatic business processes are heavily influenced by the
users, SOA projects need to address the users’ wishes during the whole software
life cycle. This is even more the case in organizations which are formalizing
their business processes during the “SOAfication” of their infrastructure: These
organizations build up business processes in a very short time. Consequently,
the business processes will likely contain errors and unwanted side effects due to
their immature nature.

16

2 Daniel Lübke and Eric Knauss

These problems can be addressed by analyzing and improving the project’s
information flows between the users and the developers. This paper will present
a general information flow model for SOA projects in section 2. In this model the
communication between the different parties will be enhanced by better integrat-
ing Use Cases with Business Processes in the Requirements Engineering phase
(see section 3), and an Experience Forum for ongoing refinement of the system by
facilitating user feedback (see section 4). Afterwards, an example project is pre-
sented in section 5, which utilizes the described techniques. Section 6 discusses
how to integrate these measures into different software development processes.
Finally, related work is presented and conclusions are given.

2 Information Flow Model

Software projects, and consequently SOA projects as well, are a very commu-
nication intensive endeavor. Much of projects’ successes is bound to efficient
and well-organized communication. In the end, every information item passed
through a project can be traced back to some requirement. Consequently, the
communication of requirements is essential. In order to illustrate a course-grained
requirements flow through a SOA project, the FLOW notation [16] is used.

SOA projects in business environments are based on business processes. Con-
sequently, these are an integral part of the system requirements. However, they
alone are not sufficient, because they lack details from the users’ points of view.
This gap is closed by Use Cases [4]. Business Processes and Use Cases together
form the representation of a system’s functional requirements. These are passed
on to the design, implementation, and testing phase. Finally, the product is used
by a large, diverse and often distributed user base.

A simplified and generalized information flow model is illustrated in figure 1.

Fig. 1. Simplified FLOW Model for a General SOA Project

17

Dealing with User Requirements and Feedback in SOA Projects 3

Concerning the requirements, there are two imminent problems in projects
organized this way:

1. Both formalized business processes and Use Cases contain information about
the process to be carried out. While both contain what users of a system
must do they are geared towards different target groups: Use Cases are writ-
ten from the perspective of a single actor while business processes offer an
overview about all participants’ activities. Managing both models mandates
additional effort. If one model could at least be semi-automatically gener-
ated, the development team could invest more resources into actual imple-
mentation activities.

2. After delivering the first version of an application, it is necessary to collect
feedback from users and incorporate the needed changes into the system. The
feedback can relate to the implementation or the new business processes in
place. Since SOA systems are expected to be a long-term investment, the
development should be iterative in order to keep up with occurring changes.
Each iteration should not only try to incorporate new functionality, but
also learn from the experiences the users made with the previous versions.
However, SOA projects normally serve a large user base. Reaching the users
and effectively transporting their feedback into the development organization
is inherently difficult.

Both problems will be addressed in the following sections.

3 Generation of Use Cases and Business Processes

Requirements Engineering (RE) is one of the core Software Engineering activi-
ties. RE aims to identify and document the requirements a system must fulfill.
Over the years, many techniques have evolved in order to support RE-related
activities. Among them are Use Cases which are well-suited to document func-
tional requirements of user-centric systems. Use Cases partition the system into
scenarios related to a main actor. Use Cases are normally written down in a
tabular template as used in the example later on (see figure 3).

The Use Case Template is a good help to prepare interviews with users:
The interviewers know what information they must elicit from the interviewees.
Furthermore, due to their textual nature, Use Cases can be understood by normal
users who are not accustomed to UML and other technical notations.

However, SOA projects are normally not based on Use Cases but on busi-
ness processes, because processes can be easily transformed to service compo-
sitions. Therefore, the business processes must be documented as well as part
of RE-related activities – if this has not already been done in the organization.
Consequently, a SOA project can be initiated under two scenarios:

– The organization wants to introduce software but does not know exactly the
underlying business processes. It is important to note that business processes
are performed and therefore in place: Every single person knows what she

18

4 Daniel Lübke and Eric Knauss

or he is supposed to do. However, a global overview is missing and no pro-
cesses have been formalized. Therefore, the organization in contrast to the
individuals does not know the business processes.

– The organization has defined business processes in place, and wants to sup-
port those by new software systems. This means, management and other
responsible persons have the overview, but details from the users’ point of
view, which are necessary for implementing IT systems, are missing.

In the first scenario, Use Cases can be used to interview users and document
the requirements. If those Use Cases are documented with fine-grained pre- and
postconditions, the Use Cases can easily be transformed into business processes.
It is mandatory to document the Use Cases with literally equal conditions in or-
der to support automatic matching. The following algorithm for achieving a Use
Case transformation to business processes in EPC notation has been presented
in [11]:.

1. Preconditions and triggers are realized as events since their conditions fulfill
the same role as events do. Because all preconditions must be met and the
trigger must occur in order to start the Use Case, all events are joined using
an AND join in the EPC if this rule results in more than one event. The first
step in the main scenario is inserted after the AND join as an EPC function.

2. All steps of the main scenario are mapped to a linear control flow in an
EPC. Each step is mapped to an EPC function. Functions are connected by
using trivial OK-events. The step’s actor becomes the role responsible for
the created EPC function. Objects normally cannot be easily extracted from
the Use Case templates and are therefore not handled by this algorithm.

3. Success Guarantees are – like the preconditions and triggers – conditions
concerning a system. These conditions are true after the successful execution
of a Use Case. They are mapped to EPC events which are inserted after
the last function of the main scenario. Since all guarantees must hold after
completion, all events (in case of multiple guarantees) are connected using
an AND split.

4. Minimal Guarantees are discarded. These guarantees normally represent
non-functional requirements which cannot be visualised using EPCs. Since
they must be valid before, during and after the Use Case, they do not change
the system at all.

5. Extensions are introduced using an XOR connector. After the proceeding
function, an XOR split is introduced which splits into the OK-event and an
start event for each extension. A step with 2 extensions therefore becomes a
function followed with an XOR split to 3 paths.

6. All Extension Steps are handled like steps in the main scenario. Extensions
to Extension Steps are handled recursively using these rules.

7. Jumps typically occurring from one extension step to a step in the main sce-
nario are realized using XOR joins. A join is introduced before the function
representing the step which is the jump target.

For the second start scenario, in which business processes are already avail-
able, the business process needs to be partitioned into Use Cases. Such Use Cases

19

Dealing with User Requirements and Feedback in SOA Projects 5

represent sub-processes which are owned by only one actor. Only the scenario
with its extensions, the main actor, and the conditions can be extracted from
the business process. All other fields must be filled by interviewing the users of
the envisioned system.

The main problem is to partition the business process into sub-processes
belonging only to one actor. As a starting point, the whole business process
can be partitioned into personal views, as presented in [8]. These sub-processes
can be transformed to a scenario each. The splits in the business process, i.e.
decision points and parallel activities must be mapped to extensions. In [6] an
algorithm is presented, which uses logical transformations to change an EPC to
a representation, that can be mapped to a Use Case scenario and corresponding
extensions:

After this transformation, all Use Cases have been converted to a set of busi-
ness processes. These sub-processes need to be joined into one large business
process. This is done by joining the start events and end events by assuming
that events with the same name are actually the same. Only the correspond-
ing boolean connectors (e.g. a parallel and-split) have to be introduced. Two
methods for doing this are covered in [11].

In order to practically create Use Cases conforming to the described con-
straints, tool support is necessary. Intelligent Use Case Editors, like the Use
Case DODE [5], can help the Use Case creator to follow these rules by giving
instant feedback. Such an editor needs to provide at least (a) the presented tem-
plate, (b) must warn whenever the conditions do not match the given format,
and (c) must detect similar condition names which may indicate typing errors.

4 User Feedback

Development of complex software systems is a knowledge-intensive endeavor.
Developers do not only need technical skills, but also domain knowledge, user
interface design capabilities, and so forth. Whenever many roles and stakeholders
are involved, large projects will rarely meet all customer requirements at the first
attempt. There is usually a lengthy period of building, using, and improving the
system.

With SOA, such a complex system is structured in a number of independently
developed services that need to cooperate as an integrated system. There is an
abundance of aspects that developers need to consider when they create SOA
systems or services.

However, they typically lack domain knowledge: They do not and cannot
know what customers and users really want. At the same time, customers and
users do not know what could reasonably be expected from such a system. Fischer
has called this the “symmetry of ignorance” [7]. Due to the wicked nature of the
problem, and the symmetry of ignorance, several iterations and improvement
steps will be needed to produce a satisfactory SOA system [15].

The problem is even harder with most SOA projects, because the software
serves a large and often distributed user base.

20

Daniel Lübke
Rechteck

6 Daniel Lübke and Eric Knauss

To connect users and the development organization an Experience Forum,
as presented in [13] can be used to facilitate feedback: An Experience Forum is
integrated into the client application. At each step, the user is shown the hand-
book and experiences of other users relevant to the current step. Additionally,
the user can submit feedback to the activity she or he is currently performing.
Feedback can be of three types:

Bug Reports: Users can instantly submit software defects they find. These can
be propagated into the development process. Bug Reports affect only one Use
Case as they will address defects in a screen which affects the current user.

Feature Requests: Users observe features which would improve their daily
tasks during their work. They can submit these feature requests via the Ex-
perience Forum as well. Those requests are fed as well into the development
process.

Process Shortcomings and Improvements: Users can leave comments con-
cerning the business process. For example, documents which are forwarded
to them but never used can be criticized. Such feedbacks affect the overall
process. The development organization together with the business process
designers need to take those comments into account.

Process Experiences: The users are actually the ones who perform the busi-
ness process. They have experiences how to interpret certain rules and how
to handle unexpected situations. If they have mastered a new situation, they
can enter their newly gained experience into the Experience Forum and let
all other users profit from it. This kind of feedback founds a new Community
of Practice among the relevant users.

The main advantage of an Experience Forum is the possibility to automati-
cally capture the context of feedback in a SOA: The system knows which function
in which process is currently performed by which user because the service com-
position already has this information. Therefore, the feedback can automatically
be assigned to the underlying business function and retrieved whenever another
user performs the same business function.

As stated above, the context contains the reference to the business process
position it was made in and the submitter. Additionally, the language is stored
in the context. Only feedback understandable by a certain user is retrieved and
presented.

Figure 2 shows an Experience Forum integrated into a client application. On
the right hand side, it is readily accessible and usable with only some mouse
clicks. This low threshold is very important in order to improve user acceptance.
If the Experience Forum was somewhere hidden in the menus or hard to use, it
would not be put into use by the users.

5 Example Project

The example project is taken from a university project. The software and the
process for managing student exams and thesis had to be newly designed. Partic-

21

Dealing with User Requirements and Feedback in SOA Projects 7

Fig. 2. Example screen shot of an Experience Forum

ipants of this process are the professors, the personnel of the Academic Exami-
nation Office, and of course the students. Because no formalized business process
was in place, Use Cases have been used to elicit and document the requirements
from the point of view of each actor. An extract of the Use Cases are illustrated
in figure 3.

Using the described algorithm these Use Cases are transformed into an EPC
model, which is illustrated in figure 4. Afterwards, the system has been developed
and put into production. Example feedback given via the Experience Forum
could have been e.g.:

– The secretary of the Academic Examination Office observes that a mark 2.7
of an exam is incorrectly rounded to 3.0 instead of 2.75 (bug report).

– A professor observes, that she can access the student’s name in the applica-
tion. However, the email address is not visible to her. This feature would be
handy for contacting the student. Currently, she has to ask the students for
the email addresses which she has to store separately (feature request).

– A student, who already registered for a thesis, had to choose a topic for his
thesis first. However, the topic has not been finalized before due to organiza-
tional issues. It would be good, if theses could be registered without a topic,
which has to be inserted later on (process improvement).

– It took another professor a long time to decide how to grade a problematic
thesis. He put his criteria and his reasoning into the Experience Forum. A
new professor read the comment, which helped her grading her first thesis
at the new university (process experience).

22

8 Daniel Lübke and Eric Knauss

Use Case #1: Student applies for Thesis

Primary Actor Student

Stakeholders Student: wants to apply easily
Secretary (Academic Examination
Office): wants easy to use/read forms
for further handling registration

Minimal Guarantees none

Successs
Guarantees

Application is submitted

Preconditions none

Triggers Student wants to write thesis

Main Success
Scenario

1 Student fills out form with personal
data

2 Student submits form to Academic
Examination Office

Extensions none

Use Case #2: Academic Examination Office
approves Thesis

Primary Actor Secretary (Academic Examination Office)

Stakeholders Secretary (Academic Examination Office):
wants easy to use/read forms for further
handling registration
Manager (Academic Examination Office):
wants short handling times

Minimal Guarantees Student's data are handled according to
regulations

Successs
Guarantees

Student may write Thesis

Preconditions none

Triggers Application is submitted

Main Success
Scenario

1 Secretary checks if student has 80% of
Credit Points

2 Secretary approves application

Extensions 1a If Student has less than 80% of Credit
Points then
Secretary denies Application

Fig. 3. Use Cases for describing the new System

The first three feedbacks have been fed into the development cycle. How
to proceed from having the feedback to actually using it, is dependent on the
development methodology used. In the next section, integration into several
development processes is presented.

6 Development Process Integration

While an Experience Forum is a technical mechanism for collecting and facil-
itating user feedback, it needs to be carefully integrated into the development
process used within the project to be successful. The Experience Forum is to
be used after the first release used by real users. This will normally be the first
production release but can also be a preview version in use by a limited number
of users.

Figure 5 shows an overview of the activities in requirements engineering. The
following list explains how the Experience Forum can generally be integrated into
each activity:

Requirements Analysis (or: system analysis)
Elicitation The Experience Forum supports the activity of requirements

elicitation by encouraging users to write down their issues. Nevertheless
a requirements engineer has to sort the issues by their different types:
requirements that affect the software (real requirements like bug-reports
or new requirements), requirements that affect the business model and
issues that support the business process with domain knowledge.

Interpretation In this activity the requirements engineer has to refine the
raw requirements to make them tangible (ideally making them testable).
The benefit of using the Experience Forum is the link between the raw

23

Dealing with User Requirements and Feedback in SOA Projects 9

Student wants to
write thesis

Student fills out
form with

personal data

Student looks
through list of

available topics

Ok: Student fills
out form with
personal data

Ok: Student
looks through list

of available
topics

Student submits
form to

Academic
Examination

Office

Student chooses
most interesting

topic

Application is
submitted

Ok: Student
chooses most

interesting topic

Secretary checks
if student has
80% of Credit

Points

Student asks
supervisor to get

the topic

Student has
picked a topic

XOR

Student has less
than 80% Credit

Points

Ok: Secretary
checks if student
has 80% of Credit

Points

Secretary
approves

application

Secretary denies
application

Ok: Secretary
denies

application

Student may
write thesis

V

Supervisor
hands out topic

...

Fig. 4. Business Process extracted from Use Cases

Fig. 5. Overview of requirements engineering and its activities.

24

10 Daniel Lübke and Eric Knauss

requirements and the location in the business process or software ap-
plication it applies to. This helps the requirements engineer to identify
stakeholder. representatives. The ambiguities and inconsistencies in the
comments and experiences still have to be clarified by the requirements
engineer.

Negotiation The identification and resolution of inconsistencies and con-
flicts in the requirements as well as the prioritization of requirements
define this activity. Obviously this activity demands flair, a fact that is
even aggravated by the transparency the Experience Forum introduced
(see section 6.3) – especially, if bugs and feature requests are assigned a
low priority.

Documentation This activity transforms the raw requirements of the Ex-
perience Forum into a form best suited for the software development
process.

Verification / validation The inspection of form and content is supported
by the Experience Forum’s context information.

Requirements Management All activities that deal with requirements man-
agement should incorporate the Experience Forum:
Change Management Solved issues have to be labeled or deleted, issues

that apply to parts of the software or business process that have been
changed must be revised.

Tracing The Experience Forum contains valuable information about the
context of requirements. So solutions that aim at traceability should
take the Experience Forum in account, too.

The development process itself is supposed to be an iterative development
process. Since feedback can only be collected from a first working software ver-
sion, improvements originating from the Experience Forum can consequently
only be added from the second iteration or software version onwards.

6.1 A Document-Based Process

An Experience Forum can enhance the communication flow between the users,
the responsible persons for requirements and the development team in document-
based development processes. The new communication structure can be seen in
figure 6.1.

Our example process defines the role of the experience and requirements en-
gineer. This role is responsible for refining the working experiences in the forum
into requirements. Another responsibility is to sort the new requirements and
give them as change request either to the process designers or to the software
change control board.

The process designers will adjust the business process which will normally
generate additional change requests for the software.

The software change control board gives the clearance for the change requests
to the software developers. Now the new release of the software is created. Before
it can finally be made available for the users, the experience and requirements

25

Dealing with User Requirements and Feedback in SOA Projects 11

Fig. 6. Experience Base integrated into a SOA project

engineer has to adjust the experiences of the forum to the new release. At this
point a refinement of the experiences in the Experience Forum of the old release
into best practices (and similar activities proposed in [2]) can be made. For the
requirements management process it is important to mark the experiences that
lead to the new requirements as closed issues at this point.

Developers will normally have read access to the information necessary to
complete their assignments and the users can access their information as well,
possibly forming a Community of Practice.

With the introduction of the new software release the next iteration is started.
The Experience Forum is seeded with the refined experiences from the last release
and the software reflects the latest version of the business process.

6.2 Scrum

Whenever a development process is in place which is not iterative by default,
the Experience Forum approach cannot be used because it requires multiple
iterations to incorporate the feedback into the later software versions. When
organizations have non-iterative processes in use, one way to make these devel-
opment processes iterative is wrapping them in Scrum.

Scrum [3] is an agile management methodology, partitioning the whole de-
velopment project into 30 day iterations called Sprints. The product-owner
maintains a list of requirements ordered by priorities, the product-backlog. The
development-team takes as much of the requirements from this list as they want
to implement in the next 30 days and puts them into the sprint-backlog. Within
a sprint the requirements in this sprint-backlog cannot be changed from outside
the team. However, the product-owner may append new requirements to the
product-backlog during a sprint.

Therefore, the product-owner is responsible for requirements analysis and to
incorporate information gathered by the Experience Forum into the product-
backlog. Due to the fixation of requirements during a Sprint, information gath-
ered by the Experience Forum can only be implemented during the third or a
following Sprint.

26

12 Daniel Lübke and Eric Knauss

6.3 Advantages and Pitfalls

The concept of an Experience Forum has – independent of the development pro-
cess – many advantages: Users are able to give easily and quickly feedback during
their daily work. The threshold is thereby reduced improving the probability of
getting feedback. While the user submits information, the application’s and pro-
cess contexts are automatically captured: Issues are linked to the user interface
and the current process element. This is especially easy if - as in our prototype
system - the user interface is generated from the process description. Therefore,
the system can automatically link between user interface elements and the part
of the process it supports. Requirements Engineers or similar roles are thereby
supported in the requirement interpretation because they can better understand
and realize the feedback without needing to recreate the whole situation which
normally is not well-described. This also applies to the developers: Whenever
they get a defect assigned, they can also see the context to which the defect
applies to.

However, Experience Forums - if used wrongly - can have negative effects: If
users are willing to give feedback to the software and processes they are using and
they are affected by, they expect that things are getting better. If the feedback
is not used or seems to be not used due to long response times, the motivation
of the user-base may degrade and acceptance may decrease. These risks must be
guarded against which in essence means the process integration must be carefully
done. Especially, a user notification, what status the user’s feedback has, if and
when it will be considered, can mitigate that risk.

Furthermore, one should be aware of that an Experience Forum can only
assist in making existing processes and software incrementally better but will not
lead to radically new processes. If a company wants to completely re-engineer
their processes it may not be the tool of choice. However, in this case an already
used Experience Forum can be beneficial: Process Designers can use the gathered
experiences and information to learn from prior weaknesses and problems.

7 Related Work

Profiting from information contained in Use Cases for other models and devel-
opment phases has always been a goal in software development projects, which
often deal with business processes.

Cockburn himself only mentions the possibility of applying Use Cases for
deriving business processes. He offers a template in [4] but no rules or advise
how to proceed from there.

The field of model-driven development has tried to combine the concept of
Use Cases with its models. Instead of tabular and textual descriptions, UML
sequence diagrams or similar models are used [9]. A Use Case is consequently
denoted in Use Case diagrams and refined in other models thereby eliminating
the textual description. This can pose a problem when communicating with non-
technical users. A process for UML-based development of business processes

27

Dealing with User Requirements and Feedback in SOA Projects 13

is given in [14]. Missing from such approaches are capabilities for expressing
control flow between Use Cases and therefore the generation of business process
models. The only way to achieve business process generation is to explicitly
model the control flow between Use Cases in at least one additional model. With
the introduction of Use Case Charts and their formalization [17], it is possible
to define control flow dependencies between Use Cases and refine them in UML.
From such descriptions other models can be generated, e.g. Hierarchical State
Machines [18].

The Experience Forum presented in this paper has many similarities to the
Experience Base in Basili’s Experience Factory [2]. In fact, it offers the same
functionality, e.g. it helps users finding applicable experiences by the context of
their work. The Experience Base in a Learning Software Organization however
supports the software development-team to optimize their development process.
Note that the Experience Base is maintained by developers for developers.

In contrast, our Experience Forum serves the users of the software as an
annotated online manual and supports them to optimize their daily work. As a
by-product it helps with the elicitation of requirements for the next release: the
parts of the software that have the most comments are good candidates for the
next changes. The fact that the Experience Forum is maintained by the users,
but leveraged by users and developers implies new chances and threats.

Change Management is also related to the Experience Forum. When enough
comments exist in the Experience Forum, they have to be transformed into
new requirements. These requirements have to be introduced into the software
development process. Our approach does not strive to replace traditional change
management. Instead it supports generating the new requirements that represent
the changes in change management.

Closer to the intended purpose of the Experience Forum are feedback facilities
nowadays commonly found in many software products (like e.g. in Microsoft
Windows, KDE or Mozilla). These facilities also try to collect information about
when and how potential bugs and unwanted situations (like maintenance error
or malfunction) occurs. Similar to our approach they depend on the help of the
users. The Experience Forum is different in that it allows the users to see reports
of other users as well. Therefore, users can profit from tips and help each other to
avoid certain misconducts of the information system. Of course this transparency
makes bugs highly visible throughout the user community. This is certainly an
unwanted effect for many software products. In section 6.3 we described how
this effect can be used to positively influence the acceptance and maintenance
of the software.

The idea of giving users the chance to help themselves is neither surprising
(users are experts in their domain) nor new. There is a tendency to introduce
this idea for example in online software documentation. In the online documen-
tation of Postgresql or PHP the user can annotate the documentation and enrich
it with examples or longer explanations. This approach has many similarities to
online communities like forums, wikis or blogs. The difference is that the context
of the observation is included in the editable online documentations as well as

28

14 Daniel Lübke and Eric Knauss

in our Experience Forum. When an explanation in an online documentation is
wrong, users will notice this fact while working in this chapter. They can quickly
annotate the misleading passage. If users have to write their comments into a
simple forum, they normally formulate them as general questions or solutions.
The problem is that there is no link to the bad documentation that caused the
problem. Therefore, the forum will evolve in parallel to the documentation which
introduces new efforts to avoid inconsistencies. In contrast editable online docu-
mentation present documentation and its user annotations together, preserving
the context of the comments. Our approach takes the user commented documen-
tation one step further. Not the documentation is annotated but the application
itself.

8 Conclusions and Outlook

Within this paper, a requirements round-trip from the initial requirements for
SOA projects to the integration of user feedback has been presented. Since SOA
tries to combine the business side and the technical side, SOA projects must
integrate business process modeling and traditional requirements engineering.
An approach how to derive business processes from Use Cases and vice versa
has been presented in order to save effort in such environments which can be
useful for more general process-driven projects as well.

