
A Model-Driven Approach for System Administration
Marco Centurión, Maximiliano Kotvinsky, Daniel Calegari, Andrea Delgado

Instituto de Computación, Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay, 11300

{mcenturion, maximiliano.kotvinsky, dcalegar, adelgado}@fing.edu.uy

Abstract—System administration requires maintaining net-
work infrastructure and the software running on it. Within an
IoT context, it also integrates different devices, communication
protocols, and layers. The configuration process is usually carried
out by system administrators which perform the configuration
manually or through the definition of low-level scripts. Config-
uration manager tools, such as Puppet, improve this aspect, by
adding a level of abstraction from the infrastructure and allowing
a better systematization and automation of the configuration
process. However, they do not provide a visualization of the
whole infrastructure. In this paper, we present a model-driven
approach linking visualization and automation needs for system
administration. We defined a modeling language for a network
infrastructure linking hardware, software and configurations,
specified as a UML profile of deployment diagrams and ex-
tendable for IoT elements. We generate configuration scripts for
Puppet and provide a functional prototype and a case study
demonstrating the technical feasibility of the ideas.

Index Terms—System administration, IoT, Model-Driven En-
gineering (MDE), UML profile, Puppet

I. INTRODUCTION

A system administrator, or sysadmin [1], is responsible for
the installation, configuration, monitoring and assurance of an
IT infrastructure. This infrastructure is usually composed of
computer networks with hardware, such as switches, routers,
servers and workstations, and software running on them, such
as firewalls, databases and web servers. In the context of the
Internet of Things (IoT) [2], [3], [4], as the network of physical
things and virtual elements that communicate and interact with
each other, other devices have been increasingly integrated
such as RFID tags, sensors, actuators, mobile phones, etc. [2].

Configuration management (CM) [5] ensures that the con-
figuration of the IT infrastructure keeps known, updated,
stable and trusted. Each component has his state, which may
range from a simple network configuration to ensuring that a
program is installed or a configuration file is present. In this
context, sysadmins need not only to configure each component
but also to document the whole network configuration.

In IoT architectures [3] several layers, objects, protocols,
and configurations are needed to provide IoT key elements
such as identification and tracking technologies, wired and
wireless sensor and actuator networks, enhanced communi-
cation protocols, and distributed intelligence for smart objects
[2]. A hierarchical network is also defined for easing data pro-
cessing at different levels: Edge (network edge, i.e., devices),
Fog (local cloud services) and Cloud (global services), which
also needs configuration and monitoring [4], [6].

The configuration process in either context (local, global)
is usually done through a low-level script coding process that
becomes repetitive and often chaotic. Moreover, documenta-
tion is usually scarce and outdated, and thus, CM becomes
an expensive and error-prone process due to the continuous
evolution and diversity of network components. In this context,
Model-Driven Engineering (MDE) [7] techniques can support
many CM needs, e.g., domain-specific modeling languages can
provide a way to represent different aspects of the network,
leveraging a heterogeneous software and hardware infrastruc-
ture, and to generate the configuration scripts to be deployed
on it. This improves the global comprehension of the IT
infrastructure among sysadmins and potentially eliminates the
need for setting configuration scripts manually.

There are previous works related to both visualization and
automation aspects. Some tools allow to visualize general
information of a network (e.g., LanFlow) but without any
connection with CM needs. There also are automated configu-
ration tools [8] (e.g., Puppet) which leverage the specification
of system configurations and provide a way of applying
such configurations against the target network components.
Nevertheless, the two aspects have not been completely linked.

In this work, we present a proposal that relates both aspects.
In particular, we define a UML profile of deployment diagrams
for the specification of aspects of a computer network that
links hardware, software, and configurations. We also define
model transformations experimenting with the automatic gen-
eration of configuration scripts in Puppet. We implemented
these aspects within a functional prototype (available at [9])
of a configuration tool, and we developed a case study that puts
into practice our solution and shows the technical feasibility
of the ideas. Although we are experimenting with system
administration in general, our proposal lays the foundations
for its application in a more general context for IoT configu-
ration management, extending the proposal with IoT specific
elements and configuration challenges.