However, the initial requirements will not be perfect – despite all the effort
to do them “right”. Fine-tuning can be done in iterative development processes,
when user input is available. However, asking hundreds of users for their opinion
and their problems is practically not feasible. Instead, we propose an Experience
Forum, which is integrated into the client application. Users can easily enter their
feedback and retrieve others’ experiences. This way, not only the development
team can better understand and fix problems, but also the users can share with
each other their experiences related to their daily work, which is carried out
using the application.

Currently, there is no other approach known to us, which tries to cover the
whole requirements life-cycle for SOA projects. In our opinion, integrating initial
requirements and constant feedback are the basis for sustainable successful SOA
projects. The initial requirements should be formed of focused requirements in
the form of Use Cases and business processes, which offer an overview about the
system and are the foundations for easy implementation of service compositions.

The next step is to combine the Experience Forum with existing approaches
for generating user interfaces. This would result in a platform which is very
flexible and easy to change. That way, changes in business processes, possibly
initiated by the Experience Forum, can easily be incorporated into a strong and
enduring SOA implementation.

References

1. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana

29

Dealing with User Requirements and Feedback in SOA Projects 15

Trickovic, and Sanjiva Weerawarana. Business Process Execution Language for
Web Services Version 1.1, May 2003.

2. V.R. Basili, G. Caldiera, and H.D. Rombach. The Experience Factory. In John J.
Marciniak, editor, Encyclopedia of Software Engineering, volume 1, pages 469–476.
John Wiley & Sons, 1994.

3. Mike Beedle and Ken Schwaber. Agile Software Development with Scrum. Prentice
Hall, 2001.

4. Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 14th edition,
August 2005.

5. Christian Crisp. Konzept und Werkzeug zur erfahrungsbasierten Erstellung von
Use Cases. Master’s thesis, Leibniz Universität Hannover, October 2006.

6. Dimitri Diegel. Konzept zur Verknüpfung von Use Cases mit ereignisgesteuerten
Prozessketten. Master’s thesis, Gottfried Wilhelm Leibniz Unversität Hannover,
September 2006.

7. Gerhard Fischer. Symmetry of ignorance, social creativity, and meta-design. KBS
Special Issues C&C99, 13(7–8):527–537, 2000.

8. Florian Gottschalk, Michael Rosemann, and Wil M.P. van der Aalst. My own
process: Providing dedicated views on EPCs. In Markus Nüttgens and Frank J.
Rump, editors, EPK 2005 - Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, pages 156–175, 2005.

9. Object Management Group. Unified Modeling Language: Superstructure. WWW:
http://www.omg.org/cgi-bin/doc?formal/05-07-04, 2004.

10. Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard Pfau, Alan Rick-
ayzen, Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL Exten-
sion for People BPEL4People A Joint White Paper by IBM and SAP. IBM/SAP,
August 2005.

11. Daniel Lübke. Transformation of Use Cases to EPC Models. In Proceedings of the
EPK 2006 Workshop, Vienna, Austria, 2006.

12. Daniel Lübke, Tim Lüecke, Kurt Schneider, and Jorge Marx Gómez. Using EPCs
for Model-Driven Development of Business Applications. In Franz Lehner, Holger
Nösekabel, and Peter Kleinschmidt, editors, Multikonferenz Wirtschaftsinformatik
2006, volume 2, pages 265–280. GITO Verlag, 2006.

13. Daniel Lübke and Kurt Schneider. Leveraging Feedback on Processes in SOA
Projects. In Proceedings of the EuroSPI 2006, pages 195–206, 2006.

14. Bernd Oestereich, Christian Weiss, Claudia Schröder, Tim Weilkiens, and Alexan-
der Lenhard. Objektorientierte Geschftsprozessmodellierung mit der UML. d.punkt
Verlag, 2003.

15. W.J. Rittel and M.M. Webber. Planning Problems are Wicked Problems, pages
135–144. John Wiley & Sons, 135-144, New York, 1984.

16. Kurt Schneider and Daniel Lübke. Systematic Tailoring of Quality Techniques. In
Proceedings of the World Congress of Software Quality 2005, 2005.

17. Jon Whittle. A Formal Semantics of Use Case Charts. Technical Report ISE-TR-
06-02, George Mason University, http://www.ise.gmu.edu/techrep, 2006.

18. Jon Whittle and Praveen K. Jayaraman. Generating Hierarchical State Machines
from Use Cases. In Martin Glinz and Robyn Lutz, editors, Proceedings of the
14th IEEE International Requirements Engineering Conference, pages 19–28. IEEE
Computer Society, 2006.

30

Semantic Model-Driven Development of
Service-centric Software Architectures

Claus Pahl and Ronan Barrett

Dublin City University
School of Computing

Dublin 9, Ireland
[cpahl|rbarrett]@computing.dcu.ie

Abstract. Service-oriented architecture (SOA) is a recent architectural
paradigm that has received much attention. The prevalent focus on plat-
forms such as Web services, however, needs to be complemented by ap-
propriate software engineering methods. We propose the model-driven
development of service-centric software systems. We present in particular
an investigation into the role of enriched semantic modelling for a model-
driven development framework for service-centric software systems. On-
tologies as the foundations of semantic modelling and its enhancement
through architectural pattern modelling are at the core of the proposed
approach. We introduce foundations and discuss the benefits and also
the challenges in this context.

Keywords: Service-oriented Architecture, Service Processes, Model-Driven
Development, Semantic Modelling, Ontologies, Architectural Patterns.

1 Introduction

Service-oriented architecture (SOA) has been successfully deployed as an ar-
chitectural paradigm in recent years [2]. The dominance of the Web services
platform in distributed systems development and deployment has given a boost
to SOA as an approach to software architecture [3]. Current solutions to descrip-
tion and collaboration languages and to platform technologies such as protocols
need to be embedded into an adequate software engineering methodology.

The SOA approach creates some specific requirements for supporting soft-
ware engineering methods [23]. Firstly, services are used ’as is’, with providers
and consumers often coming from different organisations. This requires detailed
descriptions of functional and non-functional aspects in an mutually agreed for-
mat Secondly, service descriptions need to be based on rich modelling languages,
in order to support their automated discovery and composition. Thirdly, reuse
is a central aim of service technology that needs to be addressed on the level of
individual services as well as service compositions.

Model-driven development (MDD) is an established and widely used ap-
proach to software development that aims at cost-effective automation and im-
proved maintainability through abstract modelling. The recent standardisation

31

of the approach, Model-Driven Architecture (MDA), has emphasised the im-
portance of this approach for the software sector [1]. MDA proposes abstract
modelling combined with the automatic generation of code from these models.

We propose an MDD approach for SOA, aiming to support the development
of service-centric software systems. We will explore foundations (in form of on-
tologies) and design methods (in form of architectural patterns). Specifically, we
deem two specific methods necessary to satisfy the specific requirements:

– semantic modelling supported through ontologies, i.e. logic-based knowledge
representation frameworks, in order to support rich modelling constructs,
reasoning, and formal semantics [15].

– pattern-based modelling supported through architectural patterns in order to
add higher levels of abstraction and to enable the reuse of useful architectural
styles and designs.

Our contribution is twofold. Firstly, a discussion of central techniques for MDD
for service-centric software systems. Secondly, an outline of an ontology-based
framework for MDD of service-centric software systems involving architectural
patterns as central design technique – these are patterns (or styles) of architec-
tures, typically different from design patterns [24]. Our investigation shall lead
towards an emerging service engineering discipline.

We divide our discussion into three aspects. We start with modelling of
service functionality supported by ontologies in Section 2. Modelling of non-
functional aspects and the use of patterns is then the topic of Section 3. We
discuss ontologies and patterns in a wider context of service engineering in Sec-
tion 4. We end with a discussion of related work and some conclusions.

2 Modelling of Service Functionality

Modelling of software often focuses on functional aspects such as the software
architecture or behavioural aspects of a software system. This traditional focus
of software modelling shall also be discussed in this section and the specific
modelling needs for service-centric software systems shall be discussed.

Abstraction and automated code generation are the pillars of model-driven
development [4]. We investigate the role that ontologies can play for the support
of these pillars in the context of functional aspects of service-oriented architec-
ture. In terms of the OMG’s MDA framework, we are going to address modelling
at the platform-independent (PIM) layer and transformations form there into the
platform-specific layer (PSM).

2.1 Semantic Service Modelling

UML is the most widely used software modelling notation. An integration of the
proposed semantic modelling approach with UML is important for two reasons:

– UML provides a rich combination of individual visual modelling languages.
These visual interfaces can be adapted to support service modelling.

32

– A vast amount of UML models for a broad range of application contexts
exist. Reusing and integrating these is almost a necessity.

UML is limited in particular in terms of the constraints on software systems
that can be expressed. OCL, the Object Constraint Language, is a UML ex-
tension that allows semantic constraints such as pre- and postconditions and
invariants for operations and classes to be expressed [17]. While a wide range of
powerful logics have been available to support constraint formulation and reason-
ing, the recent advent of the Semantic Web with its ontology-based foundations
have make ontologies a promising candidate for enhanced semantic modelling in
the context of the Web platform [16].

– Ontologies provide a logical language, for instance based on description logic
[14], with its reasoning support.

– Ontology languages, such as OWL, are the knowledge representation lan-
guages of the Web [16] that enable XML-based syntactical interoperability
and knowledge sharing and exchange.

For these reasons, the semantic modelling of Web services is ideally supported
by ontologies, as the research focus on semantic Web services shows [7, 12]. Be-
sides providing a rich semantic modelling notation – which can, as proposed, be
augmented by a UML-style interface – ontologies can support design activities
such as composition, and act as formal semantics for the overall model-driven
development integrating modelling and transformations.

WSMO [10] and OWL-S [9] are the two predominant examples of service on-
tologies. Service ontologies are ontologies to describe Web services, aiming to sup-
port their semantics-based discovery in Web service registries. The Web Service
Process Ontology WSPO [13] is also a service ontology, but its focus is the sup-
port of description and reasoning about service composition and service-based
architectural configuration. An important current development is the Semantic
Web Services Framework (SWSF), consisting of a language and an underlying
ontology [21], which takes OWL-S work further. The FLOWS ontology in SWSF
comprises process modelling and is like WSPO suited to support semantic ser-
vice modelling within the MDA context. While the early service ontologies have
focused on individual services and their properties – OWL-S and WSMO – more
recent attention has been paid to service process ontologies – SWSF and WSPO
– which focus on the composition of services to form processes. A different type of
ontology, supporting composition activities and the formulation of collaborating
servcies as processes, is needed for the composition aspect [8].

2.2 Service Composition

In order to support the development of service architectures, more than just
description notations are needed. Specific activities such as service discovery or
process composition need to be supported through anaysis and reasoning tech-
niques [22]. We look here into ontology-based support for service composition.

33

login

<<postCondition>>
result=balance(account)

balance
enquiry

money
transfer

logout

<<preCondition>>
true

<<postCondition>>
vaild(sessionID)

<<preCondition>>
valid(user,account)

<<postCondition>>
not valid(sessionID)

<<preCondition>>
vaild(sessionID) ∧

balance(account)>0

<<preCondition>>
valid(sessionID)

<<postCondition>>
balance =

balance@pre -amount
<<decisionInput>>

choice

{user,account}

{account}

{account,
destination,

amount}

{sessionID}

{sessionID}

{balance}

{void}

{void}

Fig. 1. Semantic Service Process Model based on UML Activity Diagrams.

Service composition is a logical composition where an abstract service process
based on individual services is assembled [6]. We have developed the WSPO
composition ontology – Web Services Process Ontology – in order to support
the semantically correct composition of services [13].

Ontologies in general consist of concepts that represent objects, process, etc.
and relationships between these concepts. Services (and processes) in the WSPO
ontology are not represented as concepts, but as relationships denoting accessi-
bility relations between states of a software system.

– Ontology concepts in this approach are states (pre- and poststates), param-
eters (in- and out-parameters), and conditions (pre- and postconditions).

– Two forms of relationships are provided in the ontology. The services or
processes themselves are called transitional relationships. Syntactical and
semantical descriptions here parameter objects (syntax) and conditions (se-
mantics) are associated through descriptional relationships.

WSPO provides a standard template for service and service process description
– applied in Fig. 1 to express a composite bank account process consisting of
operations provided by services like ’balance enquiry’ or ’money transfer’. This
application is based on four individual services, each described in terms of input,
output, precondition, and postcondition. Syntactical parameter information in
relation to the individual activities – to be implemented through service opera-
tions – and also semantical information such as pre-conditions are attached to
each activity as defined in the template. The following textual representation
summarises the syntactical aspects in a traditional IDL-style interface format:

application AccountProcess
services login (user:string, account:int) : ID

balance enquiry (account:int) : currency
money transfer (account:int, destination:int, amount:currency) : void

34

logout (sessionID:ID) : void
process login; !(balance enquiry + money transfer); logout

The services are composed to a process, here using the combinators sequence (;),
iteration (!), and choice (+) in the textual representation above, which is also
visualised in UML notation in Fig. 1.

WSPO can be distinguished from traditional service ontologies by two specific
properties. Firstly, based on an extension of description logics [14], it adds a
relationship-based process sublanguage enabling process expressions based on
iteration, sequential and parallel composition, and choice operators. Secondly,
it adds data to processes in form of parameters that are introduced as constant
process elements into the process sublanguage. This ontological representation
in WSPO is actually an encoding of a simple dynamic logic (a logic of programs)
in a description logic format [13], allowing us to avail of modal logic reasoning
about processes in this framework. For example, in order to implement a bank
account process, an implementation for a money transfer service with input
parameter amount (assumed to be always positive) needs to be integrated. For
any given state, the process developer might require (using the balance enquiry)

service:preCondition rdfConstr="balance() > amount"
service:postCondition rdfConstr="balance() = balance()@pre - amount"

which would be satisfied by a provided service

service:preCondition rdfConstr="balance() > 0"
service:postCondition rdfConstr="balance() = balance()@pre - amount

and lastActivity = ’transfer’"

The provided service would weaken the required precondition assuming that the
transfer amount is always positive and strengthen the required postcondition as
an additional result (lastActivity) is delivered by the provided service. This
matching notion, which is important for service discovery support, is imple-
mented in WSPO based on a refinement of the standard subsumption relation
of description logics towards a consequence inference rule from dynamic logic.

We have chosen WSPO here instead of the SWSF. The more recent SWSF
is an equally suitable service process ontology, providing actually a wider range
of modelling feature, which would make it the better choice once sufficient tool
support is available. For the moment, WSPO as a more focused and decidable
ontology is the better choice in terms of tractability of the approach.

2.3 Transformation and Code Generation

Automated code generation is one of the central objectives of MDD. Two types
of generation of code in service platform-specific languages are relevant here

– Executable code generation: in the context of SOA, code generation es-
sentially means the generation of exectuable service processes. WS-BPEL

35

(BPEL, 2004) has emerged as the most widely accepted process execution
language for Web services. Within MDD, code generation is usually specified
through transformation rules.

– Abstract description generation: a central element of SOA is service discovery
based on abstract service descriptions. OWL-S, WSMO, or SWSF would be
suitable ontology frameworks that support description and discovery.

An overview of some of the transformation rules for a WSPO to WS-BPEL
transformation to generate executable code is presented below. WSPO defines a
simple process language that can be fully translated into WS-BPEL. BPEL pro-
cess partners are the consumers and the different service providers – the WSPO
specification is already partitioned accordingly. The WSPO process combinators
can also be mapped directly onto the BPEL flow combinators. The principles of
this transformation can be characterised as follows:

– The WSPO process relationships can be mapped to BPEL processes.
– For each process, a BPEL partner process (consumer and server) is created.
– Each process expression is converted into BPEL-invoke activities at the client

side and BPEL-receive and -reply activities at the server side.
– The process combinators ’;’, ’+’, ’ !’, and ’||’ are converted to the BPEL flow

combinators sequence, pick, while, and flow, respectively.

A schematic example in the declarative transformation language QVT shall il-
lustrate these principles for WSPO-to-BPEL transformations1:

transformation WSPO_to_WS-BPEL (wspo : WSPO, bpel: WS-BPEL)
{
top relation TransRelationship_to_Process

/* maps trans. relationships to processes */
{
checkonly domain wspo w:TransRel {name = pn}
enforce domain bpel b:Process {name = pn}

}
where {

RelExpr_to_ProcessExpr(w);
}

relation RelExpr_to_ProcessExpr
/* map each process expression recursively */

{
domain wspo r:Relationship {
e1 = e:LeftExpr {},
e2 = e:RightExpr {},
op = c:Combinator {}

1 Although its standardisation is not completed and no tool support is currently avail-
able for the declarative specifications, QVT will be an essential tool for the imple-
mentation of our approach in the near future.

36

}
domain bpel p:Process {
process = p:Process {left=e1, pr=op, right=e2},
client = pe:ProcessExpr {invoke=op(e1,e2)},
server = pe:ProcessExpr {receive=(op,e1,e2), reply=op(e1,e2)}

}
when {
CombinatorMapping(op) and ProcessPartnerCreation(p);

}
where {
RelExpr_to_ProcessExpr(e1) and RelExpr_to_ProcessExpr(e2);

}
}

}

We do not present the WS-BPEL representation here, since with the exception of
some reformulations of operators and the additional verbosity of the XML-based
formulation, the process itself is similar to the WSPO representation.

The second transformation and code generation context relates to service
description and discovery. The Web Services platform proposes a specific archi-
tecture based on services, which can be located using abstract service information
provided in service registries. The description of services – or service processes
made available as a single service - ideally in semantical format is therefore of
central importance. Information represented in the process model and formalised
in the service process ontology can be mapped to a service ontology. This trans-
formation would only be a mapping into a subset of these ontologies, since they
capture a wide range of functional and non-functional properties, whereas we
have focussed on architecture-specific properties in WSPO.

We chose WSMO as the target. An overview of the transformation rules
from WSPO to WSMO is outlined below. Some correspondences between the
two ontology frameworks guide this transformation. WSPO input and output
elements correspond to WSMO message-exchange patterns, which are used in
WSMO to express stimuli-response patterns of direct service invocations, and
WSPO pre- and postconditions correspond to their WSMO counterparts.

– WSPO process relationships are mapped to WSMO service concept and fill
messageExchange and pre- and postCondition properties accordingly.

– WSPO in/out-objects are mapped to WSMO messageExchange descriptions.
– WSPO pre- and postconditions are mapped onto their WSMO counterparts.

A QVT formulation would be similar to the WSPO-to-BPEL transformation.

2.4 Discussion

This section has demonstrated the role that ontologies can play in model-driven
development of service-centric software systems. They can provide a semantic
modelling framework in particular for the Web platform due to the support of

37

ontologies through the Semantic Web initiative. They can act as a foundational
layer to define visual modelling languages, to support composition tasks, and to
enable automated transformations.

While we have discussed the application of ontologies for functional aspects
of software systems specification such as pre- and postconditions, their scope
stretches further to also include non-functional aspects such as general descrip-
tions, cost models, security requirememts, etc. . Non-functional aspects shall be
addressed in depth in the next section.

3 Modelling of Non-Functional Service Aspects

The deployment model of services in general and Web services in particular
is based on the idea of service provider and service consumer being business
partners. This constellation requires contracts to be set up, based on service-
level agreements (SLAs). While of course functional characteristic of services are
vital elements in these SLAs, non-functional aspects – ranging from availability
and performance guarantees to costing aspects – are equally important and need
to be captured in SLAs to clearly state the quality-of-service (QoS) obligations
and expectations of provider and consumer.

This discussion will show that ontologies are an adequate modelling notation,
but that additional techniques are needed to address modelling, in particular if
functional and non-functional aspects are integrated. We will introduce distribu-
tion patterns, again at the architectural level, to provide a framework for higher
levels of abstraction beyond the service process composition [26]. These patterns
will add a widely used method centering around the notion of reuse of abstract
architectural designs and models to semantic modelling. A quality dimension is
added through quality attributes associated to these distribution patterns.

3.1 Distribution and Service Topology

Ontologies, the focus of the previous section, can deal with the abstract specifi-
cation of QoS properties by providing an adequate vocabulary based on a variety
of relationships. A mere statement of required QoS properties is therefore often
not sufficient to actually guarantee these properties. However, there are links be-
tween functionally-oriented models and QoS properties. We look at distribution
properties of service-centric software systems to illustrate this.

Distribution, i.e. the consideration of the location of services in a complex
system, affects qualities of the software systems such as reliability, availability,
and performance. We use the term service topology to refer to the modelling of
service compositions as collaborating entities under explicit consideration of the
distribution characteristics.

3.2 Service Topology Modelling

Based on experience with the design and implementation of service-centric soft-
ware systems, a number of standard architectural configurations have emerged

38

[25, 27, 29, 31]. These include centralised configurations such as the Hub-and-
Spoke or decentralised ones such as Peer-to-Peer architectures. These standard
configurations can be abstracted into architecture-lavel distribution patterns for
the SOA platform.

The goal is to enable the generation of architecturally flexible Web service
compositions, whose Quality of Service (QoS) characteristics can be evaluated
and altered at design time. Distribution pattern modelling expresses how the
composed system is to be deployed from the architectural perspective [18]. Hav-
ing the ability to model, and thus alter the distribution pattern, allows an enter-
prise to configure its systems as they evolve, and to meet varying non-functional
requirements.

There is a subtle difference between two of the modeling aspects within a
Web service composition, namely workflows and distribution patterns. Both as-
pects refer to the high level cooperation of components, termed a collaboration,
to achieve some compound novel task. We consider workflows as compositional
orchestrations, whereby the internal and external messages to and from services
are modelled. In contrast, distribution patterns are considered compositional
choreographies, where only the external messages flow between services is mod-
elled. Consequently the control flow between services are considered orthogonal.
As such, a choreography can express how a system would be deployed. The
internal workflows of these services are not modelled here, as there are many
approaches to modelling the internals of such services.

3.3 Modelling Process and Transformation

This component of our framework comprises a catalog of distribution patterns,
which may be applied by software architects to Web service compositions [18].
Distribution patterns express how a composed system is to be assembled and
subsequently deployed. Each of the patterns in the catalog has associated Qual-
ity of Service (QoS) characteristics, exhibited during execution of Web service
compositions. The catalog enumerates the QoS characteristics of each of the
patterns, enabling the architect to choose a pattern appropriate to the non func-
tional requirements of a given composition.

The patterns are split into three categories, core patterns, auxiliary patterns
and complex patterns. Core patterns represent the simplest distribution patterns
most commonly observed in Web service compositions. Auxiliary patterns are
patterns which can be combined with core patterns to improve a given QoS
characteristic of a core pattern, the resultant pattern is a complex pattern. This
catalog assists software architects in choosing a distribution pattern for a given
application context. The catalog is outlined briefly below:

– Core Patterns: Centralised, Decentralised
– Auxiliary Patterns: Ring
– Complex Patterns: Hierarchical, Ring + Centralised, Centralised + Decen-

tralised, Ring + Decentralised

39

We describe one pattern to illustrate distribution patterns and their QoS rele-
vance. The Centralised pattern, or Hub-and-Spoke pattern, manages the compo-
sition from a single location, normally the participant initiating the composition.
Here is the service choreography:

application Centralised
services Hub (in : inType) : outType

Spoke1 (. . .) : . . .
. . .
Spoken (. . .) : . . .

process Hub ||D (Spoke1 || . . . || Spoken)

The composition controller (the hub) is located externally from the service
participants to be composed (the spokes), indicated through the distribution
annotation at the parallel composition operator. Spokes would internally invoke
the Hub using the given Hub interface. The external spoke interfaces are not
relevant here. This is the most popular and usually default distribution configu-
ration for service compositions. The advantages of the pattern in terms of QoS
aspects are:

– Composition is easily maintainable, as composition logic is all contained at
a single participant, the central hub.