The rest of this paper is structured as follows. In Section
II we present related work concerning basic system admin-
istration and MDE. In Section III we present a requirement
analysis and refine the scope of this work. Then, in Section IV
we introduce our solution and in Section V we describe a
functional prototype and a case study. In Section VI we discuss
how our basic approach can be extended for considering a
more general context for IoT. Finally, in Section VII we
provide some conclusions and an outlook of future work.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
7



II. RELATED WORK

There are several tools for the generation of network topolo-
gies and their simulation, e.g., [10]. These tools, however, are
focused on the structure of the topology at a high level and
they do not differentiate particular network devices. There are
also tools for the visualization of a network topology, such as
LanFlow1 and SolarWinds2. The later also allows the detection
of a network, including its topology, network devices, servers,
and virtual hosts. Although automatic detection is of interest,
these tools do not provide means for configuring the network.

The use of MDE was explored in the context of computer
networks. In [11] the authors present an approach for wireless
sensor networks modeling. The proposal introduces three
levels of abstraction to build: specific domain models, descrip-
tions of component-based architecture, and platform-specific
models. Transformations are also defined between these three
levels. In [12] the authors present YANG, a data modeling
language for the network configuration protocol (NETCONF),
allowing a complete description of all data sent between a
NETCONF client and server. In [13] the authors develop a
tool to standardize network administration to configure any
protocol independently of the provider. They define a domain-
specific language for the configuration of network devices,
without considering the configuration of computers or servers.
However, it does not define any form of integration with
another tool.

Configuration management was also studied in the context
of MDE [14], [15] as a general discipline. Moreover, there
are many model-driven proposals for the automation of in-
frastructure configurations [8]. Puppet3 provides a declarative
domain-specific language to describe system configuration
(resources and their state), abstract from platform-specific
aspects. A configuration can be either applied directly to the
system or compiled into a catalog and distributed to the target
system in which an agent enforces the configuration. It also
allows centralizing the configuration providing versioning and
synchronization features.

III. REQUIREMENTS FOR SYSTEM ADMINISTRATION

We identified a set of requirements to apply a model-driven
approach for system administration, which we organized in
two categories regarding i) the modeling language and gener-
ation, and ii) the tool support for the approach.

A. Modeling language and generation requirements

These requirements are summarized in the following:
1) RQ1: Modeling language: The modeling language needs

to express the elements comprising the network to be con-
figured, including different types of nodes such as PCs,
servers, devices (routers, switches), among others. The lan-
guage should include these concepts and the corresponding
relationships between them, to be able to model the network.

1LanFlow Net Diagrammer: http://www.pacestar.com/lanflow/
2SolarWinds: https://www.solarwinds.com/es/network-topology-mapper
3Puppet: https://puppet.com/

It also needs to be flexible enough to allow changes or the
introduction of new devices. On the network structure model,
we also need to be able to specify the desired configuration for
each component, which will define the configuration model.

2) RQ2: Standardization of models: The modeling lan-
guage should follow standards and/or existing agreements on
networks elements definitions and modeling, to be understood,
used and integrated with existing models and/or network
descriptions.

3) RQ3: Scripts generation: From the configuration model,
the configuration scripts should be derived which can be used
to configure the devices. To generate the configuration scripts
an M2T transformation will be provided, in which knowledge
regarding mappings between configuration model elements
and script configuration elements is explicit. The generated
scripts could be in different formats, i.e., the tool should
provide options to generate different types of scripts (e.g.,
XML, text, specific format for different CMT, etc.)

B. Tool support requirements

Several aspects should be covered:
1) RQ4: Model editor: The editor will implement the mod-

eling language to obtain network structure and configuration
diagrams, which can be edited and modified. It will store
models in a standard format and provide export functionalities
for different formats, to allow integration with existing tools.

2) RQ5: Application of the generated configuration: After
the configuration files are generated from the model, it should
be applied in an automated and centralized way to be able to
install and implement the desired configuration over the target
network. This functionality can be achieved by integrating
already existing tool support (CMT).