– Low deployment overhead as only the hub manages the composition.
– Composition can consume participant services that are externally controlled.

Web service technology enables the reuse of existing services.
– The spokes require no modifications to take part in the composition. Web

service technology enables interoperability.

The main disadvantages are:

– A single point of failure at the hub provides for poor reliability/availability.
– A communication bottleneck at the hub restricts scalability. SOAP messages

have considerable overhead for message deserialisation and serialisation.
– The high number of messages between hub and spokes is sub-optimal. SOAP

messages are often verbose resulting in poor performance for Web services.
– Poor autonomy in that the input and output values of each participant can

be read by the central hub.

A distribution pattern language DPL provides the constructs for the internal
representation of a distribution pattern. The DPL, which similarly to WSPO
has a UML interface based on activity diagrams, provides:

– control flow: information about the nodes and edges that define the control
flow structure, on which interactions between individual services take place.

– data flow: information about which data is flowing in which direction in an
interaction between services.

DPL is a high-level service process modelling language that provides the foun-
dations for pattern-based service architecture.

40

3.4 Discussion

While we have looked at architectural patterns to model the functional side
in the previous section, i.e. the structural and behavioural aspects of software,
we have focused here on their potential in the context of non-functional prop-
erties. Distribution patterns imply non-functional properties of service-centric
software systems. The choice of these patterns in particular determines perfor-
mance, availability, and reliability charateristics of the software system itself.

4 A Service Engineering Perspective

Issues arising from the cooperation between organisations and the integration
of systems across organisations leads to another couple of issues relevant to our
discussion of ontologies and patterns for service-centric software engineering.
This discussion of a wider context helps us to determine the potential, but also
the challenges for the use of ontologies and patterns.

4.1 Cooperation

The cooperation between service providers and consumers is necessary for service-
oriented computing. This requires at least interoperability of formats of all ar-
tifacts involved, in particular for models. Contracts stating service-level agree-
ments are the actual documents, which might refer to additional documents and
models internally. Ontologies have the potential to provide a common vocabu-
lary that would allow the automated processing of these contracts. The wider
aim within a service-centric software engineering discipline is an integrated value
chain for software services that brings together all participants in the production
process – for instance through interoperable deployment infrastructures, but also
through contract and model exchange.

4.2 Trust

Trust is a central problem for collaborating partners that are initially often un-
known to each other. In the context of automated service compositions, detailed
model-based contracts can capture the obligations and expectations in terms of
functional and QoS service properties, but do not suffice on their own. Interop-
erability is an enabler of integrated value chains, but only trust will make this
business scenario work ultimately.

At the core of trust mechanisms are composition and description techniques,
for instance our ontology-based modelling techniques. Quality-of-service and
other non-functional properties broaden the overall focus without losing the
composition activity at the core.

The certification of services is the central trust mechanism. A certification
infrastructure needs to be added to allow in particular consumers to trust their
service providers. Certification needs to ensure in the service composition context

41

more than the authenticity of the provider; it needs to ensure service properties.
This is another potential use of, but also a technical challenge for ontology tech-
nology. Models of the various aspects play a central role here as the foundations
of contracts, which can form the basis of a certificate. For instance, the proofs
of properties resulting from ontological reasoning about service properties and
service compositions can be included in these certificates.

Trust is an important non-functional consideration that effects the business
context of service composition and provision. The richness of our ontological
modelling framework in terms of models and reliable patterns, however, makes
trust also an opportunity that might succeed for this context.

4.3 Environment and Standardisation

The activities by standardisation bodies in the software technology context,
such as the OMG or the W3C, indicate two directions for model-driven ser-
vice engineering. The OMG has proposed MDA to address code generation and
maintenance, which can act as a framework for a development approach for
service-centric software systems.

The integration of models and descriptions is the first challenge. One stan-
dard is expected to be central in this endeavour. The Ontology Definition Meta-
model ODM is a MOF-based integration format for ontologies and UML models,
currently standardised by the OMG [11]. The ODM metamodel can support se-
mantic services, process composition, and UML model reuse. It allows the overall
integration of semantic descriptions and models. ODM is complemented by the
W3C’s proposal of OWL as the Semantic Web ontology language and ODA as
an ontology-based software development approach.

A second challenge arises from the business perspective on services. This
would include in the services context in particular workflow and business pro-
cess modelling as part of a business process engineering stage and semantic inte-
gration. Currently, this aspect with a focus on business modelling and analysis
is receiving some attention. The OMG-supported Business Process Modelling
Notation BPMN is an example. MDA, for instance, provides only a framework,
but not enough support for the consistent mapping of business processes onto
the platform layer. The use of ontologies for semantic integration and patterns
to provide an abstraction and design technique across the stages would improve
this endeavour.

5 Related Work

Some approaches have started exploiting the connection between ontologies –
in particular OWL – and MDA. In [19], an MDA-based ontology architecture
is defined. This architecture includes aspects of an ontology metamodel and a
UML profile for ontologies. The work by [19] and the OMG [1, 11], however, needs
to be carried further to address the ontology-based modelling and reasoning of

42

service-based architectures. In particular, the Web Services architecture needs
to be addressed in the context of Web-based ontology technology.

Grønmo et.al. [20] introduce – based on ideas from [19] – an approach similar
to ours. Starting with a UML profile based on activity diagrams, services are
modelled. These models are then translated into OWL-S. Although the paper
discusses process composition, this aspect is not detailed. We have built on [20]
in this respect by considering process compositions in the UML profile and by
mapping into a service process ontology that focusses on providing explicit sup-
port for service composition. In comparison to UML/OCL approaches, ontologies
enable full-scale logic support and also the possibilty to share representations
due to their grounding in OWL.

Since software architecture is the overall context of our investigation, archi-
tectural description languages (ADLs) shall briefly be discussed. For instance,
Darwin [28] is a π-calculus-based ADL. Darwin focuses on component-oriented
development, addressing behaviour and interfaces. Restrictions based on the
declarative nature of Darwin make it rather unsuitable for the design of service-
based architectures, where both binding and unbinding on demand are required
features. With the support for composition and abstraction of architectural con-
figurations service composition ontologies and distribution patterns would con-
stitute an essential part of an ADL.

The notion of patterns has recently been discussed in the context of Web
service architectures [25, 29]. In [29, 27], collections of workflow patterns are
compiled. We have based our catalog on these collections. Grønmo et al. [30]
consider the modelling and building of compositions from existing Web services
using MDA, based on [31]. The authors consider two modelling aspects, service
(interface and operations) and workflow models (control and data flow concerns).
Their modelling effort begins with the transformation of WSDL documents to
UML, followed by the creation of a workflow engine-independent UML activity
diagram, which drives the generation of an executable composition.

6 Conclusions

A new architectural paradigm such as service-oriented architecture (SOA) re-
quires adequate methodological support for design and maintenance. While an
underlying deployment platform exists in the form of the Web services platform,
an engineering methodology and techniques are still largely missing. The im-
portance of modelling for SOA has been recognised – and has resulted in the
development of Model-Driven Architecture (MDA) as an approach to support
the design of service-centric software systems. We have focussed on pattern-based
semantic modelling of service architectures. These are two architectural aspects
– semantic service description and pattern- and process-based architectural con-
figuration – that can complement the MDA approach.

Ontology and Semantic Web technologies provide semantic strength for the
modelling framework, necessary for a distributed and inter-organisational en-
vironment. A central element of our modelling method is a service ontology

43

tailored to support service composition and transformation. An ontology-based
technique is here beneficial for the following reasons. Firstly, ontologies define a
rigourous, logic-based semantic modelling and reasoning framework thats sup-
port architectural design activities for services. Secondly, ontologies provides a
knowledge integration and interoperability platform for multi-source semantic
service-based software systems. Our aim here was to demonstrate the suitability
of ontologies for this environment – for both WSPO to support architectural
issues but also for WSMO here to support service discovery. We have integrated
this service composition ontology with a pattern-based architecture modelling
technique integrating visual UML-based modelling, transformation, ontology-
based reasoning, and code generation.

We see our investigation as a step towards a service engineering discipline.
Service engineering deals with process and integration issues. While we have
focused on service composition and integration, data integration is an equally
important that needs to be investigated further in this context. We interpret
here a notion of service engineering as a wider process, covering a number of
value chain stages. The software value chain that we have referred to earlier
structures service engineering. It is a classical top-down model that needs to
be augmented further. System evolution adds another dimension of importance
for a service engineering discipline. Re-engineering and migration need to be
integrated. Legacy systems can be integrated into service-oriented architectures
using software re-engineering and architecture transformation.

References

1. Object Management Group. MDA Model-Driven Architecture Guide V1.0.1. OMG,
2003.

2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd
Edition). SEI Series in Software Engineering. Addison-Wesley, 2003.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,
Architectures and Applications. Springer-Verlag, 2004.

4. B. Selic. The Pragmatics of Model-Driven Development, IEEE Software, 20(5):19–
25, 2003.

5. World Wide Web Consortium. Web Services Architecture.
http://www.w3.org/TR/ws-arch, 2006. (visited 28/02/2006).

6. C. Peltz. Web Service orchestration and choreography: a look at WSCI and
BPEL4WS. Web Services Journal, 3(7), 2003.

7. S. McIlraith and D. Martin. Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1):90–93, 2003.

8. J. Rao, P. Küngas, and M. Matskin. Logic-Based Web Services Composition: From
Service Description to Process Model. In International Conference on Web Services
ICWS 2004, pages 446–453. IEEE Press, 2004.

9. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

10. R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service
Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.

44

11. Object Management Group. Ontology Definition Metamodel - Request For Proposal
(OMG Document: as/2003-03-40). OMG, 2003.

12. C. Pahl. Layered Ontological Modelling for Web Service-oriented Model-Driven
Architecture. In European Conference on Model-Driven Architecture ECMDA2005.
Springer LNCS Series, 2005.

13. C. Pahl. An Ontology for Software Component Matching. International Journal on
Software Tools for Technology Transfer (STTT), Special Edition on Component-
based Systems Engineering, 7, 2007 (in press).

14. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

15. M.C. Daconta, L.J. Obrst, and K.T. Smith. The Semantic Web. Wiley, 2003.
16. W3C Semantic Web Activity. Semantic Web Activity Statement, 2004.

http://www.w3.org/2001/sw.
17. J.B. Warmer and A.G. Kleppe. The Object Constraint Language – Precise Modeling

With UML. Addison-Wesley, 2003. (2nd Edition).
18. R. Barrett, L. M. Patcas, J. Murphy, and C. Pahl. Model Driven Distribution Pat-

tern Design for Dynamic Web Service Compositions. In International Conference
on Web Engineering ICWE06. Palo Alto, US. ACM Press, 2006.

19. D. Djurić. MDA-based Ontology Infrastructure. Computer Science and Informa-
tion Systems (ComSIS), 1(1):91–116, 2004.

20. R. Grønmo, M.C. Jaeger, and H. Hoff. Transformations between UML and OWL-
S. In A. Hartman and D. Kreische, editors, Proc. Model-Driven Architecture –
Foundations and Applications, pages 269–283. Springer-Verlag, LNCS 3748, 2005.

21. Semantic Web Services Language (SWSL) Committee. Semantic Web Services
Framework (SWSF). http://www.daml.org/services/swsf/1.0/, 2006.

22. B.-H. Schlingloff, A. Martens and K. Schmidt. Modeling and Model Checking Web
Services. Electronic Notes in Theoretical Computer Science: Issue on Logic and
Communication in Multi-Agent Systems, 126:3-26. 2005.

23. R. Dijkman and M. Dumas. Service-oriented Design: A Multi-viewpoint Approach.
Intl. Journal of Cooperative Information Systems, 13(4):337-368. 2004.

24. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Design. Addison Wesley, 1995.

25. N.Y. Topaloglu and R. Capilla. Modeling the Variability of Web Services from a
Pattern Point of View. In L.J. Zhang and M. Jeckle, editors, Proc. European Conf.
on Web Services ECOWS’04, pages 128–138. Springer-Verlag, LNCS 3250, 2004.

26. C. Pahl and R. Barrett. Towards a Re-engineering Method for Web Services Ar-
chitectures. In Proc. 3rd Nordic Conference on Web Services NCWS’04. 2004.

27. W.M.P. van der Aalst, B. Kiepuszewski A.H.M. ter Hofstede, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14:5–51, 2003.

28. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In W. Schäfer and P. Botella, editors, Proc. 5th European Software
Engineering Conf. (ESEC 95), Springer LNCS 989, pages 137–153. 1995.

29. M. Vasko and S. Duskar. An Analysis of Web Services Flow Patterns in Col-
laxa. In L.J. Zhang and M. Jeckle, editors, Proc. European Conf. on Web Services
ECOWS’04, pages 1–14. Springer LNCS 3250, 2004.

30. D. Skogan, R. Grønmo and I. Solheim. Web Service Composition in UML. In
Proc. 8th International IEEE Enterprise Distributed Object Computing Conference
(EDOC), pages 4757.2004.

31. S. Thöne, R. Depke and G. Engels. Process-Oriented, Flexible Composition of Web
Services with UML. In Proc. Joint Workshop on Conceptual Modeling Approaches
for e-Business (eCOMO 2002). 2002.

45

Architectural Decision Models as Micro-Methodology
for Service-Oriented Analysis and Design

Olaf Zimmermann1 Jana Koehler1 Frank Leymann2

1 IBM Research GmbH
Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{olz,koe}@zurich.ibm.com
2 Universität Stuttgart, Institute of Architecture of Application Systems

Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

Abstract. During the construction of service-oriented architectures, service
modelers concern themselves with the characteristics of good services and how
such services can be designed. For instance, they look for advice regarding
interface granularity and criteria to assess whether existing software assets are
fit for reuse in service-oriented environments. There are no straightforward an-
swers to such questions – service identification, specification and realization
techniques are required. Service identification and specification are well cove-
red by existing methodologies; for service realization, architectural decision
models can be leveraged. At present, the construction of architectural decision
models is an education- and labor-intensive undertaking; if such models exist at
all, they often are isolated from other artifacts. In this paper, we propose a new
engineering approach to service modeling that leverages reusable architectural
decision models as its central service realization concept. We outline a mul-
ti-level decision tree and position it as a prescriptive service realization
methodology for three engagement types observed in practice. The benefits of
service engineering with reusable architectural decision models are semi-
automatic decision identification in analysis models, improved decision making
quality, and better decision enforcement and risk mitigation capabilities.

Keywords: Architectural decisions, methodology, MDA, service design, SOA

1 Introduction

During the early stages of the evolution of Service-Oriented Architecture (SOA) as an
architectural style, Grady Booch stated that “the fundamentals of engineering like
good abstractions, good separation of concerns never go out of style”, but he also
pointed out that “there are real opportunities to raise the level of abstraction again”
[6]. When designing large-scale enterprise applications, this raise of abstraction level
concerns the business domains a company deals with, as well as already existing
Information Technology (IT) assets. Business-aligned software services organized
into an enterprise-scale SOA reside on this increased level of abstraction. However,
implemented software services still have to meet domain-specific Non-Functional

46

Requirements (NFRs) and standard software quality criteria [11]; old and new design
challenges arise, e.g., designing services for multiple invocation contexts.

Therefore, there is more to constructing service abstractions of quality and style
than identifying abstract software services, specifying them with technical interface
contracts such as Web Service Description Language (WSDL) port types, and then
applying WSDL-to-code transformation wizards. No single SOA fits all purposes;
many architecture design issues and tradeoffs arise. There are no straightforward
answers to the service modeling questions that arise – service identification,
specification, and realization techniques are required.

For service identification and specification, several techniques such as Service-
Oriented Modeling and Architecture (SOMA) [2] and others [9][24] exist; for service
realization, architectural decisions [26] are a promising complementary abstraction.
In [34], we defined architectural decisions as “conscious design decisions concerning
a software system as a whole, or one or more of its core components. These decisions
determine the non-functional characteristics and quality factors of the system”.
Architectural decision modeling is an emerging field in software architecture research
[18]. Unlike other approaches to document software, architectural decision models fo-
cus on the expert knowledge motivating certain designs rather than the resulting de-
signs themselves. Model elements present architecture alternatives with pros and
cons, as well as known uses, and they also capture the rationale behind and the
justification for many different types of decisions.

In SOA construction, service realization decisions include strategic concerns such
as technology and product selections (e.g., composition technology, workflow
engine). Finer-grained modeling tasks such as finding the right service interface gra-
nularity (operation-to-service grouping, message signature shaping) form a second
decision category. Numerous decisions deal with non-functional aspects such as
operation transactionality (business-level compensation, system transactions). For
instance, imagine a scenario in which a situational data warehouse application on a
Personal Computer, an e-commerce software package on a Linux workstation and a
custom developed inventory management solution on a central mainframe computer
have to be integrated. Such systems typically differ in the way they manage human
user access, balance load, synchronize concurrent requests, persist data, protect
themselves against security threats, and so forth – their software architectures are
different. When being integrated in an SOA, these systems provide services to each
other. Even if the service interfaces can be specified in an abstract, business-driven
and technology-independent way, the mapping of the abstract interfaces to
implementation components during service realization differs substantially in the
three outlined environments. As a consequence, the service realization decisions for
the three systems differ. For example, using a workflow engine might not be possible
for the situational application, the software package might impose interface
granularity constraints, and the mainframe might realize its own transaction monitor.

In this paper, we propose an engineering approach to service modeling. We treat
service realization decisions as first-class entities that guide the service modeler
through the design process. We capture these decisions in machine-readable models.
This SOA knowledge is organized in a reusable multi-level SOA decision tree,
including a conceptual, a technology, and an asset level. The tree organization follows
Model-Driven Architecture (MDA) principles, separating rapidly changing platform-

47

specific concerns from longer-lasting platform-independent decisions. Architecture
alternatives in the conceptual level are expressed as SOA patterns. An underlying
meta model facilitates automation of service realization decision identification,
making, and enforcement: Meta model instances (models) can be created from re-
quirements models and reference architectures, and shared across project boundaries.
The meta model also enables decision dependency modeling and tree pruning –
making one decision has an impact on many other decisions. For example, a
workflow engine is only required if process-enabled service composition has been de-
cided for. In the resulting process-enabled SOA [15], transaction management settings
must be defined consistently for various architecture elements such as process invoke
activities, service operations and database drivers.

Explicit dependency modeling has another key advantage: the decision tree can
serve as a micro-methodology during service design, operating on a more detailed le-
vel of abstraction than general purpose methods such as the Rational Unified Process
(RUP) [16] and the service modeling approaches described in the literature [2][9][24].
Our approach is complementary to these assets; e.g., the decisions can be organized
along the RUP phases such as inception, elaboration and construction.

The remainder of this paper is organized in the following way: Section 2 derives
the problem statement motivating our work from state of the art and the practice. Sec-
tion 3 then presents structure and content of our SOA decision tree. Section 4 explains
how this SOA decision tree can be used as a micro-methodology for SOA. Section 5
presents related work; Section 6 discusses the benefits of our approach and how we
applied it in practice. Section 7 concludes and gives an outlook to future work.

2 The Service Modeling Problem

Methods like SOMA define the tasks within the service modeling process, SOA
patterns present proven solution designs. However, the detailed technical design steps
between business-level service identification and pattern instantiation on implementa-
tion and runtime platforms still are covered rudimentarily only. Detailed modeling
guidance leading to a prescriptive modeling algorithm is desired that helps answering
the following question:

How to design and develop “good”, business-aligned service abstractions from
analysis-level business process models and technical requirements?

As a corollary, the question arises how good services can be characterized. For
example, what does business alignment mean from a technical standpoint, and what is
the appropriate service granularity in a certain domain context? When trying to
answer these questions, development projects start from vaguely articulated
requirements, documented as high-level business process and/or use case models
created by business analysts. In many cases, these models are defined informally or
semi-formally only. However, eventually formal service descriptions have to be
defined so that the realized services can be deployed to some IT infrastructure such as
an application server or transaction monitor. We jointly refer to these issues as service
modeling or Service-Oriented Analysis and Design (SOAD) [35]. Currently, these

48

issues are among the most frequently discussed topics in the industry and academia;
we have not participated in a single SOA effort yet in which such service modeling
aspects have not been a major concern.

Elements from several existing service modeling methodologies and techniques
served us well when dealing with these issues. For example, SOMA covers top-down
service identification in business process models and other business analysis artifacts.
Service specification typically is also addressed well [13]. However, we noticed a gap
between these two steps and detailed technical service realization aspects encountered
on SOA construction projects. Existing patterns and general purpose method exten-
sions are informative and educational, but often too coarse grained and incomplete.
For example, advice regarding service-enablement of existing legacy systems ty-
pically is weak, and transaction management is not covered in detail. Technology and
vendor recommendations (often called “best practices”) are not integrated
sufficiently, often causing quality problems and unnecessary duplication of efforts.

3 An Architectural Decision Model for SOA Construction

The actors involved in SOA construction are business analysts, service architects, and
service developers. When Model-Driven Architecture (MDA) concepts are applied,
these actors create a Platform-Independent Model (PIM) of the design based on a
Computing-Independent Model (CIM) of requirements analysis results. They trans-
form the PIM into one or more Platform-Specific Models (PSMs) and eventually into
code. Therefore, it is natural to organize the architectural decision models according
to MDA principles as well, applying principles such as layering and separation of
concerns. Therefore, we propose three levels of decision model refinement, the con-
ceptual, the technology, and the asset level. In addition, we see a need for an over-
arching executive level, comprising of decisions of strategic relevance. Executive de-
cisions impact the project as a whole [18]. They influence all other decisions.

To harvest already gained knowledge, we synthesized an initial SOA decision tree
from our own project experience [33][36] and the literature [10][15]. Each decision
node describes a single, concrete design issue. We describe the decision nodes
according to the following informal representation of an underlying meta model [26]:

• Decision name and unique identifier.
• Problem statement, either in question form or a single paragraph.
• Scope of the decision, linking the decision model to design model elements.
• Decision drivers, a list of key NFRs and software quality factors driving the

design; the pattern community use the term forces synonymously.
• Architecture alternatives listing the available design options with their pros,

cons, and known uses. On the conceptual level, these are architectural pat-
terns. On the technology level, they represent technical choices such as pro-
tocol and design pattern selections; the asset level is concerned with open
source and commercial product selection and configuration.

• References linking in literature such as short overviews, in depth tutorials.
• Recommendation, depending on the decision type either a simple “do/do not”

rule of thumb, a weighted mapping of forces to alternatives, or a pointer to

49

more complex analysis process to be performed outside of the decision mo-
del. An example for a simple rule of thumb is a commonly agreed best prac-
tice: for example, WS-I recommends document/literal as SOAP communica-
tion style and bans rpc/encoded [29]. For the design of transaction manage-
ment boundaries on the other hand, no simple recommendation can be given;
a more sophisticated algorithm capturing decision making heuristics and pro-
ven alternatives as patterns is required. Decision drivers include business
semantics, fault handling and resource protection needs, and NFRs.

• Lifecycle management information such as decision owner, project phase,
validity timestamp, modification log, and decision enforcement.

• Outcome and justification of made decisions per decision instance.
We have captured 130 such SOA decisions so far. Table 1 lists selected ones from

all four levels of abstraction introduced above, including their scope attribute and
some of the alternatives available. The decision naming indicates dependencies, e.g.,
between the various decisions dealing with transactions.

Table 1. Excerpt from initial SOA decision tree

 Tree level Decision node (scope) Alternatives
Executive Platform/language/tool preferences (global) e.g. J2EE or LAMP
Conceptual Service composition technology (process) Workflow vs. custom code
(PIM) Transaction management strategy (process) System transaction vs.

business transaction
 Transaction management pattern (process) None vs. single transaction

vs. several transactions
 Transaction attribute (operation) None vs. new vs. join [31]
 Message exchange pattern (operation) Request-reply vs. one way
 In and out message breadth (operation) Single vs. multiple parts
 In and out message depth (operation) Flat vs. nested payload
Technology
(PIM/PSM)

Workflow language (process) Business Process Execution
Language (BPEL) vs. other

 Service container (service) SCA vs. J2EE vs. CORBA
vs. .NET vs. other

 Java service provider type (service) EJB vs. plain Java object
 SCA transaction qualifiers (operation) See SCE specifications [21]
 EJB transaction attribute (operation) Defined in EJB specification
 Message exchange style and format (operation) WS-*/SOAP vs.

REST/JSON vs. other
 Transport protocol binding (operation) HTTP vs. reliable messaging
 SOAP communication style (operation) Document/literal vs.

rpc/literal vs. rpc/encoded
Asset (PSM) Workflow engine (process) Vendor or open source (IBM

WebSphere Process Server,
ActiveBPEL, etc.)

 SOAP message exchange engine (service) e.g. Apache Axis, Codehaus
XFire, vendor engines such
as IBM WebSphere engine

 Service provider sourcing (service) Buy, build, adapt

50

The generic service granularity discussion leads to several decisions dealing with
in and out message signature design, e.g. single vs. multiple message parts and flat vs.
deeply nested payload (e.g., XML documents). On the technology level, there is a
transport protocol binding decision with service operation scope – SOAP/HTTP or
reliable messaging are the alternatives. About 40 other service operation realization
decisions exist. One of about 20 process realization decisions is the choice of work-
flow language, e.g. Business Process Execution Language (BPEL) [20]. The service
container decision is closely related; BPEL can only be used if supported by the
selected container, for example Service Component Architecture (SCA) [21].

Other decisions not shown in the table deal with security: cryptographic algorithms
as means of integrity preservation are available on the transport and on the messaging
layer. Message-level XML and Web services security or transport-level HTTPS/SSL
are two of the available candidate assets.

4 The SOA Decision Tree as SOA Micro-Methodology

Once the various SOA decisions have been captured in the tree, and the decision
dependencies have been modeled explicitly, the decision model can guide the
practitioner through the design process. This is a SOA domain-specific method
engineering approach, which aims to provide finer grained guidance than traditional
artifact- and activity workflow-centric methodologies. The individual SOA decision is
the central metaphor. Figure 1 shows selected decision topics and atomic decisions on
five levels of abstraction, and illustrates the guiding role of the SOA decision tree.1

Asset Decisions (PSM)

Technology Design Decisions (PIM/PSM)

Conceptual Design Decisions (PIM)

Business Analysis Decisions (CIM)

Executive Decisions

<Service Modeling Method?> <Platform/Language?>

<Architectural Style?>

<Reference Architecture?>

<BPM Notation?> <BPM Tooling?>

<Technical Annotations?><Control Flow Design?>

<BPM Principles?> <Reference Model?>

<Data Flow Design?>

<Design Notation?>

<SOAP Runtime?>

{Process Realization Decisions?} {Service Realization Decisions?}

<CIM-to-PIM Mapping?>

<Buy, Build, Adapt?>

<Provider Type?><Service Container?><Workflow Language?>

<Service Registry?>

<Workflow Engine?>
{Infrastructure Decisions?}

<Go/No Go?>

{Governance Decisions?}

<Atomic Decision?>

{Decision Topic?}

Fig. 1. SOA decision tree in guiding role (micro-methodology)

1 In line with the design decision literature, we refer to the SOA knowledge structure as a tree;

if in the formal sense it actually is a directed, not necessarily acyclic, graph.

51

Atomic decisions such as <ReferenceArchitecture?> appear in paired lower/greater-
than signs. Decisions can be grouped into decision topics, which are embedded in
curly braces. For example, topic area {Process Realization Decisions?} contains the pro-
cess-scoped decisions that Table 1 assigned to the conceptual level. The selection of a
<ServiceCompositionTechnology?> is an example.

Section 3 introduced the global executive decisions. In Figure 1, we also added
business analysis decisions as another level of our micro-methodology. This level
deals with decisions about the various Business Process Modeling (BPM) notations,
tools, and techniques. While our main focus is technical service realization, we show
this layer here to illustrate that our micro-methodology can work with different busi-
ness modeling approaches, accepting the output of them as analysis input to the tech-
nical design.

The vertical arrow does not imply that our micro-methodology is a strict top-down
waterfall process; the ability to backtrack and revisit higher-level decisions because of
feedback from the lower layers is a key concept in our approach. For example, a
certain asset might not support a pattern selected on the conceptual level.

A topic area on the asset decisions level is {Infrastructure Decisions?}: Once the logi-
cal design has reached a reasonable level of detail, the physical layout of the solution
can be designed, including service deployment onto hardware, and network topology
layout. Naturally, the detailed decisions in this group depend on many decisions on
higher levels. For example, if stateful services exist, a session handover concept is
required, at least in clustered environments.

Navigating through the tree. We provide a single point of entry into our SOA deci-
sion tree, a global project <Go/No Go?> decision. Having passed this entry point,
executive decisions like selection of <Architectural Style?>, <Service Modeling Method?>
and <Engagement Type?> are the next decisions that have to be made. The outcome of
these decisions defines the detailed path through the tree. So far, we have predefined
the three ways through the tree for three engagement types, which are roughly equiva-
lent to the maturity levels in the Service Integration Maturity Model (SIMM) in [3]
and the stages in [15].

Web services enablement of a single component to achieve cross-platform inter-
operability is a simple engagement type with many known uses, but limited strategic
importance. Therefore, many executive decisions, e.g. regarding governance and ser-
vice lifecycle management, are not required and can be removed from the tree. About
40 technical decisions remain to be taken per service.

A second, emerging engagement type is the introduction of a service choreography
layer implementing an end-to-end business process. Such engagements address
increased pressure from business in the areas of operational efficiency. For example,
a process might have to complete within 24 hours. Enforcing such a business rule re-
quires active process instance tracking, which can be achieved by workflow technolo-
gy. This engagement type is a superset of the Web service enablement; decisions
about BPEL usage also have to be made in this engagement type. The scenario from
Section 1 is an example; traversing all process and service realization decisions inclu-
ding those in Table 1 comprises a single iteration through our micro-methodology.

52

Enterprise-wide SOA enablement requires a full traversal of all tree levels. All de-
cision nodes are applicable, and extensions are likely to be required. For example, an
enterprise-wide <Service Registry?> must be selected; many governance decisions and
more executive decisions have to be made.

MDA positioning. If MDA principles are followed, architectural decisions drive
model transformations between the levels. Our conceptual level is a PIM, the techno-
logy level has both PIM and PSM characteristics (depending on the viewpoint), and
the asset level is a PSM. In a MDA transformation chain for SOA, decision models
can be created and transformed just like design models. Figure 2 shows the resulting
three-step MDA transformation chain:

To-Be Business
Analysis Decision Model

(CIM)

As-Is Design Model
(PSM)

To-Be Decision Model
(Assets, PSM)

Use Case (UC) 1-2:
Service Architect

Use Case (UC) 1a: CIM->PIM
(Top Down)

UC 1b: PSM->PIM
(Bottom Up)

To-Be Decision Model
(Conceptual, PIM)

As-Is Decision Model
(Conceptual, Technology, Assets)

To-Be Decision Model
(Technology, PIM/PSM)

UC 2:
PIMxPIM->PIM/PSM

UC 3:
PIM/PSM->PSM

UC 3:
Service Developer

CIM – Computing Independent Model
PIM – Platform Independent Model
PSM – Platform Specific Model
(OMG MDA Terminology)

Reference Architecture
(incl. Reusable Decision Templates)

To-Be Design Model, Code
(PIM, PIM/PSM, PSM)

Fig. 2. Architectural decision models in three-step model transformation chain for SOA

Step 1 consists of two transformations: Step 1a transforms to-be requirements
business analysis decision models into an initial conceptual design decision model;
Step 1b is a reverse transformation from as-is design models describing existing
assets to a full instance of the SOA decision tree. Steps 2 and 3 correspond to the
conceptual to technology and technology to asset level transitions in Figure 1. One
pass through these steps comprises a single iteration in the micro-methodology.

Dependency management and tree pruning. Dependency propagation relationships
exist between and within the levels. For instance, the decision to introduce a work-
flow engine leads to the need for a user management subsystem, because the engine
has to manage the status and progress of the process instance execution. This includes
assigning activities to users. Users can be systems, if parts of the business process are
automated and Web services technology is used to connect an automated client to a
process instance. Transaction management is a second example. It can be discussed as

53

an abstract pattern, which has to be mapped to technology-specific attributes, e.g.,
SCA qualifiers [21] and Enterprise JavaBean (EJB) deployment descriptor elements.

The number of decision nodes is a major challenge for a broad applicability of our
approach; usability and scalability are key concerns. Regarding volume metrics,
consider a mid-size SOA construction project automating five business processes with
20 atomic activities each. Let us assume realistic figures: 20 global executive
decisions, 25 decisions per process and 40 per activity might have to be taken. If this
is the case, already close to 1000 decisions have to be made.

Decisions support systems can provide solutions to such problems. We can leve-
rage the explicit dependency management to actively remove unnecessary nodes as
soon as possible. Several opportunities for doing so exist; one of them is to disable
decisions and alternatives based on previous decisions. For instance, .NET details are
no longer relevant if Java is the language of choice. If SOAP/HTTP has been chosen
for the first ten activity services in a process, the next 15 probably will probably use it
as well. Developing a more general tree pruning strategy is ongoing and future
research work – in the now completed first project phase, our main focus was on
structuring and populating the tree.

5 Related Work

In this section, we position our work relative to service modeling, patterns and pattern
languages, Object-Oriented Analysis and Design (OOAD), software engineering
methodologies, and design decision rationale research.

Service modeling. Service modeling methodologies are subject to current research
[2][9][24]. These methodologies cover all phases of service-oriented analysis and
design; they are particularly strong in early such as business modeling and service
identification. Typically, they reside on higher levels of abstraction than our SOA
decision tree; therefore they provide less detailed technical advice than we do. The
relationship between these methodologies and our approach is complementary and
synergetic; e.g., a candidate service model created with SOMA can service as a
starting point for the detailed technical decision making based on our approach.

Patterns and pattern languages. The patterns movement has been highly successful
in the past decade [14]. Architecture and design patterns go a long way in supporting
practitioners during design and development of enterprise applications. SOA as an
architectural style refines many abstract patterns such as Proxy and Broker [8]. In
enterprise application architecture literature, we find service layer patterns and gene-
ral coverage of transaction management issues, but no specific coverage of SOA. The
“Putting it all together” chapter in [10] has inspired parts of our overall SOA design
space structure. SOA patterns have emerged over recent years. For example, Zdun
[32] defines a pattern language for process-driven SOA.

Practitioners often report difficulties in seeing the big picture when looking at indi-
vidual patterns and pattern catalogs. Pattern catalogs do not discuss how the various
patterns are connected. Pattern languages address this concern, describing an entire

54

domain as a consistent and comprehensive set of related patterns, and providing
orientation within the solution space via intent, context, and forces discussions. How-
ever, most pattern languages have a technology-centric nature; the transition from
business-level requirement and NFR analysis to pattern application is described infor-
mally if at all. Cross-domain relationships between patterns are discussed rarely.

Patterns have educational character. By definition, patterns reside on a conceptual
and/or technical level; none of the existing SOA pattern languages map the patterns to
an asset level. For example, transactional workflow patterns [5] do not provide BPEL
or SCA mappings, even if these technologies appear as known uses. We believe that
such mappings are required. In practice, many architectural decisions have to be taken
on the asset level because vendor-specific extensions and limitations exist.

In summary, patterns and pattern languages do not cover service modeling issues
such as service granularity or transactionality design aspects with enough detail.
Advice from the referenced sources still provides valuable background information in
our approach; patterns appear as architectural alternatives on the conceptual level.

OOAD. During our early adoption SOA projects, we employed many OOAD tech-
niques, which inspired the design of our SOAD framework [35]. For example, we
often used a combination of system context, use case, and collaboration diagrams
during early project scoping workshops. Design-by-contract [23] and responsibility-
driven design [30] are two principles that apply to services just as well as to objects.
The Classes, Responsibilities and Collaborations (CRC) cards technique [4] is not
limited to specifying classes; services and service components can be conceptualized
similarly. However, it is key to take service design specific principles into account.
For instance, services are invoked via messages, should not have any identity, and
preserve as little conversational state as possible. We further discuss the OOAD usage
for SOA construction in [37].

Software engineering methodologies. RUP [16] provides a business modeling
discipline, which uses UML activity diagrams for process modeling both on analysis
and design level. There is a RUP SOA plugin [13], which defines a Service Model
artifact. SOA-specific design advice is given informally in technique papers and
method extensions. The given advice is helpful, but in our opinion also not detailed
and prescriptive enough. For instance, process guidance in RUP workflows stops at
Design Software Architecture and Design Service Model level of granularity. There is
some integration of design patterns via recipes; however, detailed architectural
decisions to be made are not captured and modeled systematically. Service interface
design, communication protocol selection, and transactional runtime configuration
issues are examples for such decisions that are typically not covered detailed enough.

Design decision rationale, architectural decision research. Architectural decision
capturing [18] is an emerging field in software architecture research, which emerged
from work in design decision rationale research [19]. We use several techniques from
both fields as part of our SOAD micro-methodology, filling gaps where needed. One
popular form of knowledge capturing are Questions, Options, Criteria (QOC)
diagrams [22]. QOC Diagrams raise a design question which points to the available

55

options for it; decision criteria are associated with the options. Option selection can
lead to follow-on questions. QOC triples are similar to our decisions, alternatives, and
decision drivers. Existing work typically focuses on documenting already made deci-
sions, an additional, time consuming obligation even with tool support.2 With such an
approach, the decision viewpoint remains isolated and disconnected from the 4+1
logical, process, development, physical and scenario views on software architecture
defined in [17]. In the industry, templates for architectural decision capturing exist
[7]. There are cases where predefined decision documents are part of reference
architectures, for example in the IBM e-business reference architecture [26]. These
assets mainly have documentation character; they do not provide active guidance as
our micro-methodology does. Copy-and-paste of static documents is the only way to
customize and reuse the assets on SOA construction projects.

6 Discussion

As the examples in this paper have shown, successful service modeling is as not as
easy as it might appear at first glance. Much more than simple drill-down from
business-level process flow to IT realization is required; many SOA-specific architec-
tural decisions have to be made. Almost all but the most trivial cases require a meet-
in-the-middle modeling approach as opposed to a top-down process; existing system
reality and software packages constrain the modeling choices. With our multi-level
SOA decision modeling approach, we capture the corresponding design advice.

We use the architectural decision metaphor in a more dynamic fashion than exi-
sting work. In our approach, architectural decisions do no not just have passive
reference character, but serve as a micro-methodology. Decisions are identified from
business requirement models, legacy system descriptions and earlier decisions. Be-
cause SOA is specified and standardized openly, it is possible to leverage domain-
specific knowledge captured in SOA reference architectures, principles, and patterns.
Standardization and openness have another welcome side effect: service modelers
speak the same language – it becomes possible to share architectural knowledge
between projects, thus helping to develop economies of scale.

Unlike any other modeling approach or methodology we are aware of, we push a
detailed initial technical to-do list including available alternatives, pros and cons,
known uses, and literature references to the responsible service modeler, bringing in
experience from previous projects. This is a significant advantage of our approach;
state-of-the-art so far has been that the service modeler had to pull the required
decision points and possible designs from the literature, personal experience, and per-
sonal networks. Some of the required information is available in method browsers
nowadays; however, practitioners still have to perform a pull operation.

Our SOA decision tree also serves as a communication vehicle between the actors;
feedback regarding practicability and enforcement of decisions can be exchanged this
way. Another benefit of this approach is that it facilitates the knowledge exchange
across project boundaries. The SOA decision tree also can serve as an analysis tool

2 Tool support for capturing design decision rationale has been a research topic in the 1990s,

but has failed to accomplish industry adoption so far. There is no SOA specific support yet.

56

during bottom-up service modeling if it captures the architectural decisions once
made for a legacy asset that is currently being service enabled. By helping to assess
whether an available service operation is suited to implement a certain process
activity, a decision model provides buy vs. build decision support. The decision
catalog can also serve as governance and risk mitigation instrument; compliance with
industry and company guidelines can be ensured. Additional usage scenarios for the
decision tree are quality assurance reviews and best practices benchmarks.

While the presented approach is generic enough to be applicable to many architec-
tural styles, it is particularly useful, or even required, in SOA. Decision modeling and
SOA share many design goals such as applicability in heterogeneous, complex
domains. NFRs of shared services usually are more challenging than those of
standalone applications. Services have to handle multiple usage contexts, and clients
compete for shared resources. A software service is not just a reusable code fragment,
but an enterprise asset, much like a product; service lifecycle management is required
on enterprise-wide SOA initiatives, which is simplified by capturing and preserving
the rationale behind the original service design in a SOA decision tree.

Project results and action plan. This paper presents both results of our work and an
action plan to further enhance the presented concepts and ensure practical applicabi-
lity. So far, we have validated the presented approach in the following ways:

• We applied the micro-methodology retrospectively to two of our own pro-
jects [33][36]. The results of that step led to one of several refactoring ite-
rations, in which we added the lifecycle management attributes to the
meta model, as well as explicit support for capturing decision drivers.

• We have implemented tool support for the presented concepts in an
Eclipse-based Architect’s Workbench [1], as well as a Web 2.0 front end
[25]. At the time of writing, two industry projects work with the tool.

• The content of the SOA decision tree could be reused successfully on
these projects. In one case 13 of 15 required decisions could be anticipa-
ted, in the other 45 of 50.

• We have applied the micro-methodology to areas in which we do not have
deep subject matter expertise. For example, we coached two information
integration architects so that they could capture their expertise in decision
tree form. The study succeeded.

• We are in the process of studying the design decisions and drivers in
transactional workflows in SOA in more detail. A draft version of that
content is currently under evaluation in our target community.

During these activities and workshops with more than 100 practicing software
architects and service modelers, several benefits of the outlined micro-methodology
have already become apparent. The approach serves well as an education and know-
ledge exchange vehicle; subject matter expertise becomes available to less expe-
rienced architects. It also increases productivity during the initial project setup
activities such as team orientation and candidate asset screening. Numerous SOA case
studies exist; therefore, the decision tree can be populated from experience. The MDA
positioning and dependency modeling concepts provide traceability between analysis

57

and design, as well as between design and code. The feedback loops between the le-
vels improve team communication.

For a broader adoption, several challenges have to be overcome. The complexity of
the enterprise computing domain leads to a rather large decision tree structure. There
are many business domains to be supported, and on the technology and asset levels,
thousands of architecture alternatives exist. The change dynamics of the solution
space are another challenge: new architecture alternatives arise almost daily. At least
the asset level of our decision tree has to be updated whenever a vendor releases a
new product version with enhanced features or different non-functional characteri-
stics. Due to these challenges, usability and scalability are key success factors for our
micro-methodology. Tree organization and tools under development take these chal-
lenges into account. Further validation work is required to assess whether these
challenges can be addressed in such a way that a broader practitioner community can
employ our micro-methodology successfully on complex SOA construction projects.

7 Conclusion and Outlook

In this paper, we have positioned reusable architectural decision models as a micro-
methodology for model-driven service realization. The enterprise computing domain
is complex; no SOA fits all purposes. Therefore, service modeling activities always
have to be customized for particular project environments; combining elements from
several methodologies is a valid option. Methodologies such as SOMA and SOA
patterns can and should be leveraged during SOA construction, but must be further
enhanced to ensure repeatability, and support quality assurance and reuse strategies.

Architectural decisions provide an additional view on software architecture
complementary to the traditional 4+1 logical, process, development, physical and
scenario views defined by Kruchten [17]. Decision models for this sixth view on
software architecture can be organized according to MDA principles, separating exe-
cutive, business analysis, conceptual, technology and asset design concerns.

According to our experience, such structured hierarchical decision models can
serve as a service realization micro-methodology. In such as micro-methodology,
genuine modeling and meta modeling support for SOA decision identification,
making, and enforcement are required, as well as dependency and constraint mana-
gement; many SOA decisions influence each other. In this paper, we introduced such
concepts and pre-configured SOA decision trees for three engagement types, simple
Web services enablement, process-driven SOA solution, and enterprise-wide SOA.
We applied the presented micro-methodology retrospectively to our own SOA
projects, and are in the process of validating our concepts together with solution
architects and service modelers engaged in industry projects. Web 2.0 and Eclipse-
based tool support is available.

Future work includes continuing to harden our SOA decision tree, to further extend
the meta model and to develop a decision model population, dependency management
and tree pruning tool. We also plan to investigate several advanced usage scenarios
for our SOA decision tree, for example project management assistance, software
package evaluation and software configuration.

58

Acknowledgments. We would like to appreciate the input and constructive feedback
from numerous members of IBM practitioner and research communities, including
David Janson, Bob Johnson, Petra Kopp, Jochen Küster, Christoph Miksovic, Sven
Milinski, Frank Müller, Cesare Pautasso, Nelly Schuster, and Jussi Vanhatalo.

References

[1] Abrams S. et al, Architectural thinking and modeling with the Architects' Workbench,
IBM Systems Journal Vol. 45, 3/2006

[2] Arsanjani, A.: Service-Oriented Modeling and Architecture (SOMA), IBM developer-
Works 2004, http://www.ibm.com/developerworks/webservices/library/ws-soa-design

[3] Arsanjani A., Holley K., Increase flexibility with the Service Integration Maturity Model
(SIMM), http://www-128.ibm.com/developerworks/webservices/library/ws-soa-simm/

[4] Beck K., Cunningham W., A Laboratory For Teaching Object-Oriented Thinking,
OOPSLA'89 Conference Proceedings, October 1-6, 1989, New Orleans, Louisiana

[5] Bhiri S., Gaaloul K., Perrin O., and Godart C., Overview of Transactional Patterns:
Combining Workflow Flexibility and Transactional Reliability for Composite Web
Services, in: van der Aalst W.M.P. et al. (Eds.): BPM 2005, LNCS 3649, pp. 440–445

[6] Booch, G.: InfoWorld interview 2004,
http://www.infoworld.com/article/04/02/02/HNboochint_3.html

[7] Bredemeyer Consulting, Key Architecture Decisions Template, available from
http://www.bredemeyer.com/papers.htm

[8] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M., Pattern-Oriented
Software Architecture – a System of Patterns. Wiley, 1996

[9] Dijkman R., Dumas M., Service-Oriented Design: A Multi-Viewpoint Approach,
International Journal of Cooperative Information Systems Vol. 13, No. 4 (2004), 337-368

[10] Fowler M., Patterns of Enterprise Application Architecture, Addison Wesley 2003
[11] International Standards Organization (ISO), ISO/IEC 9126-1:2001, Software Quality

Attributes, Software engineering – Product quality, Part 1: Quality model, 2001
[12] Jansen A., Bosch, J., Software Architecture as a Set of Architectural Design Decisions,

Proceedings of the 5th Working IEE/IFP Conference on Software Architecture, WICSA’05
[13] Johnston, S., RUP Plug-In for SOA V1.0,

http://www.ibm.com/developerworks/rational/library/05/510_soaplug
[14] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995
[15] Krafzig D., Banke K., Slama D., Enterprise SOA, Prentice Hall, 2005
[16] Kruchten P., The Rational Unified Process: An Introduction, Addison-Wesley, 2003
[17] Kruchten P., The 4+1 View Model of Architecture, IEEE Software, vol. 12, no. 6, pp. 42-

50, Nov., 1995
[18] Kruchten P., Lago P., van Vliet H, Building up and reasoning about architectural

knowledge. In C. Hofmeister (Ed.), QoSA 2006 (Vol. LNCS 4214, pp. 43-58), 2006
[19] Lee J., Lai, K, What's in Design Rationale?, Human-Computer Interaction, 6(3&4), 251-

280,1991.
[20] OASIS. Web Services Business Process Execution Language (WSBPEL), Version 1.1,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel, May 2003
[21] Open SOA Alliance. Service Component Architecture.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
[22] MacLean A., Young R., Bellotti V., and Moran T., Questions, Options, and Criteria:

Elements of Design Space Analysis, Human-Computer Interaction, 6 (3&4), 1991.
[23] Meyer, B., Object-oriented software construction, Prentice Hall, 2 edition, 2000

59

[24] Papazoglou M., van den Heuvel W. J., Service-Oriented Design and Development
Methodology, International Journal of Web Engineering and Technology (IJWET), 2006

[25] Schuster N., Zimmermann O., Pautasso C., ADkwik: Web 2.0 Collaboration System for
Architectural Decision Engineering, Proceedings of the Nineteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE’2007)

[26] Tyree, J., Akerman, A., Architecture Decisions: Demystifying Architecture. IEEE
Software, 22 (2005) 19-27

[27] W3C. SOAP Version 1.2, W3C Recommendation 24 June 2003, published online at
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/, June 2003

[28] W3C. Web Services Description Language (WSDL) 1.1. Published online at
http://www.w3.org/TR/wsdl, March 2001

[29] Web Services Interoperability. WS-I Basic Profile 1.1,
http://www.ws-i.org/Profiles/BasicProfile-1.1.html, April 2006.

[30] Wirfs-Brock R., Object Design: Roles, Responsibilities, and Collaborations, Addison-
Wesley 2002

[31] Witthawaskul W., Johnson R., Transaction Support Using Unit of Work Modeling in the
Context of MDA,, Proceedings of the 2005 Ninth IEEE International EDOC Enterprise
Computing Conference (EDOC’05

[32] Zdun, U., Dustdar, S., Model-Driven and Pattern-Based Integration of Process-Driven
SOA Models, http://drops.dagstuhl.de/opus/volltexte/2006/820

[33] Zimmermann, O.; Doubrovski, V.; Grundler, J.; Hogg, K.: Service-Oriented Architecture
and Business Process Choreography in an Order Management Scenario, OOPSLA
Conference Companion, 2005

[34] Zimmermann O., Koehler J., Leymann F., The Role of Architectural Decisions in Model-
Driven Service-Oriented Architecture Construction. In: Skar, L.A., Bjerkestrand A.A.
(eds.), Best Practices and Methodologies in Service-Oriented Architectures, OOPSLA
2006 workshop proceedings

[35] Zimmermann, O.; Krogdahl, P.; Gee, C.: Elements of Service-Oriented Analysis and
Design, IBM developerWorks 2004,
http://www.ibm.com/developerworks/webservices/library/ws-soad1/index.html

[36] Zimmermann O., Milinski M., Craes M., Oellermann F., Second Generation Web
Services-Oriented Architecture in Production in the Finance Industry, OOPSLA
Conference Companion, 2004

[37] Zimmermann O., Schlimm N., Waller G. and Pestel M., Analysis and Design Techniques
for Service-Oriented Development and Integration, pages 606-611 in INFORMATIK 2005
– Informatik LIVE! Band 2, Beiträge der 35. Jahrestagung der Gesellschaft für Informatik

60

Towards a Holistic Architecture Platform

Tony C Shan1, and Winnie W Hua2

1 Bank of America, 200 N College St,

Charlotte, North Carolina 28255, USA
2 CTS Inc, 10712 Hellebore Rd,

Charlotte, North Carolina 28213, USA

{tonycshan, winniehua}@yahoo.com

Abstract. This paper defines a three-dimensional architectural framework,

named Technology and Information Platform (TIP), to effectively handle the

architecture complexity and manage the architectural assets of enterprise

information systems in a service-oriented paradigm. This comprehensive model

is composed of a Generic Architecture Stack (GAS) comprising a stack of

architecture layers, and the contextual spectrums consisting of the Process,

Abstraction, Latitude, and Maturity (PALM) dimensions. The GAS stack

contains seven interrelated layers: Enterprise Business, Enterprise Technical,

Cross Business-line, Channel Specific, Application Solution, Aspect-Oriented,

and Component Technology Architectures. A concept of Meso-Architecture is

proposed in this work to facilitate the service- and channel-level architecture

modeling in a service-oriented computing style. The key practitioners

responsible for these architectural models in the platform are also specified in

the context. Part of this pyramid blueprint has been extensively utilized in one

form or another to design various IT solutions in different industries such as

finance, telecommunications, and government.

Keywords: Architecture, framework, pattern, model, infrastructure,

application, aspect, component, technique, business process, solution, domain,

stack, reference model, platform, layer, view, practitioner, and perspective.

1 Introduction

As business operations continue growing to face the global competition, the

information technology (IT) division in an organization must adapt and perform to

keep pace with the business expansion. The success of the eCommerce business relies

on higher levels of IT services at a lower cost. It becomes compulsory for the

information systems, though becoming more complex, to be even more scalable,

reliable, flexible, extensible, and maintainable. IT must innovate to produce forward-

thinking technical solutions, to meet the constantly-changing business needs.

Through either organic growth or mergers/acquisitions in the past years, large

organizations typically possess thousands of information systems and applications

using diversified architectures and technologies, which provide external clients and

internal employees with services and products to satisfy a wide variety of functional

61

requirements from different lines of business. In the financial institutions, for

example, the business process generally contains different business sectors in

consumer, commercial, small business, wealth management, investment banking, and

capital market. The service delivery channels range from traditional brick-and-mortar

branches, call centers, and Automated Teller Machines (ATMs), to online web

browsers, interactive voice response, emails, mobile devices, and so on. A highly

structured solution is of vital importance to abstract concerns, divide responsibilities,

encapsulate the complexity, and manage the IT assets in such a diversified

environment.

2 Challenges of Architecture Complexity

There have been a plethora of previous studies in the last few decades to address the

issue of architecture complexity, which has grown exponentially as the computing

paradigm has evolved from the monolithic to a service-oriented architecture.

Zachman [1] created a pioneering framework in the form of a two-dimensional matrix

to classify and organize the descriptive representations of an enterprise IT

environment. These representations are significant to the organization management

and the development of the enterprise’s information systems. As a planning or

problem-solving tool, the framework structure has achieved a level of penetration in

the domain of business and IT architecture/modeling. However, it tends to implicitly

align with the data-driven approach and process-decomposition methods, and it

operates above and across individual project level. In a similar approach and format

but more technology-oriented, Extended Enterprise Architecture Framework (E2AF)

[2] contains business, information, system, and infrastructure in a 2-D matrix. Both

these two approaches are heavyweight methodologies, which require a fairly steep

learning curve to adopt.

In an attempt to overcome the shortcomings in the above two methods, Rational

Unified Process (RUP) [3] take a different route by applying the Unified Modeling

Language (UML) in a use-case driven, object-oriented and component-based

approach. The overall system structure is viewed from multiple perspectives – the

concept of 4+1 views. RUP is process-oriented to a large extent, and is generally a

waterfall approach in its original root. The software maintenance and operations are

inadequately addressed in RUP, which also lacks a broad coverage on physical

topology and development/testing tools. It mainly operates at the individual project

level. RUP has been recently extended to Enterprise Unified Process (EUP) and Open

Unified Process (OpenUP) in open source form.

The Open Group Architectural Framework (TOGAF) [4], as another heavyweight

approach, is a detailed framework with a set of supporting tools for developing

enterprise architecture to meet the business and information technology needs of an

organization. The three core parts of TOGAF are Architecture Development Method

(ADM), Enterprise Architecture Continuum, and TOGAF Resource Base. The scope

of TOGAF includes Business Process Architecture, Applications Architecture, Data

Architecture, and Technology Architecture. The focal point of TOGAF is not at the

level of individual application architecture, but enterprise architecture. On the other

62

hand, Model-Driven Architecture (MDA) [5] takes a different approach, with an aim

to separate business logic or application logic from the underlying platform

technology. The core of MDA is the Platform-Independent Model (PIM) and

Platform-Specific Model (PSM), which provide greater portability and

interoperability as well as enhanced productivity and maintenance. MDA is primarily

intended for the architecture modeling part in the development lifecycle process.

Other related work on IT architecture frameworks is largely tailored to particular

domains. They can be used as valuable references when an organization plans to

create its own model. There are three prominent frameworks developed in the public

services sector. The comprehensive architectural guidance is documented in C4ISR

Architecture Framework [6], for the various Commands, Services, and Agencies

within the U.S. Department of Defense, in order to ensure interoperable and cost

effective military systems. A counterpart in the Treasury Department is the Treasury

Enterprise Architecture Framework (TEAF) [7], which is intended to guide the

planning and development of enterprise architectures in all bureaus and offices within

that division. The Federal Enterprise Architecture (FEA) framework [8] provides

direction and guidance to U.S. federal agencies for structuring enterprise architecture.

The Purdue Enterprise Reference Architecture (PERA) [9] is aligned to computer

integrated manufacturing. ISO/IEC 14252 (a.k.a. IEEE Standard 1003.0) is an

architectural framework built on POSIX open systems standards. The ISO Reference

Model for Open Distributed Processing (RM-ODP) [10] is a coordinating framework

for the standardization of Open Distributed Processing in heterogeneous

environments. It uses “viewpoints” and eight “transparencies” to describe an

architecture that integrates the support of distribution, interworking and portability.

The Solution Architecture for N-Tier Applications (SANTA) [11] defines a service-

oriented solution model comprising a stack of six interrelated layers, coupled with six

vertical pillars. A comprehensive mechanism is presented in the Solution Architecting

Mechanism (SAM) [12], composed of eight interconnected modules for architecture

design. The Service-Oriented Solution Framework (SOSF) [13] describes a pragmatic

approach designed for Internet banking in financial services, utilizing service patterns,

architecture process, hybrid methodology, service model, and solution platform.

A new model is proposed in the next section, with more detailed descriptions of the

key artifacts and features of the generic architecture stack in Section 4. Section 5

specifies the contextual spectrums and a particular aspect in one of the four

dimensions – practitioners who are responsible for each architecture layer, followed

by the conclusions section.

3 Comprehensive Approach

As discussed in the foregoing section, virtually all previous investigations revealed

the architectural aspects of an information system to some extent from single or

limited perspectives. The necessity of a comprehensive solution to describe the end-

to-end IT solution and portfolio architecture becomes more and more evident,

demanding a systematic and disciplined approach. A highly structured framework is

thus designed in this paper to meet this ever-growing need, and present a

63

http://www.opengroup.org/architecture/togaf8-doc/arch/p4/others/others.htm#FEAF

comprehensive and holistic model covering the prominent architectural elements,

components, knowledge, and their interrelationships. Operation processes can be

established accordingly based on this model to facilitate the creation, organization,

and management of the architecture assets at different levels in a large firm.

3.1 Design Philosophy

The design principles that are applied to develop the overarching model are as

follows:

 A model should have flexibility to be not only adaptive but also proactive.
 A model should provide multi-perspective views of all architecture artifacts.
 A model should be independent of specific technology choices and therefore

can operate on a variety of technology platforms.
 A model should be based on an open structure, following the industry best

practices.
 A model should be dynamic and allow users to visualize details on demand

while retaining the overview.
 A model should enable users to define the correlations between the artifacts,

and provide an easy navigation to identify dependencies.
 A model should leverage the maximum support from the existing

architecture standards and tools.
 The domain layering technique should be considered.
 A layer or spectrum should be created where a different level of abstraction

is needed.
 Each layer should perform a well-defined function, and focus on a particular

scope.
 The function of each layer should be chosen with an eye toward

incorporating industry standards.
 The layer boundaries should be chosen to minimize the information

exchange across the interfaces.
 The number of layers should be large enough that distinct functions need not

be thrown together in the same layer out of necessity, and small enough that
the architecture does not become unwieldy.

 The layers are loosely coupled.
 The layers are service-oriented, leveraging software patterns and

frameworks.
 A layer should only know and interact with the neighboring layers.
 The contextual spectrum should cover a broad range of artifacts in each

layer, and group them in appropriate categories.

3.2 Conceptual Model

The Technology and Information Platform (TIP) model is designed in this work as a

systematic solution. It employs a divide-and-conquer strategy to abstract concerns,

separate responsibilities and encapsulate complexity from one level to another. The

64

TIP model is a comprehensive framework to organize and visualize the architectural

artifacts, and further help analyze and optimize the strategy, resources, process,

systems, and applications. TIP comprises a Generic Architecture Stack (GAS) and

contextual spectrums. Figure 1 shows a graphical representation of the platform in a

pyramid shape. GAS is organized as a series of layers, each one built upon its

predecessor, as illustrated in the vertical direction in the diagram. Every layer has a

contextual spectrum, which consists of Process, Abstraction, Latitude, and Maturity

(PALM) dimensions, as shown on the four sides of the pyramid bottom in Figure 1.

Fig. 1. TIP Pyramid Model

The TIP model provides multi-perspective views of the architecture assets in a

large organization from both business and technical standpoints. The contextual

spectrum is depicted in Figure 2, which contains four core parts: Process, Abstraction,

Latitude, and Maturity (PALM). The Process dimension covers operations, risk,

financial, resources, estimation, planning, execution, policies, governance,

compliance, organizational politics, and so forth. The Abstraction dimension deals

with what, why, who, where, when, which and how (6W+1H). The Latitude

dimension includes principles, functional, logical, physical, interface, integration &

interoperability, access & delivery, security, quality of services, patterns, standards,

tools, skills, and so forth. Finally the Maturity dimension is about performance,

65

metrics, competitive assessment, scorecards, capacity maturity, benchmarks, service

management, productivity, gap analysis, transition, etc.

Fig. 2. Contextual Spectrum in TIP Model

Even though it is primarily targeted towards traditional online transaction

processing (OLTP) systems by design, this model is extensible to be utilized in other

areas such as enterprise resource planning (ERP) and analytics (business intelligence),

with minor modifications or expansions.

4 Generic Architecture Stack

Various architectures have been used to describe the application structure in the

design practices, such as data architecture, network architecture and security

architecture. The need for a stack of multiple architectures within the enterprise is

evidently indispensable, as the stack represents progressions from logical to physical,

horizontal to vertical, generalized to specific, and an overall taxonomy. The

architecture stack in the TIP model provides a consistent way to define and

understand the generic rules, representations, and relationships in an information

system portfolio. It represents categorization for classifying architecture assets – an

aid to organizing reusable solution assets. It assists communications and

understanding, within enterprises, between enterprise partners, and with vendor

organizations. It is not uncommon that IT professionals talk at cross-purposes when

discussing architecture issues because they are referencing different points in the

architecture stack at the same time without realizing it. The stack helps avoid

unnecessary misunderstandings and miscommunications.

66

The Generic Architecture Stack (GAS) in the TIP model comprises seven

interrelated layers:

 Layer 1 – Enterprise Business Architecture.
 Layer 2 – Enterprise Technical Architecture.
 Layer 3 – Cross Business-line Architecture.
 Layer 4 – Channel Specific Architecture.
 Layer 5 – Application Solution Architecture.
 Layer 6 – Aspect-Oriented Architecture.
 Layer 7 – Component Technology Architecture.

The definitions and features of each layer will be articulated in the following

sections.

4.1 Enterprise Business Architecture

The bottom layer in GAS is Enterprise Business Architecture (EBA), which deals with

the goodness-of-fit between information systems and the business operations they are

meant to facilitate. EBA is the business driver to all other technical models in the

stack, forming the foundation of the strategic alignment of technical models with the

business process mission. Driven by the business vision and strategy, EBA includes

business operation model, process analysis and, where appropriate and feasible,

business process re-engineering. The goals are common solutions for business process

needs shared by multiple entities within the organization, development of business

service models and components that can be reused across multiple applications, and

increase of the efficiency of enterprise business processes. Business patterns are

generally identified to group processes into different categories based on common

ontology and taxonomy in the business domain.

4.2 Enterprise Technical Architecture

The layer next to the bottom is Enterprise Technical Architecture (ETA), which

serves as the technical foundation to all enterprise applications. It deals with the

overall architecture and infrastructure at a high level across the enterprise. ETA

provides firms with methods, processes, governance, disciplines, and structure to

create, organize, and use architecture-based assets, policies, strategies, and

techniques. A ratification process is usually imposed in the governance. It generally

includes four perspectives: business, application, information, and technology. The

interrelated core architectures making up the ETA are the infrastructure architecture,

system architecture, integration architecture and information architecture. The

primary elements in ETA are guiding principles, architecture models, architecture

frameworks, architecture patterns, technology policies, technology standards, and

product/tool standards. The core architectures comprise a number of key components:

business process, system development, shared services, middleware, integration,

interoperability, technology patterns/frameworks, data access, data management, data

design/modeling, system management/deployment, network, information security,

and platform.

67

4.3 Cross Business-line Architecture

The next layer in the stack is Cross Business-line Architecture (XBA), which

accounts for the core and composite business functionalities sharable across lines of

business. XBA describes a business-line-agnostic architecture that can be leveraged

by multiple business-delivery applications to improve the complete customer

experience and reduce overall expenses. The architecture also addresses the cross-

channel concerns if a business unit delivers services through multiple channels like

Internet, voice, Personal Digital Assistant (PDA) and mobile devices. It defines

service patterns, state data, service layers, and deployment models. Core business

services and common functional services are constructed as basic services. Advanced

feature-enriched services are built as composite shared services, consumed by

different business units.

XBA becomes increasingly important in the service-oriented computing paradigm.

The business services and corresponding IT implementations must be carefully

identified and specified in a top-down approach. A service repository should be

established to document the available services defined in this architecture, in order to

maximize the reuse of the services across the lines of business, domains and channels.

Service attributes and applicable policies are also captured and stored in a semantic

fashion. Guidelines and patterns are created as well.

4.4 Channel Specific Architecture

Channel Specific Architecture (CSA) lies on top of XBA, which addresses the

cross-application concerns and operational quality of services in a particular channel

or line of business. A typical implementation is a common portfolio baseline to deal

with the universal architectural concerns in an application set. The key architecture

points addressed are the application dependency, interaction patterns, integration

methods, cross-portfolio data management, service reusability, cross-application

monitoring and management, single sign-on (SSO), unified authorization, cross-

channel session management, and other infrastructural services. In addition, an

architecture template is defined to specify the solution patterns for various system

attributes such as load balancing, scalability, high availability, disaster recovery,

capacity, storage, security, reliability, performance, collaborations, traceability, and

deployment.

4.5 Application Solution Architecture

The fifth layer is Application Solution Architecture (ASA), which copes with the

system architecture for individual applications. It covers the overall solution

architecture, realization of business functionalities, process orchestration, workflow,

rule management, business logic implementations, user interface, logical layering,

service access interfaces, interaction mechanisms, multi-tier physical topology,

networking for distributed solutions, storage management, product and technology

68

selections, etc. ASA is generally project-based at the system level and is aimed at a

specific solution domain.

To make the software portion of a solution more flexible and adaptive, the

inversion of control is often applied in ASA. The dependency injection can be

realized declaratively via annotations or deployment descriptors, to minimize the

coupling between the application components and the underlying implementation

technologies. In addition, application architecture patterns and models are leveraged

to design and build SOA applications. For example, Service Component Architecture

(SCA) [14] describes a model for building applications and systems using a SOA

style. SCA extends and complements prior approaches to implementing and

assembling services, and SCA builds on open standards such as web services.

4.6 Aspect-Oriented Architecture

Aspect-Oriented Architecture (AOA) is the sixth layer, which deals with various

application-wise aspects, largely software-related. It includes module-level

frameworks such as Model-View-Controller (MVC) pattern-based structures,

programming models such as Object-Oriented design (OOD), development tools such

as Integrated Development Environment (IDE) workbenches, and automated unit

testing such as JUnit and NUnit. Additionally, it deals with the classic crosscutting

concerns via Aspect-Oriented Programming (AOP), like exception handling, logging,

transactions, caching, data validation, session and state management, threading,

synchronization, and remote access.

4.7 Component Technology Architecture

At the top of the pyramid is Component Technology Architecture (CTA), which

handles the component-level internal structures and specialized technologies for

specific technical concerns. These solutions can be in the format of packages, utilities,

libraries, techniques, patterns, and implementation styles. Examples include Object-

Relational (OR) mapping for data persistence, data access services, presentation-

rendering mechanisms like XSL and template engines, page flow navigation, UI Look

& Feel, XML parsing, service aggregation, Ajax, REST, and Gang-of-Four design

patterns.

4.8 Interrelationships of the Layers

The layers in the GAS stack reveal the architecture artifacts gradually at the macro,

meso, and micro level.

 Macro-Architecture: “global” vision – the overall structure in an enterprise
(Layer 1 and 2)

 Meso-Architecture: “division” vision – the service and channel level
properties and interactions across the application portfolios and domains
(Layer 3 and 4)

69

 Micro-Architecture: “local” vision – the system attributes, relationships

between components and component composition at the individual project

and application level (Layer 5, 6, and 7)

The concept of Meso-Architecture defined in this paper has rarely received

sufficient attention in the IT solution design in past practices. With the primary focus

being only on the macro and micro designs, variants in one format or another of the

Meso-Architecture might be scarcely crafted randomly, but then left in the dust. A lot

of IT shops have not even recognized the significance of this artifact in their

blueprints, let alone any formal design or patterns about it. However, the Meso-

Architecture is a critical continuum between the macro-level and the micro-level

concerns. The gap is bridged by the Meso-Architecture in terms of disciplined

specification and validation of static structure and dynamic behavior of IT solutions at

the service and channel levels. This part is becoming increasingly important in the

lifecycle process of IT asset management and optimization. It is also critical to

employ a hybrid methodology that combines both the top-down and bottom-up

approaches in defining the service- and channel-level models to transform the existing

IT portfolio into a service-oriented computing paradigm.

Each layer in the GAS is focused on particular technical and business domains and

the granularity grows progressively from the bottom up to become more application-

specific and technology-oriented. The upper layers leverage the services and solutions

built in the lower layers. The lower layers are not tied with any upper layers, but they

contain common architectural disciplines and shareable artifacts for the upper layers.

The architectural rules are enforced so that the lower levels do not “call” the upper

layers. The relationships between the layers are very loosely coupled, which makes

this model adaptive and expandable. Each layer is self-encapsulated, and strictly

adheres to the interfaces designed. The technologies and platforms that are used in

one layer can be easily swapped, without affecting other adjacent layers. The

architectures in the upper layers may augment or aggregate the customized

implementations of the functionalities in the lower layers and incorporate other

modular extensions for particular business domains.

5 Contextual Spectrum

The TIP model presents a holistic framework to describe the key artifacts in an IT

environment from a variety of viewpoints. Figure 3 illustrates a top-down view from

the tip of the pyramid model, which shows the multiple layers in the architecture stack

as well as the major attributes in the four dimensions of the contextual spectrum. To

exemplify the key characteristics of the attributes in these dimensions, we will

concentrate on the Who attribute in the Abstraction dimension, and discuss the

primary practitioners across the architectural layers in the GAS stack.

As each layer is focused on different architectural concerns and artifacts, it is

natural that distinctive domain knowledge and practices as well as skillsets/tools are

needed to design the architecture models at various levels. The key technical

stakeholders who are responsible for each layer in GAS are listed as follows:

70

 EBA – Strategy Architect, Business Architect, Governance Architect,
Information Architect, and Enterprise Architect.

 ETA – Enterprise Architect, Infrastructure Architect, Information Architect,
Security Architect, Network Architect, Storage Architect, Governance
Architect, and Data Architect.

 XBA – Enterprise Architect, Infrastructure Architect, Security Architect,
Network Architect, Storage Architect, Domain Architect, and Data
Architect

 CSA – Enterprise Architect, Solutions architect, Infrastructure Architect,
Security Architect, Network Architect, Storage Architect, Channel
Architect, Information Architect, Systems Architect, and Data Architect.

 ASA – Solutions architect, Systems Architect, Application Architect,
Infrastructure Architect, Network Architect, Information Architect,
Portfolio Architect, and Data Architect.

 AOA – Software Architect, Solutions architect, Application Architect,
Information Architect, and Data Architect.

 CTA – Technology Architect, Component Architect, and Software Architect.

Who Which HowWhy Where WhenWhat

CTA

AOA

ASA

CSA

XBA

ETA

EBA

Abstraction

Maturity

P
ro

ce
ss

L
a
ti

tu
d

e

Principles

Metrics Benchmark QualityCapacity Productivity PerformanceScorecard

Patterns

Security

Inter-
operability

Integration

Interface

Standards

Polices

Operations

Execution

Planning

Compliance

Governance

Resources

Fig. 3. Key Aspects in Contextual Spectrum

71

Different architects play distinct roles in the architectures at each layer. In practice,

appropriate practitioners should be engaged in the architecting process to plan,

analyze, specify, evaluate, validate, optimize and manage the models in the stack.

Incorrect or insufficient staffing of qualified architects possessing the right skillsets

would impose great risks in the architecture design, which most likely would lead to

project setbacks later in the development lifecycle. Collaborations between the

architects are critically important in large-scale system and infrastructure

developments, particularly on the relationship, integration, and interoperations of

different models in the architecture stack.

Table 1 summarizes the major features and functions of the GAS in the TIP

framework, along with the practitioners and practices/patterns.

In contrast with existing frameworks as reviewed in Section 2, our model is more

coherent and rational, covering a wide range of complex aspects represented in a three

dimensional fashion. The logical grouping via a stack helps separate concerns and

more accurately define roles and responsibilities in the architecting practices.

Moreover, the aspect-oriented architecture and component technology architecture in

this model reformulate the scope and emphasis of the traditional application solution

architecture, expanding the breadth and depth of what architecture covers in the

service-oriented design paradigm. This promotes the design-by-contract principle to

another level, and facilitates the decision making and objective tradeoff justifications

in solution design. Another key contribution in this framework is the Meso-

architecture, composed of cross business-line architecture and channel-specific

architecture, which lays out the crucial foundation for service-oriented engineering

and portfolio rationalization.

Due to space constraints, other artifacts in the contextual spectrums of Process,

Abstraction, Latitude, and Maturity (PALM) in each layer are articulated in a separate

publication [15]. Additionally, a reference model has been developed to demonstrate

the application of the key aspects and capabilities of the TIP framework in a financial

institution scenario, which is to be presented in another paper.

6 Conclusions

To effectively manage the architecture complexity and organize diverse architectural

assets in large organizations, a comprehensive solution is a necessity to abstract

concerns, define responsibilities, and present a holistic view of the architectural

aspects in a highly structured way. The Technology and Information Platform (TIP)

model is designed as a multi-layered framework to facilitate architecting information

systems. It provides comprehensive perspectives of the architecture designs from both

business and technical standpoints. It builds concrete architecture solutions focused

on different domains and portfolios, and in the meantime keeps the agility, flexibility

and adaptiveness of the overall model.

72

Table 1. Feature summary of GAS in TIP model

Layer Name Features Practitioners Practices/Patterns
1. EBA Enterprise

Business

Architecture

 High-level enterprise-wide

 Business-oriented

 Business process analysis

and design

 Business logic models and

components

 Business analysis patterns

- Business

Architect

- Strategy
Architect

- Governance

Architect

- Enterprise

Architect

- Information
Architect

 Business operations

model

 Business process
architecture

framework

 Zachman

Framework

 Industry models

(e.g. ACORD, IFX,
eTOM, IFW)

2. ETA Enterprise

Technical
Architecture

 High-level technology-

oriented

 Policies & governance

 Corporate standards &
strategies

 Infrastructure, system,
integration and data

 Business, application,
information, and technology

- Enterprise

Architect
- Infrastructure

Architect

- Information
Architect

- Security

Architect
- Network

Architect

- Storage
Architect

- Governance

Architect

 Zachman

Framework
 MSA blueprints

and reference

guides
 TOGAF

 E2AF

 FEA

3. XBA Cross
Business-

line

Architecture

 Business-line-independent
functionality

 Service patterns

 State data

 Service layers

 Deployment

 Channel patterns

- Enterprise
Architect

- Infrastructure

Architect
- Security

Architect

- Network
Architect

- Storage

Architect
- Information

Architect

 TOGAF
 MSA blueprints

and reference

guides
 FEA

 Service-Oriented

Architecture (SOA)
 BPM

 Industry models

(e.g. ACORD,
IFW, eTOM)

4. CSA Channel
Specific

Architecture

 Channel-dependent
architecture

 Common baseline to address
major cross-application

concerns

 Quality of services

 Best practices

 Application patterns and
frameworks

 Inter-application
collaborations and

integration

- Enterprise
Architect

- Solutions

architect

- Infrastructure

Architect

- Security
Architect

- Network

Architect
- Storage

Architect

- Information
Architect

- Systems

Architect

 TOGAF
 MSA blueprints

and reference

guides

 FEA

 MDA

 Service-oriented
business service

model

 BPM
 Industry models

(e.g. ACORD,

IFW, eTOM)

73

5. ASA Application
Solution

Architecture

 Application-specific
architecture

 Business functionality
realization

 Business logic
implementation

 Technology & system
architecture

 Service access and n-tier

model

 Networking, storage, &

resource integration

- Solutions
architect

- Systems

Architect
- Application

Architect

- Infrastructure
Architect

- Network

Architect
- Information

Architect

- Portfolio
Architect

 MDA
 SCA

 Java EE platform

 Application
Architecture for

.NET

 Architectural styles
 LAMP

 Ruby on Rails

6.

AOA

Aspect-

Oriented
Architecture

 Application-wise aspects

 Crosscutting concerns

 Module framework, e.g.
MVC

 Module technology (data

validation)

 Programming model (OOD)

 Development/Testing tools

 Exception handling

 Data caching

 Session and state
management

 Transactions

 Threading

 Workflow

 Business rules

 Authentication &
authorization

- Software

Architect
- Solutions

architect

- Application
Architect

- Information

Architect
- Data Architect

 Struts, JSF,

Tapestry, Rife
 Ajax

 EJB

 MQ, JMS,
ActiveMQ

 AspectJ,

AspectWerkz,
Spring AOP, JBoss

AOP

 Log4J
 ESB

 WS-BPEL

 OFBiz
 Patterns

 MS UIP application

block
 Genetics

 Annotations

7. CTA Component

Technology
Architecture

 Component-level internal
structure and technologies

 Object-Relation (OR)
mapping

 Presentation-rendering

mechanisms like XSL and
template engines

 Page flow navigation

 Look & Feel

 XML parsing and

construction

 Persistent data model

 Web Services invocation

 Collaboration

 Integration

- Technology

Architect
- Software

Architect

- Component
Architect

 Design patterns

 SDO, JDO,
Hibernate

 Beehive, Spring

WebFlow
 JAX-WS, Axis

 WS-Security,
WSRP, WS-*

 JAXP, DOM/SAX,

StAX
 XDoclet

 JUnit, HttpUnit,

NUnit, Cactus
 MySQL, mSQL,

Derby

 Application blocks
in MS Enterprise

Library

The design principles of the pyramid platform are discussed in this context. A

concept of Meso-Architecture is introduced, which emphasizes the important

architectural artifacts at the service and channel levels in the architecture modeling

practices. Seven interrelated layers are defined in the Generic Architecture Stack.

74

The strength of this comprehensive platform is its loose-coupling nature and

interoperability. In our practices, different formats and variants of this model have

been successfully used in developing and integrating various IT solutions in a SOA

fashion. Furthermore, this framework is scalable and flexible for dynamic expansions

and customization.

References

1. John Zachman: Zachman Framework, http://www.zifa.com

2. Institute for Enterprise Architecture Developments: Extended Enterprise Architecture

Framework

3. Philippe Kruchten: The Rational Unified Process: An Introduction, 3rd Edition, Addison

Wesley, Massachusetts (2003)

4. The Open Group: The Open Group Architecture Framework,

http://www.opengroup.org/architecture/togaf8/index8.htm

5. Object Management Group: Model Driven Architecture, http://www.omg.org/mda

6. DoD C4ISR Architecture Working Group: C4ISR Architecture Framework, Version 2

7. Treasury Department CIO Council: Treasury Enterprise Architecture Framework. Version 1

8. Federal Office of Management and Budget: Federal Architecture Framework,

http://www.feapmo.gov/fea.asp

9. Purdue University: The Purdue Enterprise Reference Architecture, http://pera.net

10. Janis R Putman: Architecting with RM-ODP, Prentice Hall PTR, New Jersey (2001)

11. Tony Shan, and Winnie Hua: Solution Architecture of N-Tier Applications, 3rd IEEE

Conference on Services Computing (SCC 2006), September 2006, 349-256

12. Tony Shan, and Winnie Hua: Solution Architecting Mechanism, 10th IEEE Enterprise

Distributed Object Computing Conference (EDOC 2006), October 2006, 23-34

13. Tony Shan and Winnie Hua: Service-Oriented Solution Framework for Internet Banking,

International Journal of Web Services Research, Vol. 3, No.1 (2006), 29-48

14. The Open Service Oriented Architecture Collaboration: Service Component Architecture,

http://www.osoa.org

15. Tony Shan, and Winnie Hua: Contextual Spectrums in Technology and Information

Platform, 3rd IEEE Conference on Services Computing (SCC 2006), September 2006, 508

75

Service-oriented Development of Federated ERP
Systems

Nico Brehm, Jorge Marx Gómez

Department of Computer Science, Carl von Ossietzky University Oldenburg,
Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany

{nico.brehm, jorge.marx.gomez}@uni-oldenburg.de

Abstract. The paper presents a new architecture approach for the distribution of
the application logic in ERP systems. The approach proposes the provision of
software components which implement specific functionality as Web Services.
The paper shows how these Web Services can be developed and provided by
independent software vendors. The model advances the reusability of data types
and reduces the necessity of data transformation functions in business process
descriptions. Furthermore a first prototype implementation (FERPxONE) is
presented and an example process for the generation of a simple diagram for the
comparison of customers is given.

Keywords: Federated ERP systems (FERP), SOA, Workflow, Web Service,
YAWL

1 Introduction

Because business processes do not stop at artificial borders which had been set by the
structure of the functional organization of enterprises the integration of cross-
department business processes has been becoming a more and more frequently
discussed topic. Since now the IT support of enterprises still faces problems which
result from the missing interoperability of available software systems or the non-
availability of software functionality which matches individual requirements of single
enterprise departments.

One of the main reasons which increased the demand of ERP system technology in
the last two decades results from its data-centric view. This paradigm forms the basis
for the internal architecture of ERP systems as well as the structure of the business
functionality. ERP systems facilitate the view of the enterprises as a whole. The
application of ERP systems mainly aims at the improvement of the collaboration
between the different departments of an enterprise. An ERP system is a standard
software system which integrates operational application systems of different
enterprise sectors. The integration is based on a common data model for all system
components. Modern ERP systems consist of many software components which are

76

related to each other. Currently these components are administered on a central
application server. In connection to the ERP system complexity several problems
appear:

• The price- performance ratio is dependent to the potential benefit an ERP system is

able to generate.
• Not all installed components are needed.
• High-end computer hardware is required for the application of complex ERP

systems.
• Customizing is expensive because specialists are needed in order to manage the

complexity of the overall system.
• Utilizing enterprises are dependent to one ERP system provider. This aspect is in

particular a disadvantage for Small- and Medium-sized Enterprises (SME) because
of their demand as regards to the necessary flexibility of their business processes.

• A migration from one ERP system to another is very time-consuming and
expensive. Even a partial migration by means of the exchange of components
requires manual effort for the adaptation of interfaces because software
components are mostly not interoperable on the business abstraction level.
Furthermore the composition of business application systems out of subsystems
from different vendors often leads to a redundant keeping of data and a redundant
application of functionality because the functionality is overlapping.

Figure 1: Architecture of a conventional ERP system

Due to the expensive installation [8] and maintenance proceedings of ERP systems
normally only large enterprises can afford complex ERP systems which cover all
enterprise sectors. In practice small- and medium sized enterprises (SME) deploy
several business application systems in parallel. Often many of these systems

77

approach the definition of an ERP system. However, the full potential of each system
is not exploited.

Survey results
Because of the problem that the currently available ERP software products do not
include all necessary functions companies have to run various systems in combination
with each other. In order to prove this proposition the authors carried out an empirical
investigation which was completed in the third quarter of 2006. This investigation
was based on a survey where more than 600 German SMB with up to 250 employees
answered a questionnaire. Amongst others the following figures could be extracted as
results:

• In order to meet the overall core functionality requirements1 the average SMB in

Germany runs four software products in parallel.
• 47 percent of the interviewed enterprises complain about the serious problem of the

redundant keeping of data. Other 30 percent agree that at least a part of their
enterprise data is double-stored. Only 18 percent state that they do not have a
problem with redundant data. 5 percent could not form an estimate.

Taking a look at the practical use of parallel business applications, problems like data
inconsistencies in independent databases and increased communication expenses for
function transitions in business processes become obvious. Furthermore it has to be
mentioned that in most cases the software solutions come from different vendors.

The parallel operation of business application systems causes problems which
jointly arise from insufficient system integration [1, 4].

A new solution to face these problems is the application of a shared ERP system
which makes its components available over a network of services providers. This
component ensemble (federated system) still appears as single ERP system to the end-
user, however it consists of different independent elements which exist on different
computers. Based on this construction it is possible for an enterprise to access on-
demand functionality (business components) as services2 of other network members
over a P2P network. This approach solves the mentioned problems as follows:

• The total application costs conform to the effective use of software functions.
• Due to the separation of local and remote functions, no local resources are wasted

for unnecessary components.
• Single components are executable on small computers.
• Due to decreasing complexity of the local system also installation and maintenance

costs subside.

1 The term core functionality refers to the support of business tasks in the areas of financial

accounting, customer management, sales, payroll accounting, controlling, procurement,
administration of inventory, personnel administration, production planning and control,
quality management as well as research & development.

2 In this term, a service is a software component that encapsulates one or more functions, has a
well defined interface that includes a set of messages that the service receives and sends and
a set of named operations [6].

78

• A cross-vendor standardization of extendable data models and functional specifi-
cations for ERP systems and the establishment of a unified architectural model
(reference architecture), however, would change this situation for the benefit of the
interoperability and the effectiveness of Enterprise Application Integration (EAI)
solutions.

This motivation leads to the definition of a Federated ERP system which can be
defined as follows:

Definition 1: A federated ERP system (FERP system) is an ERP system which allows
a variable, adaptive or dynamic assignment of business application functions to
independent software providers. The overall functionality is provided by an
ensemble of standardized subsystems that all together appear as a single ERP system
to the user. Different business components can be developed by different vendors.

In this paper we present a FERP system based on Web Services. The main idea
follows the multi-layer paradigm of modern information systems which aims at the
separation of the application logic from the presentation layer and the database layer.
In our approach the application logic of ERP systems is encapsulated in a multiplicity
of Web Services which can be provided either locally or remotely. The vision of this
approach is to allow the application of business logic components in a distributed
manner. In order to facilitate a vendor-independent development and provision of
those components the approach considers the standardization of Web Services as well
as GUI descriptions and database interactions. The standardization process is
supposed to be advanced by a consortium of ERP vendors, utilizing enterprises and
scientific institutions (FERP standardization consortium).

2 Development and marketing model

As described above the idea of FERP is the shared development of ERP functionality
in a community of Web Service providers and workflow designers. Figure 2 shows
the development and marketing model of this vision. The model consists of four
layers. The standardization layer represents an initiative for the standardization of
Web Service types. The development layer represents two types of actors. On the one
hand workflow designers are responsible for the specification of ERP business logic
by an orchestration of Web Services. On the other hand Web Service developers
encapsulate business functionality in Web Services. Both groups are referencing the
same standard in order to potentiate a matching of demand and supply at execution
time of workflows. Workflow definitions can be considered as best practice processes
which represent one part of the business logic of a standard software system.

The marketing layer is represented by a marketplace for workflow definitions and
Web Service offerings. Because Web Service descriptions have to comply with
predefined standards a concurrent offering of Web Services by a variety of providers
and their dynamic use is possible. The utilization layer in this model is represented by
a standard software system for utilizing enterprises which consists of a graphical user

79

interface, a database and a Workflow management system [1]. This system allows the
execution of workflows. The administrator of this system can choose workflow
definitions from the market place and feed them into the workflow management
system. Concrete Web Services are chosen automatically on execution time on the
basis of standardized type descriptions. Finally a user is able to initiate the execution
of workflows and by this to use the system.

Figure 2: Marketing model for best-practice processes based on Web Services

3 Architectural vision statement

Figure 3 shows the vision of a Federated ERP system from the point of view of a
utilizing enterprise. The basic FERP framework consists of a graphical user interface,
a workflow management system, a central enterprise database and several business
components which are encapsulated in Web Services. The workflow management
system is responsible for the execution of business processes which include three
different types of tasks. GUI-tasks describe generic user interfaces for the
communication with end users. Database-tasks describe operations which are related

80

to the data accesses. Web Service tasks include information about the dynamic
invocation of Web Services.

Figure 3: Vision of a Federated ERP system in practice

As shown in figure 3 FERP aims to closely connect various services which can be
implemented by independent providers. This directly implies that the services must
share common understanding of some important aspects, such as what they offer,
what they assume, and how they handle sensitive information. Some aspects can be
predefined in the architecture or system model and implemented, but many others
need to be negotiated and agreed on during system construction, configuration, and
operation.

4 Centralized architecture approach

Figure 4 gives a survey of the centralized architecture of a Web Service-based FERP
system. The architecture consists of several subsystems which are interconnected.
Because one of the main objectives of an FERP system is to integrate business
components of different vendors, all components have to comply with standards. In
this approach these standards are described as XML schema documents. In order to
separate the three different layers of a typical layered architecture of conventional
ERP systems each layer is assigned to its own standard. A more detailed description
of the relationship between the components and the standard documents can be found
in [1].

81

Figure 4: Centralized architecture approach of an FERP system with as UML 2.0 component

diagram

The subsystems of the proposed architecture are the following:

FERP Workflow System (FWfS)
The FWfS coordinates all business processes which have to be described in an
appropriate XML-based workflow language. A workflow in this context is a plan of
sequentially or in parallel chained functions as working steps in the meaning of
activities which lead to the creation or utilization of business benefits. Workflows
implicitly contain the business logic of the overall system. The function types a
workflow in FERP systems can consist of are the following:

• model based user interface functions, e.g. show, edit, select, control
• database access functions, e.g. read, update
• application tasks which are connected to Web Service calls

FERP User System (FUS)
The FUS is the subsystem which implements functions for the visualization of
graphical elements and coordinates interactions with end users. This subsystem is able

82

to generate user screens at runtime. Screen descriptions which have to comply with
the FERP User Interface standard are transformed to an end device-readable format,
e.g. HTML in case of web browsers.

FERP Database System (FDS)
The FDS is the subsystem which implements functions for the communication with
the FERP database. This subsystem is able to interpret XML structures which comply
with the FERP data standard. The interface differentiates between two kinds of
requests. Database update requests contain object oriented representations of business
entities as XML trees. Database read requests contain XML expressions specifying
portions of data to be extracted. In both cases the request parameters have to be
transformed into different types of request statements that vary depending on the type
of database management system (DBMS) which is used. Assumed that a relational
DBMS (RDBMS) is used the underlying data model also has to comply with the
FERP data standard which means that the corresponding table structure has to reflect
the XML-Schema specifications respectively.

FERP Web Service Consumer System (FWCS)
The business logic of FERP systems is encapsulated in so called FERP business
components which are wrapped by a Web Service. The FWCS is the subsystem which
provides functions for the invocation of Web Services. All possible types of FERP
Web Services are specified by the FERP WS standard. This standard contains XML
schema definitions which describe Web Service operations as well as input and output
messages. A Web Service references these types in its WSDL description. Further-
more this subsystem is able to search for Web Services which are defined by a unique
identifier. By this it is possible that different Web Service providers implement the
same business component type as Web Service. Beside the implementation of Web
Service invocation and search functions this subsystem is responsible for the
interpretation and consideration of non-functional parameters. Examples for those
parameters are: security policies, payment polices or Quality of Service (QoS)
requirements on the part of Web Service consumers. The architecture references the
FERP pricing standard which is supposed to enable Web Service providers to specify
Web Service invocation costs.

FERP Web Service Provider System (FWPS)
The FWPS is the subsystem which implements functions for the provision of Web
Services which comply with the FERP WS Standard. The subsystem includes a Web
Server which is responsible for the interpretation of incoming and outgoing HTTP
requests which in turn encapsulate SOAP requests. The subsystem provides business
components of the FERP system as Web Services. A connection to the FERP Web
Service Directory allows the publication of Web Services. Furthermore this
subsystem is responsible for the negotiation of common communication policies such
as e.g. security protocols or usage fees with the requesting client.

FERP Web Service Directory (FWD)
The FWD provides an interface for the publication and the searching of FERP Web
Services. The structure of this directory leans on the FERP WS standard. In this

83

standard Web Services are assigned to categories mirroring the predetermined
functional organization of enterprises.

3 Hierarchical XML schema structure

The proposed architecture is dependent to the specification of different standards. The
next paragraph focuses the standardization of FERP data types and Web Service
operations in the context of FERP systems. Because of the complexity of enterprise
data models and the difficulty to standardize a completed data model we propose a
hierarchical standardization model which allows different abstraction levels. This
model uses XML namespaces for the representation of hierarchical levels and XML
schema documents for the definition of data types and their relationships. The reason
for the usage of XML schema documents is their compatibility with Web Service
Description Language (WSDL) which is the common standard for the description of
Web Services and is already well supported by tools. The interoperability between
FERP Web Services and the FDS is achieved by a transformation of XML schema-
based data model descriptions to SQL-based data model descriptions. Web Service
Descriptions in WSDL reference the FERP data standard by including the appropriate
XML schema documents of the standard. In order to standardize the input and output
messages of FERP Web Services we propose the usage of XML schema documents as
well.

Figure 5 shows the hierarchical XML schema structure of an FERP system and
shows the influence on the systems activities. The left hand side represents different
enterprise sectors which are assigned to XML namespaces. This hierarchy can be
compared to the internal structure of the application logic of conventional ERP
systems which is often mirrored to the navigation structure of their GUI.

The upper half of figure 5 shows the relationships between XML schema
documents and concrete Web Service descriptions. Standardized Web Service input
and output messages (defined in messageTypes.xsd) build the basis for the
standardization of Web Service types (described in serviceTypes.wsdl). The lower
half of figure 5 shows the interactions between the different subsystems of the FERP
system. The system internally creates a new XML schema document (allTypes.xsd)
which includes a copy of all standardized data types that are used in process
definitions. The system has a connection to the server of the FERP standardization
consortium and will be notified in the case that the standard changed. Those changes
are only allowed in terms of extensions. Thereby old versions will be supported
during the whole lifetime of the standard.

The hierarchical structure provides a useful foundation for this requirement
because it is already field-proved in the context of object oriented programming
paradigms like polymorphism, generalization and specialization. The local XML
schema representation will be transformed to a relational representation of the data
model as SQL statement list. In addition to the schema transformation the FDS is able
to transform SQL result sets to XML documents that comply with the FERP data
standard in the case of DATABASE_LOAD requests. On the other hand XML
documents will be transformed to SQL INSERT or UPDATE statements in the case

84

of DATABASE_STORE requests. Both LOAD and STORE functions are provided by
the FDS and can be used by the FWfS.

Figure 5: Hierarchical XML schema structure of an FERP system

Web Service calls are initiated by the FWfS as well (see figure 5). Therefore the
FWfS sends a standardized XML representation of the appropriate input message to
the FWCS. A second XML document contains configuration parameters which
specify the concrete Web Service provider to be chosen by the FWCS. Those

85

parameters include either a URL for a static Web Service call or requirements for a
dynamic call like e.g. a maximum price. An alternative way for the specification of
requirements for dynamic calls is a centralized mapping between Web Service types
and requirements. Once the FWCS chose an appropriate Web Service provider it will
repack this message to a SOAP operation request which includes the standardized
name of the Web Service operation to be invoked. This request will be sent to the
FWPS. After having finished the processing of the business logic the FWPS will
return a SOAP operation response which includes a standardized response message.
Figure 5 shows how this response message is going to be sent back to the FWfS that
primarily initiated the Web Service call.

6 Example process

Figure 6 shows an example process model which is described in YAWL (Yet Another
Workflow Language). In this process model tasks are assigned to one of the three
following function types:

• Database communication (in figure 6 indicated as DB-task)
• End-user communication (in figure 6 indicated as GUI-task)
• Web Service communication (in figure 6 indicated as WS-task)

All other symbols comply with the graphical notation of YAWL. The example
process model demonstrates a workflow for the display of the top-five customers. The
example includes only one Web Service call which is responsible for the creation of a
diagram. The Web Service receives the all contracts of all customers. Having finished
the comparison the Web Service returns a diagram as Base-64-encoded PNG-file. The
next workflow task visualizes this diagram.

The tasks in figure 6 refer to the communication with the connected subsystems.
The interactions between these components are based on standardized communication
languages. A workflow designer is supposed to refer to these standards in order to
ensure the compatibility between workflow definitions and implementations of FERP
client systems. The architecture of a FERP client system is shown in figure 4 and has
to be considered as reference architecture. The standardization process has to cover
the specification of standardized reference interfaces which are provided by these
components and an inclusion of workflow task types which are directly associated to
the invocation of interface operations. Furthermore the standardization of interaction
protocols (by means of languages for the specification of commands to be executed)
has to be done.

Figure 7 shows a screenshot of the graphical user interface of a first FERP system
prototype (FERPxONE) which has been developed in order to verify the practicability
of the proposed architecture approach. The left hand side represents the entry point
for the navigation through a catalogue of workflows which have been registered in the
FWfS and which can be started by a user. The right hand side shows the list of active
tasks a user might select for completion. In the middle all user-relevant process

86

outputs are shown. In this example the input form of the first workflow task of figure
6 is presented to the user.

Figure 6: Process model in YAWL as simplified example for the display of the top-five

customers

Figure 7: GUI view Parameter input

The necessary parameters in this case are a time period which marks the start and end
dates of customer contracts and the number of top-customers which have to be shown

87

in the opposing diagram. The next two workflow tasks will request the respective
contracts by communicating with the FDS (see figure 6).The FDS will return an XML
document which contains a list of all customer contracts.

The next workflow task encapsulates all relevant parameters3 in a web service
operation call where the standardized Web Service type is referenced and sends it to
the FWCS. The FWCS sends a UDDI search request the FWD by submitting the Web
Service type as name of the Web Service to be found. The FWD returns a list of
references to Web Service descriptions as URLs. These descriptions include specific
information about the price of operations calls as well as a reference to a WSDL
document. The FWCS chooses one of the Web Services on the basis of a price
comparison and sends an invocation request to the Web Service. The response
message includes content of a PNG-File as Base64-encoded String which is decoded
and stored in the FUS. Figure 8 shows how the result is presented to the user in the
next step.

Figure 8: Web Service result

7 Conclusions and Outlook

Comparing distributed ERP systems and ERP systems running on only one
computer, the distributed systems offer a lot of advantages. Particularly small- and

3 Relevant parameters are the Web Service type as string, the operation name and an

information object which includes the input parameters for the Web Service invocation.

88

medium sized Enterprises (SMB) benefit from using shared resources. The example
in paragraph 6 shows how the system is able to react on market changes by comparing
the prices of Web Service operation calls. However, the design of distributed system
architectures is subject to a number of problems [2, 3]. The paper addresses the
problem of redundant data in business application systems of independent vendors
presents a basis for the standardization of ERP system components that are provided
as Web Services. A standardized data model builds the basis for message and service
standardization. The hierarchical structure of the presented standard advances the
reuse of existing data types. Furthermore we presented a reference architecture of
FERP systems which reduces the necessity of data transformation functions in
business process descriptions. The standardization of the syntactic level is only the
first step. Semantic, Behaviour, synchronization and quality of Web Services must
flow into the definition of an overall ERP system standard. The future work must pick
up these problems to realize the vision of a loosely coupled ERP system which allows
the dynamic outsourcing of applications [5, 7] and the combination of software
components of different providers.

References

1. Brehm, N., Marx Gómez, J.: Web Service-based specification and implementation of
functional components in Federated ERP-Systems. In: Abramowicz, W. (ed.): 10th
International Conference on Business Information Systems. Springer, Poznan, Poland
(2007) 133-146

2. Brehm, N., Marx Gómez, J.: Secure Web Service-based resource sharing in ERP networks.
International Journal on Information Privacy and Security (JIPS) 1 (2005) 29-48

3. Brehm, N., Marx Gómez, J.: Standardization approach for Federated ERP systems based on
Web Services. 1st International Workshop on Engineering Service Compositions,
Amsterdam (2005)

4. Brehm, N., Marx Gómez, J.: Federated ERP-Systems on the basis of Web Services and P2P
networks. International Journal of Information Technology and Management (IJITM) (2007)

5. Brehm, N., Marx Gómez, J., Rautenstrauch, C.: An ERP solution based on web services and
peer-to-peer networks for small and medium enterprises. International Journal of
Information Systems and Change Management (IJISCM) 1 (2005) 99-111

6. Cuomo, G.: IBM SOA “on the Edge”. ACM SIGMOD international conference on
Management of data. ACM Press, Baltimore, Maryland (2005) 840-843

7. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H., Polan, M.,
Speitzer, M., Youssef, A.: Web services on demand: WSLA-driven automated management.
IBM SYSTEMS JOURNAL 43 (2004) 136-158

8. Vogt, C.: Intractable ERP: a comprehensive analysis of failed enterprise-resource-planning
projects. Software Engineering Notes 27 (2002) 62-68

89

Resource Metrics for Service-Oriented
Infrastructures

Dmytro Rud1, Andreas Schmietendorf1,2, and Reiner Dumke1

1 Software Engineering Group, Department of Distributed Systems,
Faculty of Computer Science, Otto von Guericke University of Magdeburg,

Universitätsplatz 2, 39106 Magdeburg, Germany
{rud, schmiete, dumke}@ivs.cs.uni-magdeburg.de

2 Berlin School of Economics, Faculty of Company-Linked Programmes,
Neue Bahnhofstr. 11-17, 10245 Berlin, Germany

schmiete@fhw-berlin.de

Abstract. Resource quality is one of the dimensions of software quality
assessment and must be appropriately addressed in service-oriented ar-
chitecture. In this paper some resource metrics for distributed systems
that conform to the service-oriented concepts will be proposed. Simi-
larities and differences between service-oriented, component-based and
web-based software engineering approaches will be analysed in the con-
text of involved resources and their quality impact.

1 Introduction

Software quality assessment is an important objective of software engineering
and has big relevance in the context of SOA as well. The three dimensions
of software quality are product, process and resources. In this paper we will
present our view on significant run-time resource properties in service-oriented
infrastructures.

Note that service-oriented architecture is an approach/an ideology, not a
product. Therefore it is impossible to attribute neither resources nor resource
metrics to it. Instead of that, the metrics introduced in this paper relate to dis-
tributed software systems built in accordance with SOA – i.e. implementations
of the SOA principle. These distributed systems will be hereinafter referred to
as “service-oriented infrastructures” or “service-oriented systems” (simply “sys-
tems” for short).

We will consider the following resources in service-oriented systems:

Network infrastructure. Its concrete logical topology can be point-to-point,
bus (e.g. when a Enterprise Service Bus is used as an intermediate access
layer), or some combination of them.

Service provider nodes. Each node is connected to the network and hosts a
software infrastructure (application server(s)) that runs the services (service
instances) and provides access to service endpoints and service metadata.

90

Services – pieces of software running on the nodes, whose functionalities and
metadata are uniformly accessible for clients through the network.

Service functionalities (reactions to classes of incoming messages).
Under RPC3-oriented interaction style this corresponds to operations’ in-
vocations, but the dominant interaction style today is document-oriented
(i.e. asynchronous messaging), therefore the term “functionality” seems to
be more correct here. Note also that some service design approaches con-
sider every service to possess only one functionality (i.e. to provide a single
operation when adhering to the RPC-oriented style). In this case the terms
“service” and “service functionality” are synonymous.

There are also a few generalized metrics which relate to the system as a whole.
Due to dynamic nature of service-oriented systems, the boundary between

product and resource, i.e. between design-time (static) and run-time (dynamic)
properties, is somewhat diffused. For example, message sizes can be considered
as either product or resource metrics.

Metrics proposed in this paper are intended to help answer the following
questions:

– What is the current utilization of network and nodes?
– How much is it influenced by an invocation of a service’s functionality?
– Are service versions managed well?
– What is the performance behavior of elementary and composite services?

The rest of the paper is organized as follows. The next section gives a review
of related work. Section 3 discusses the question of the applicability of resource
metrics from other distributed software architectures in the context of SOA. Our
metrics are introduced in Section 4. Section 5 concludes the paper.

2 Related Work

Quality assessment and assurance of service-oriented infrastructures constitute
an actual research topic. The product quality aspect, in particular service design
guidelines, is well discussed in [1, 2]. We had presented a set of product metrics
in [3]. As mentioned in the introduction, some product metrics can be relevant
in the resource context as well, therefore some metrics from [3] will appear in
this paper too. A formal quality model of single web services is described in [4],
web services availability and performance problems are examined in [5].

Although there exist many tools on the market that monitor and analyse
resource utilization in service-oriented systems, this subject is practically not in
the least reflected in scientific literature. One of likely causes for this situation is
the fact that there are many ways to implement SOA, and it is thus complicated
to develop a resource quality model that would fit for all of them.

Explanation of resources’ impact on performance and availability of web ap-
plications and client-server systems is given in [6]. Caching and XML processing
3 Remote procedure call

91

issues are discussed in [7]. Author of [8] asserts that the rate of valid transaction
completion should be considered as the key run-time performance metric for
SOA environments.

Resource metrics are actually used by service management frameworks which
provide functionalities like service performance monitoring or service matchmak-
ing. These frameworks include, for example, WSLA [9], WSOI [10], WSMN [11],
WS-QoS [12], and many other industrial and academical research projects [5].

3 SOA’s Resemblances to Component- and Web-Based
Applications

From the resource consumption point of view, service-oriented infrastructures
share some properties with component-based [13, 14] and web-based [6] applica-
tions. Therefore arises the question of whether and to what extent is it possible to
apply existing resource metrics from the component-based software engineering
(CBSE) and web applications domains in the context of SOA. This applicability
seems to be substantial, but the following conceptual differences between the
respective approaches must be taken into account:

– Services can be composite (i.e. represent structured collaborations of other
services, possibly with many “cascading” levels), while component-based and
web-based applications do not support this technique as a rule.

– In CBSE it is impossible that many versions of a component are available
simultaneously (in web engineering there is no version concept at all), but
this can be the case in a service-oriented system.

– Unlike components, services involved in a transaction (in a composite service
invocation, a business process, a workflow) can reside on different nodes in
the network (thus possibly in different responsibility domains) and do not
share single address space. Communication between services is thus unreli-
able and relatively slow, and the data transferring time cannot be neglected.

– Services represent functionalities and are generally stateless by design (like
web resources, but unlike components)4, therefore replication and load balan-
cing can be arranged. Replication mechanisms give the possibility to recover
a service collaboration in the case of partial failure.

– Unlike both component-based and web-based applications, service interac-
tions can proceed asynchronously. Therefore performance metrics like re-
sponse time are not always available.

– Non-functional run-time properties of services are often explicitly and for-
mally (i.e. machine-readably) described in form of service or operational level
agreements (SLA or OLA, respectively). Service providers are responsible for
SLA fulfillment. This approach is rather uncommon in component-based and
web-based environments.

– An especial resource in service-oriented systems is services’ metadata.
4 Some types of services, e.g. web services, can use session management mechanisms,

but this approach is not widely adopted.

92

4 Introduction of the Metrics

In this section we describe our resource metrics for service-oriented infrastruc-
tures. The following three resource quality aspects will be considered in this
connection: performance, service versioning, and reliability. Each aspect will be
discussed in its own subsection.

4.1 Performance

The main performance characteristic of the network is its (current) throughput.
It depends on the network topology. When a centralized bus like ESB is used,
the throughput can be considered to be consistent in the whole system; in this
case, the perfomance is determined for the most part not by throughputs be-
tween connected components and the ESB, but by the ESB’s internal processing
mechanisms like XSLT transformations, intermediate storage, security, transac-
tion management, ans so on. However, if the ESB is used in an inter-enterprise
environment, network latencies for the communication links between the bus and
(external) components can have to be considered as well.

In the latter case, as well as in the absence of a centralized middleware, i.e.
when every link between a pair of nodes has its own throughput value, network
performance metrics relate to point-to-point throughput.

For these two variants we correspondingly introduce the following metrics:

CTY – Consistent Throughput in the System,
T2N [n1, n2] – Throughput between 2 Nodes n1 and n2.

Unit of measurement for them is bytes/sec.
Performance of a node is first of all characterized by its (current) utilization,

defined as fraction of time during which the node is busy with serving incoming
requests. Other performance indicators are message rates and network traffic
processed by the node. These properties are covered by the metrics:

UN [n] – Overall Utilization of the Node n,
IMRN [n] – Incoming Message Rate of the Node n (messages/sec),
OMRN [n] – Outgoing Message Rate of the Node n (messages/sec),
ITN [n] – Incoming Traffic of the Node n (bytes/sec), and
OTN [n] – Outgoing Traffic of the Node n (bytes/sec).

(The four latter metrics have been already introduced in [3].)
As mentioned above, utilization of nodes constitutes from fractions of time

used to serve individual requests (to execute certain functionalities in response
to incoming messages). Average sizes of such fractions (“processing costs” of
average individual requests) can be considered as performance metrics on deep
specification level. In the network throughput context, every service functionality

93

is characterized by sizes of input and – in the case of RPC interaction style –
output messages5. In order to be compatible with notational conventions used
in our product metrics proposal [3], we will use here the term “operation” in the
sense of “service functionality”. Corresponding metrics are:

AUO[m] – Average Utilization (of the node that provides the
corresponding service) caused by the Operation m (seconds),

AIMSO[m] – Average Input Message Size for the Operation m (bytes),
AOMSO[m] – Average Output Message Size for the Operation m (bytes).

If the service under consideration is composite, invocation of its functionali-
ties imply a number of cascading calls to subordinate services. These calls cause
additional utilization of corresponding nodes. To have an exact picture of the
influence of an invocation upon utilizations of all N nodes of the system, the
tuple

〈AUO1[m], AUO2[m], . . . , AUON [m]〉

should be analysed instead of the consideration of the single node. However it is
obvious that the white-box view is necessary to obtain these value.

One of possible scenarios of SOA implementation is a system consisting of a
set of service providers, a business process integrator and a set of clients of the
latter, i.e. business process consumers. The mission of the integrator is to select
an optimal set of third-party services, to orchestrate a composite service from
them by filling out a business process description template with all information
necessary to start the process – i.e. with partner links, addresses, etc., and finally
to provide the latter to the customers.

The current and maximal possible numbers of simultaneously running busi-
ness processes (“top-level transactions”) can be important generalized indicators
for the integrator. Therefore we introduce two corresponding metrics:

ANBPY – Average Number of Business Processes in the System,
BPCY – Business Processes’ Capacity of the System.

To calculate the business processes’ capacity of the system, deep analysis of
the processes and their environment is necessary. An initial approach for such
analysis was proposed in [15].

Other generalized metrics (already mentioned in [3]) give a “bird’s-eye view”
on the system’s performance:

MRY – Overall Message Rate in the System (messages/sec),
NTY – Overall Network Traffic in the System per one unit of time

(bytes/sec).

5 Fault messages should be taken into account as well

94

Note that we do not take into account possible use of caching mechanisms.
Firstly, it is complicated to determine caching impact on resources utilization
in technology-independent manner. Secondly, it is not very clear at all what the
caching can mean under asynchronous document-oriented interaction style (as
opposed to synchronous RPC-oriented style). For roughly the same reason we
do not discuss scalability issues here.

4.2 Service Versioning

The possibility of different versions of the same service to be active simultane-
ously is a distinguishing feature of service-oriented systems. Version management
has its quality aspects and thus must be addressed by software engineering in
order to avoid negative consequences of poor versioning organization. In particu-
lar, a service with many short-lived versions can complicate both its maintenance
and development of clients.

Two types of resources are appropriate in this context – there are installed
service versions per se and services’ metadata, i.e. formal (machine-readable)
descriptions of services’ functional and non-functional properties. A metadata
repository (or registry) is an essential component of service-oriented infrastruc-
tures, serving for loose coupling and dynamic binding, and enabling agility in
that way.

For individual services, the following versioning metrics may be relevant:

CV S[s] – Count of (simultaneously deployed) Versions of the Service s,
ALTV S[s] – Average Life Time of Versions of the Service s.

Their counterparts on the system level are:

ACSV Y – Average Count of Services’ Versions in the System,
ALTSV Y – Average Life Time of Services’ Versions in the System.

In the absence of any versioning mechanisms, the only possible metric is

MCFS[s] – Metadata Change Frequency of the Service s.

Service’s metadata instability can break the work of existing clients and
should be avoided. Proper versioning mechanisms should be used instead.

One of possible services’ metadata types are service level agreements (SLAs),
which have been already mentioned in this paper. The next subsection discusses
SLA fulfillment issues and introduces a few SLA-related metrics.

4.3 Reliability

Service-level agreements are parts of service contracts and uniformly describe
non-functional properties of the services. Sustained fulfillment of the SLA guar-
antees can be considered as the main quality criterion of a service.

Three conventional SLA fulfillment states can be distinguished:

95

Green area – All SLA conditions are consistently met,
Yellow area – Although SLA conditions are met, indicators (for example, some

aggregated performance indices) come near to the prescribed threshold,
Red area – SOA conditions are not met.

On the basis of these areas we define the following metrics:

– SLACS[s] – SLA Compliance of the Service s, measured as the fraction of
time during which all SLA fulfillment indicators of the service lie in green
and/or yellow areas,

– SLAV DS[s] – SLA Violation Danger of the Service s, measured as

fraction of time in yellow area
fraction of time in green and yellow areas

.

Faults (improper or missing reactions to incoming messages) are one of the
most probable causes of SLA violations. Possible fault manifestations are:

– The service is unable to receive the incoming message,
– The service responds with a fault message,
– The service sends no response at all (for RPC-styled interaction),
– The non-fault response comes too late.

Alternatively to the SLA-related metrics described above, the following met-
rics can be used to describe faults which happen in the system, i.e. to address a
narrower and more technical view on SLA fulfillment (and to avoid subjectivity
caused by the choice of SLA fulfillment states’ boundaries):

FRO[m] – Fault Rate of the Operation m per one unit of time. This value

can be calculated as
count of faults

count of received messages
, and

FRY – Overall Fault Rate in the System.

Turning back to the business process integrator scenario (see Subsection 4.1),
we can draw a parallel between these fault metrics and the rate of valid top-level
transactions (composite business processes) completion metric proposed is [8].
Fault rates of the composed services can be considered as most important quality
indicators of the business process integrator’s work.

5 Conclusions

In this paper we have presented some resource metrics for service-oriented in-
frastructures. From the viewpoint of resource utilization, there are not so much
differences between service-oriented, component-based and web-based applica-
tions, but their nevertheless exist, and we have tried to take them into account
in our analysis.

96

Resource Performance Versioning Reliability
metrics metrics metrics

Network CTY, T2N,
MRY, NTY

Service provider nodes UN, ITN, OTN,
IMRN, OMRN

Services CVS, ALTVS, SLACS,
MCFS SLAVDS

Service functionalities AUO, AIMSO, FRO
(operations) AOMSO

System as a whole ANBPY, BPCY ACSVY, ALTSVY FRY
Table 1. Classification of introduced metrics

Table 1 systematizes the proposed metrics and shows the correspondence
between various quality aspects covered by the metrics and corresponding re-
sources.

The proposed set of metrics is definitely not exhaustive, but it constitutes a
basis for discussion and for subsequent work in this field.

The metrics are formulated in a technology-independent manner, specific
technologies and measurement procedures are out of scope of the paper. There-
upon certain adjustment can become neccessary to make the metrics applicable
in the context of concrete systems.

One of evident possible improvements of our resource quality model can lie in
the consideration of the temporal aspect. For example, message rates and fault
rates can be time-dependent. This peculiarity can be very important if we have
to develop system performance models like the one in [15]. But standard mea-
surement scales (nominal, ordinal, interval, ratio, and absolute) do not permit to
use functions (e.g. statistical distributions) as metrics’ values. The same applies
to tuple-structured data as occurred in Subsection 4.1.

References

1. Artus, D.J.N.: SOA realization: Service design princi-
ples. IBM developerWorks (February 2006) http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design/.

2. Hess, A., Humm, B., Voß, M.: Regeln für serviceorientierte Architekturen hoher
Qualität. Informatik Spektrum 29/6 (Dezember 2006) 395–411 (“Rules for service-
oriented architectures of high quality”, in German).

3. Rud, D., Schmietendorf, A., Dumke, R.: Product metrics for service-oriented
infrastructures. In Abran, A., Bundschuh, M., Büren, G., Dumke, R., eds.:
Applied Software Measurement. Proc. of the International Workshop on Soft-
ware Metrics and DASMA Software Metrik Kongress (IWSM/MetriKon 2006).
Magdeburger Schriften zum Empirischen Software Engineering, Potsdam, Ger-
many, Hasso-Plattner-Institut, Shaker Verlag (November 2006) 161–174

4. Thielen, M.: Qualitätssicherung von Webservices. Entwurf eines allgemeinen
Qualitätsmodells für eine Webservice-Zugriffsschicht. Master’s thesis, Universität

97

Koblenz-Landau (2004) (“Quality assurance of web services. Development of a
generic quality model for a web service access layer”, in German).

5. Rud, D.: Qualität von Web Services: Messung und Sicherung der Performance.
VDM Verlag Dr. Müller, Saarbrücken (2006) (“Quality of web services: Measure-
ment and assurance of performance”, in German).

6. Menascé, D.A., Almeida, V.A.F.: Capacity planning for web services: metrics,
models, and methods. Prentice Hall (2002)

7. Cohen, F.: FastSOA: The way to use native XML technology to achieve service
oriented architecture governance, scalability, and performance. Morgan Kaufmann
Series in Data Management Systems. Elsevier Books, Oxford (January 2007)

8. Noel, J.: Transaction completion: The new performance metric for ser-
vice oriented architecture environments. Technical report, Ptak, Noel
& Associates (2005) http://www.ptaknoelassociates.com/content/library/2005/
Certagon transaction completion.pdf.

9. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig,
H., Polan, M., Spreitzer, M., Youssef, A.: Web services on demand: WSLA-
driven automated management. IBM Systems Journal 43(1) (2004) 136–158
http://www.research.ibm.com/journal/sj/431/dan.pdf.

10. Tosic, V.: Service Offerings for XML Web Services and Their Man-
agement Applications. PhD thesis, Department of Systems and Com-
puter Engineering, Carleton University, Ottawa, Canada (August 2004)
http://flash.lakeheadu.ca/∼vtosic/TosicThesis-Final.pdf.

11. Machiraju, V., Sahai, A., van Moorsel, A.: Web services management network:
An overlay network for federated service management. Technical Report HPL-
2002-234, HP Labs (2002) http://www.hpl.hp.com/techreports/2002/HPL-2002-
234.pdf.

12. Tian, M.: QoS integration in Web services with the WS-QoS framework. PhD
thesis, Fachbereich Mathematik u. Informatik, Freie Universität Berlin (November
2005) http://www.diss.fu-berlin.de/2005/326/index.html.

13. Gao, J.Z., Tsao, H.S.J., Wu, Y.: Testing and quality assurance for component-
based software. Artech House (2003)

14. Szyperski, C.: Component software: Beyond object-oriented programming. Addi-
son Wesley (1998)

15. Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of WS-BPEL-based
web service compositions. In: Proc. of the IEEE Service Computing Workshops
(SCC 2006), Los Alamitos, CA, USA (September 2006) 140–147

98

Model Driven Testing of SOA–based Software

Chris Lenz, Joanna Chimiak–Opoka, Ruth Breu

Quality Engineering Research Group
Institute of Computer Science, University of Innsbruck

Technikerstrasse 21a, A–6020 Innsbruck
chris.lenz@uibk.ac.at

Abstract. Specification and implementation of tests for complex, multi–
user systems, like those based on SOA, is a demanding and time–con-
suming task. To reduce time and effort the specification of tests can be
done at the model level. We propose platform independent test specifi-
cation with our extension of the UML Testing Profile. The three phases
of our approach: test design, generation and execution, are explained
on an exemplary simple application. We show the differences and simi-
larities of a desktop and a web services variant of the application in
context of all phases. At the model level the approach abstracts from
platform specific information, nevertheless this information is provided
at the test infrastructure level of a proposed architecture. Based on the
example application we point out extension possibilities of general char-
acter (templates, data pools) and specific for web services (integration
with WSDL, BPEL).

1 Introduction

Testing is an important and demanding task, and the continuously increasing
size and complexity of software systems make the testing task more complex
and increase the size of test code [1,2]. In the field of software development
the complexity of systems has been reduced by using abstract specifications.
Models are used to represent the more complex entities to understand, com-
municate, explore alternatives, simulate, emulate, calibrate, evaluate and vali-
date software [3]. Therefore it is a logical consequence to represent test code as
models, too. In the case of test models all advantages mentioned before are pro-
vided. The benefit of models lies in their abstractness as opposed to implementa-
tion specific concreteness of code [4]. Because of used technologies or platforms
code needs to contain implementation specific information. By defining domain
specific languages (e.g. UML Profiles) and corresponding interpretations, it is
possible to represent code in a very compact way. These are the main principles
of Model Driven Architecture (MDA) [5,6] and Model Driven Software Deve-
lopment (MDSD) [4], where the models represent exactly the generated code.
The models are compact and expressive. The compactness and expressiveness
are achieved by using of a domain specific language (DSL), the semantics of
the DSL is specified by a definition of the underlying transformation, which

99

2

represent the conversion from model to code. The models provide an easier to
understand overview for a human user, but the complete information needed by
tools is captured in the transformation and the code. MDA and MDSD aim at
generating code out of models, whereby the big benefit of such approaches is
the late technology binding. For example the decision of using Plain Old JAVA
Objects (POJO1) or J2EE2 must not be done in early development stages, a
change of technology can be done more easily in model driven approaches than
in code driven approaches. That is because in model driven approaches only the
transformations have to be changed, and the code can be regenerated.

Model driven test development offers the same benefits. In the specification
of tests there are only marginal differences between testing methods for different
target platforms, e.g. POJO classes and web services (WS). In both cases only
the access to the tested methods is different, we have local method calls for
POJO and for WS remote calls.

In the context of this paper we use a definition of Service Oriented Archi-
tecture (SOA) given in [7]. SOA is defined as an architecture which is based on
services (components). Each component can be seen as a logical unit of work
that fulfils five properties:

1. It can be used in multiple projects,

2. It is designed independently of any specific project and system context,

3. It can be composed with other components,

4. It is encapsulated, i.e. only the interfaces are visible and the implementation
cannot be modified,

5. It can be deployed and installed as an independent atomic unit and later
upgraded independently of the remainder of the system.

For the testing purpose the points 2, 4 and 5 are the most relevant ones.
Independence is important for testing without other components, the encapsu-
lation and definition of interfaces is useful for the identification of test cases. The
possibility to install components independently allows to set up test systems for
the component under test.

Model driven test development does not oblige which software development
methodology has to be used. It suits to testing first methodologies like Agile [8]
and Lean [9] development as well as for MDSD.

The rest of the paper is organized as follows. In section 2 we introduce our
framework for model driven testing and present its architecture. The testing
approach is divided into three phases: design, code generation and execution,
which are briefly explained in section 2 and presented on the running example
in section 3. In section 4 we explain further extensions and point out possible
future research topics. Section 5 presents concluding remarks.

1 http://www.martinfowler.com/bliki/POJO.html
2 http://java.sun.com/javaee/

100

http://www.martinfowler.com/bliki/POJO.html
http://java.sun.com/javaee/

3

2 The Telling Test Stories Framework

Telling Test Stories has the goal to bring requirement specifications closer to the
test specifications. The requirements specify how software should work, which
actors are involved and business classes are used. Tests are used to assure that
the software reacts in the specified manner.

Software testing can be performed at different levels along the development
process. The three major levels can be distinguished: unit, integration and system
tests [10]. Unit testing verifies the functioning of isolated software pieces, which
are separately testable. Integration testing verifies the interaction between soft-
ware components. System testing is concerned with the behavior of a whole
system. Although Telling Test Stories approach can be used for all types of tests
mentioned above, it is dedicated for integration and system testing.

Figure 1 illustrates the architecture of Telling Test Stories. The components
depicted in the figure can be assigned to the three phases of the process, namely
design, generation and execution. The test specification and the transformation
model are both created at design time. Then the test code generation out of
the test specification is supported by the Open Architecture Ware framework
(OAW3) and the transformation templates (transformation model in Figure 1).
The output of the generation phase is test code. These three artefacts are all
platform independent, that means it does not matter which technologies are used
to develop the system.

The remaining components are related to the execution phase. A test engine
is required for the test execution, in the following use cases the JUnit [11] frame-
work was used. The execution engine is used to test a given system, also called
System Under Test (SUT). In general it is not possible to test the SUT in a
universal manner, and therefore some glue code is needed between test code and
SUT. In other test approaches like Fitnesse [12,13] this glue code is called fixture.
The fixture code encapsulates code which is needed to simplify the test code.
The transformation also provides platform specific resources as output, they are
for example used to configure the fixture, provide mock and stub4 classes.

Design Phase In this phase the requirement specification as well as the tests are
designed and the code generation templates are developed. The test specification
is developed as UML diagrams, to specify the SUT, TestContexts or TestCases our
approach is strongly oriented on the OMG5 UML Testing Profile (U2TP) [14].
We extended the syntax of U2TP by an additional stereotype for Message called
�Assert� (c.f. Figure 2). Despite this extension we remain conform to the U2TP
proposal.

In MDA we distinguish between platform independent (PIM) and platform
specific model (PSM). In our approach the requirement specification and also
the test models can be seen as PIM, the code transformation templates represent

3 http://www.eclipse.org/gmt/oaw/
4 http://www.martinfowler.com/articles/mocksArentStubs.html
5 Object Management Group http://www.omg.org/

101

http://www.eclipse.org/gmt/oaw/
http://www.martinfowler.com/articles/mocksArentStubs.html
http://www.omg.org/

4

GenerationTest
Design

Test
Execution

Transformation
Model

FixtureResource

Test
Code

SUT

Test
Specification

Model

PlatformPlatform SpecificPlatform Independent

Fig. 1. Architecture of Telling Test Stories

<<stereotype>>

Assert

+expected

<<metaclass>>

Message

Fig. 2. Definition of �Assert�

also the PIM but also some parts of the PSM, because it allows on the one hand
to generate platform independent test code and on the other hand platform
specific resources. The test execution platform does not have to be the same as
the platform of the tested system. The templates mainly represent the platform
of the test system. In the following case study JUnit was used as a test framework.
More details are given in Section 3.1.

Code Generation Phase The code generation combines the models and the
templates to generate code. In some cases the two artefacts mentioned do not
suffice to generate a complete test code, missing information must be provided
either by additional implementation in code protected regions or specified as
extra test data, e.g. in a tabular form. Therefore it is very important to select
a high featured code generation tool which allows several possibilities for input
data. Detailed description is given in Section 3.2.

Execution Phase The last phase in model driven test development is the exe-
cution of the tests. It is possible to consider different system platforms, the tested
system can be a standalone application, a distributed or concurrent system. In
the following use cases we examine standalone applications and distributed ser-
vices. We designed tests for a temperature converter implemented as a WS,
the test fixture code is used to encapsulate the remote method calls. It is also
possible to use the fixture code to hold predefined test actions, like initialisation

102

5

code for databases, or to hold more complex test states which can be evaluated
in the test code. Fixtures are very helpful in earlier test stages, if the SUT is not
fully implemented and preliminary tests are made, it is possible to implement
features very rudimentary in the fixture code. For example, if we test a sequence
of web service calls, and one of these web services is not implemented yet, we
can implement a rudimentary functionality of this web service in the fixture.
Therefore it is possible to test complex processes even if implementation is not
complete. Details are given in Section 3.3.

3 The converter example

In this section the application of the Telling Test Stories approach is demon-
strated on an exemplary application. In the following subsections the three
phases of the approach are described using an example.

3.1 Test Design Phase

The Telling Test Stories approach starts with the definition of the System Under
Test (SUT). In the simplest case this could be one class with a few methods.

<<SUT>>

Converter

+celsiusToFarenheit(celsius : float)
+farenheitToCelsius(farenheit : float)

Fig. 3. System Under Test

Figure 3 illustrates the definition of a temperature Converter class. It is not
specified if this is implemented as plain JAVA client application or as web service.
For the definition of a test suite for the temperature converter this is negligible.
This information is needed first when the code for the test suite is implemented
or generated.

In Figure 4 the definition of a test suite in UML is illustrated. Part (a) shows a
class which is annotated with the stereotype �TestContext�. This indicates that
the class ConverterTest is a test suite which can contain zero to many TestCases,
test cases are defined by methods annotated by the stereotype �TestCase�.
Each test case can have a deposited behavioural diagram like a sequence or
activity diagram. Parts (b) and (c) of Figure 4 show the two sequence diagrams
of the farenheitToCelsius and the celsiusToFarenheit test cases, respectively. The
test cases are described as follows.

103

6

farenheitToCelsius The test method calls the temperature Converter method:
farenheitToCelsius(celsius:float):float. This implies that an instance of the Con-
verter class was created. The converter is called with the farenheit value 41f

and the test expects a return value of 5f ((b) in Figure 4).
celsiusToFarenheit This test works near the same like the farenheitToCelsius

one. The celsiusToFarenheit method of the Converter is called with 5f and
the expected return value is 41f ((c) in Figure 4).

<<TestContext>>

ConverterTest

<<TestCase>>+testCelsiusToFarenheit()
<<TestCase>>+testFarenheitToCelsius()

(a)

<<TestContext>>

 : ConverterTest
<<SUT>>

 : Converter

celsiusToFarenheit(celsius="5f")1:

<<Assert>>
{expected = 41f}

(b)

<<TestContext>>

 : ConverterTest
<<SUT>>

 : Converter

farenheitToCelsius(farenheit="41f")1:

<<Assert>>
{expected = 5f}

(c)

Fig. 4. Test Specification

It is significant that at test design time it is not relevant what the target
language and platform of the implementation of temperature converter is. It
could either be implemented in C# or JAVA and as desktop application or web
service.

3.2 Test Code Generation Phase

As mentioned before, it does not matter in which technology the Converter is
implemented. We have implemented two variants of the system a plain JAVA
client application and a web service. The conversion from model to code has
to consider implementation details. For the conversion we use the MDSD tool
Open Architecture Ware. The tool is able to interpret the models, and generate
code out of them. The transformation is a template based approach.

1 public class ConverterTest {

2 @Test

104

7

3 public void testCelsiusToFarenheit()

4 throws RemoteException {

5 // Definition Block

6 ConverterFixture c = new ConverterFixture ();

7 // Message Block

8 assertEquals (41f, c.celsiusToFarenheit (5f));

9 }

10

11 @Test

12 public void testFarenheitToCelsius()

13 throws RemoteException {

14 // Definition Block

15 ConverterFixture c = new ConverterFixture ();

16 // Message Block

17 assertEquals (5f, c.farenheitToCelsius (41f));

18 }

19 }

Listing 1.1. Generated test suite for the plain java and webservice
implementation.

As show in Figure 1, out of the test specification model a platform indepen-
dent test code is generated. For our example this is listed in Listing 1.1. This
implementation is straightforward, and uses the JUnit testing framework as test
engine. The test suite implements for each test case a new method, which is an-
notated with @Test. Each test case consists of two blocks, the definition block,
and the message block.

The definition block defines for each class used in the sequence diagram a
new object. An object can be instantiated with its default constructor or
one defined explicitly in the sequence diagram by a message annotated with
stereotype �Constructor�.

The message block represents a method call for each message in the sequence
diagram. If the message is annotated with the stereotype �Assert�, the
result of the method call is checked against an expected result.

Platform independent in this case means independent on the technology used
in the SUT, clearly it has the restrictions of the used test execution engine. In
our case the test execution engine is JUnit, which implies that the tests have to
be written in JAVA. The code in Listing 1.1 can now be used to test the plain
java application or the web service. The test does not reference the SUT it self,
it works on the SUT fixture, which fills the gap between the test code and the
SUT.

Plain Java The plain java test is a very simplified test, the ConverterFixture

in this case is an Adapter, which routes the methods calls of the fixture to the
methods of the Converter instance (e.g. Listing 1.2).

105

8

1 public class ConverterFixture {

2 private Converter converter = null ;

3

4 public ConverterFixture () {

5 _initConverterFixture ();

6 }

7

8 private void _initConverterFixture () {

9 converter = new Converter ();

10 }

11

12 public float celsiusToFarenheit (float celsius) {

13 if (converter == null)

14 _initConverterProxy ();

15 return converter . celsiusToFarenheit (celsius);

16 }

17

18 public float farenheitToCelsius (float farenheit) {

19 if (converter == null)

20 _initConverterProxy ();

21 return converter . farenheitToCelsius (farenheit

);

22 }

23 }

Listing 1.2. Test fixture for the plain java implementation.

If the fixtures are simple and follow a well known principle like in this case
(create for each SUT class a fixture class, provide all constructors of the original
class and instantiate an original class in it, provide all original methods an route
the method calls to the original class), it is also possible to generate the fixtures
out of the test specification. This is shown in Figure 1 by generating resources.

Web Services Listing 1.3 illustrates a code snippet of the test fixture used for
the web service implementation. The only difference in this Listing to the Listing
1.2 is the changed initConverterProxy method.

The ConverterFixture is the entry point for a couple of classes which encap-
sulate the remote method calls to the converter web service. These fixture or also
called proxy classes are generated by the Eclipse Web Tools Platform project6.

Also this fixture classes can be generated in the generation phase.

1 ...

2 private void _initConverterProxy () {

3 try {

4 converter = (new wtp. ConverterServiceLocator()).

getConverter ();

5 if (converter != null) {

6 WTP http://www.eclipse.org/webtools/

106

http://www.eclipse.org/webtools/

9

6 if (_endpoint != null)

7 ((javax.xml.rpc.Stub)converter)._setProperty ("javax

.xml.rpc.service .endpoint .address", _endpoint);

8 else

9 _endpoint = (String)((javax.xml.rpc.Stub)converter)

._getProperty ("javax.xml.rpc.service. endpoint .

address");

10 }

11

12 }

13 catch (javax.xml.rpc.ServiceException serviceException)

{}

14 }

15 ...

Listing 1.3. Code snippet of the test fixture for the web service implementation.

3.3 Test Execution Phase

The execution of the generated tests depends on the underlying test framework.
JUnit and Fitnesse provide tools to execute test cases and report results. The
demanding task is the setup of a test environment, which allows testing of ap-
plications of different types like desktop, distributed or concurrent systems. In
general it is possible to use existing technologies (e.g., JUnit or Fitnesse) and
approaches (e.g., [15]) to test distributed or concurrent systems, nevertheless the
tool support is not so mature like for non–distributed systems.

In our example we used JUnit as test execution engine, but in the case of
distributed or concurrent systems a test system, like sketched in Figure 5, has
to be used. The test server coordinates the execution of the tests. Each test stub
works autonomously. The server aggregates the test results and represents them
in an appropriate manner, e.g., like the green bar of JUnit.

Fig. 5. Proposal of a distributed test execution system

107

10

4 Further Extensions

The use case of the previous section illustrates in simplified manner the idea of
our approach. In this section we provide a few extensions of general character
(Sections 4.1 and 4.2) and specific for web services (Section 4.3).

4.1 Templating

The aspect to be considered during test design is the possibility of diagram
parametrisation and its interpretation for generation of different variants of test
cases. It is not desirable to draw a new sequence diagram if only data changes.

The sequence diagrams could be seen as test templates. Thus the arguments
in the message calls have not to be concrete values or objects, they also can
represent variables (c.f. Figure 6). To instantiate the given variables with real
values, each diagram can be combined with a table. The columns represent the
variables, each row defines one instance of a the test case. In the example depicted
in Figure 6 the generator would create 3 tests out of the sequence diagram and
the table.

<<TestContext>>

 : ConverterTest
<<SUT>>

 : Converter $farenheit$ $celsius$

32 0

68 20

89.6 32

farenheitToCelsius(farenheit="$farenheit$")1:

<<Assert>>
{expected = $celsius$ }

Fig. 6. Test template sequence diagram with data set

4.2 Data Pools

In the running example (Sections 3.1 and 4.1) all data used in diagrams were
of primitive types. This simplification was made for demonstration purposes, in
general more complex data types have to be considered. There are two kinds of
situation when more complex data is required. The first is configuration of the
system under test and the second is parametrisation of tests.

If we considered acceptance tests the system under test has to be initiated
and for some test cases there is a need to have the system in a particular state
with a corresponding set of data initialised. For this purpose it is useful to have

108

11

a pool of ready to use data and a pool of some standard actions, like database
initiation.

The data pool concept is also useful for the diagram templates parametri-
sation. The parametrisation can be defined as before in the tabular form but
instead of values, the references to the objects from data pools can be used. The
further generalisation would be usage of exchangeable data pools for different
tests scenarios.

4.3 Domain Specific Input WSDL

Model driven test development seems to be a kind of domain driven testing,
therefore the format of the requirement specification could vary depending on
the domain.

Web services by definition are a logical unit of work, which have defined inter-
faces. These interfaces describe the requirements of the service, testing a service
against his interface would be a logical consequence of this. Domain driven test-
ing has the focus on testing by using domain specific test specifications.

The specification of test could be based on the definition of a web service,
the web service definition language (WSDL) file. This file specifies all operations
which are available by a service. It is possible to use the WSDL file and allow the
tester to create sequence diagrams against it. Another possibility is to generate a
UML class stereotyped with �SUT� out of the WSDL file. For each operation
provided by the service a method will be defined in the �SUT�.

5 Conclusion

The growing complexity of software applications needs solutions which allow
complexity reduction by raising the abstraction level. The common examples
of such solutions are 4 GL programming languages, development and modeling
frameworks. Model driven test development is a step further to achieve more
manageable and transparent software development. Model driven test develop-
ment can be adapted to do integration testing, system testing and performance
testing.

The described Telling Test Stories approach relates software and tests at a
very early phase. The test design is based on the requirement specification and
in consequence tests are at a quite high abstraction level. After design phase
our approach supports test code generation and execution, as described in gen-
eral in section 2 and on the temperature converter example in section 3. The
difference between various platforms of the exemplary application appeared in
code generation phase and in the fixture implementation. The proposed solution
is general and can be used for SOA applications, not necessarily based on web
services technology.

In section 4 we pointed out further extensions of test specification possibil-
ities like templating, data pools and usage of other input specifications than

109

12

requirements specifications. For the web services application WSDL and BPEL
can be used as the input specifications.

The focus of this paper was to present how model driven test development
can be applied to any target platform of the system under test, in particular
for web services. For the design of the platform independent tests we used the
UML 2 Testing Platform (U2TP), which we extended with the Asset stereotype
(section 2). To enable execution of the tests for a specific target platform of
the system under test we used JUnit. But it is also possible to use use various
different test execution engines (e.g. BPELUnit7, jfcUnit8, Fitnesse9, zibreve10).
The generation of platform specific resources out of the test specification gives
the possibility for configuration or also implementation of fixtures.

References

1. Tsao, H., Wu, Y., Gao, J., Gao, J.: Testing and Quality Assurance for Component-
Based Software. Artech House (2003)

2. Tian, J.: Software quality engineering: testing, quality assurance, and quantifiable
improvement. Wiley (2005)

3. Thomas, D.: Programming with Models - Modeling with Code. The Role of Mod-
els in Software Development. in Journal of Object Technology vol .5, no. 8

(November -December 2006) pp. 15–19
4. Stahl, T., Völter, M.: Modellgetriebene Softwareentwicklung. dpunkt-Verl. (2005)
5. Mukerji, J., Miller, J.: MDA Guide Version 1.0. 1 (2003)
6. McNeile, A.: MDA: The Vision with the Hole? (2004)

http://www.metamaxim.com/download/documents/MDAv1.pdf.
7. Aalst, W.v.d., Beisiegel, M., Hee, K.v., König, D., Stahl, C.: A SOA-Based Archi-

tecture Framework. In Leymann, F., Reisig, W., Thatte, S.R., Aalst, W.v.d., eds.:
The Role of Business Processes in Service Oriented Architectures. Number 06291 in
Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

8. Beck, K.: Extreme Programming Das Manifest. Addison Weseley (2003)
9. Poppendieck, M., Poppendieck, T.: Lean Software Developement. Number ISBN

0-321-15078-3 in The Agile Software Developement Series. Addison-Wesley (2003)
10. Abran, A., Bourque, P., Dupuis, R., Moore, J.: Guide to the Software Engineering

Body of Knowledge–SWEBOK. IEEE Press Piscataway, NJ, USA (2001)
11. Gamma, E., Beck, K.: JUnit (http://www.junit.org/index.htm) (2006)
12. Martin, R.C., Martin, M.D.: Fitnesse (http://www.fitnesse.org) (2006)
13. WardCunningham: Fit homepage (http://fit.c2.com) (2006)
14. OMG: UML Testing Profile home page: http://www.fokus.gmd.de/u2tp/) (2006)
15. Hartman, A., Kirshin, A., Nagin, K.: A test execution environment running ab-

stract tests for distributed software. Proceedings of Software Engineering and
Applications, SEA 2002 (2002)

7 http://www.bpelunit.org/
8 http://jfcunit.sourceforge.net/
9 http://fitnesse.org/

10 http://www.zibreve.com/

110

http://www.bpelunit.org/
http://jfcunit.sourceforge.net/
http://fitnesse.org/
http://www.zibreve.com/

	paper8.pdf
	Model Driven Testing of SOA--based software
	Chris Lenz, Joanna Chimiak--Opoka, Ruth Breu