3) RQ6: Distribution of configuration scripts into nodes:
Another desirable characteristic is the capacity of sending
the generated configuration scripts into the corresponding
nodes and devices, to support the centralized configuration of
devices. CMTs already provide a centralized server which is
in charge of carrying out the necessary actions to configure
network nodes, thus we need to integrate our tool with them.

4) RQ7: Existing network detection: The capacity to detect
the structure of an existing network and generate a model to
represent it could be useful to help in creating the initial model.
This functionality becomes more important as the size of the
initial topology grows, and could even be essential in cases
where the target system or network is of the order of hundreds
of devices (especially on an IoT context). Some tools already
provide this functionality.

5) RQ8: Detection of network changes: The detection of
network and/or device changes could also be important to auto-
matically update the corresponding model. Updating the model
in an automated way helps speed up the process of changing
the model to reflect changes in the real world, and rapidly
generate the necessary scripts to update the corresponding
configuration. As with the previous requirement, some tools
already provide this functionality.

8



IV. PROPOSED SOLUTION

We describe a solution and implementation covering re-
quirements RQ1 to RQ6 (presented in Section III). Full solu-
tion is available at [9]. Requirements referring to automatically
detect a network (RQ7) and its changes (RQ8), as well as an
extension of the ideas for a more general IoT context, were
left for future work and discussed in Section VI.

A. Modeling language

For the definition of the modeling language we faced two
main challenges: i) to analyze the specific domain in order to
identify key concepts and relationships that we need to model
the network structure, devices, and their configuration, and ii)
to decide between developing a DSL or an extension of UML
by means of a UML profile. The solution we present in this
subsection satisfies requirements RQ1, RQ2, and RQ4.

1) Specific domain analysis: To model the network topol-
ogy, nodes and their connections should be specified. Nodes
can be of two types: physical and logical nodes. Once the
physical and logical topology is modeled, the configuration
on the desired elements can be specified.

Physical nodes to be modeled include network devices
such as routers and switches, servers, personal computers
(PC or workstation), and other devices that can be connected
to a network such as printers, scanners, etc. These will
be modeled with the generic term "devices". Router and
Switch, as network devices, is essential to define the network
topology, connecting its elements. Server and PC must be
differentiated since they provide different functions. In the
case of logical nodes, i.e., logical elements corresponding
to components in physical nodes, key elements to be in-
cluded are: Operating system of Servers, and PC,
the Firmware of network devices Router and Switch.
Also, the software installed on each node is of interest, in
particular: Firewall component, Runtime (e.g., Java),
Application Server (e.g., Tomcat), HTTP Server
(e.g., Apache), Database Engines (e.g., MySQL).

Modeling the desired configuration is a key element in
our proposal.We identified three main configuration scenarios.
Software configuration refers to configuring logi-
cal nodes, where each type of the component (OS, ap-
plication server, database, etc.) present specific configura-
tion elements representing their configurable aspects. Files
configuration refers to specific actions over system files,
i.e., verify existence or content, copy and delete files, etc.
This configuration is key to detect if a manual configuration
of files is required. Free configuration is defined to
be able to register any type of configuration that cannot be
automatically applied by a tool, but can help in manually
configuring elements.

A configuration can also be applied to a set of nodes when
devices are of the same type and applying the configuration
individually requires more effort, so a configuration can be
applied to one or many devices. In Fig. 1 we present the main
concepts and relationships in the proposed solution.

Figure 1: Main concepts and relationships in the solution

2) Domain Modeling Language: We decided to extend
UML with specific concepts for our domain, based on the
following reasons. UML is a standard language, which is
understood and used by many software professionals, provides
a base syntax and corresponding semantics that help to under-
stand the extension elements and several tools already exist
that provide support for it. Also, the deployment diagrams fit
the domain analysis we presented earlier. This kind of diagram
shows how different nodes are interconnected in a distributed
system, which components are located in which nodes, and
implemented by artifacts. Nodes are specialized in two el-
ements: Device which represents physical machines, and
ExecutionEnvironment which are assigned to Device
nodes. Artifact elements can be deployed into nodes,
and Deployment elements represent relationships between
artifacts and nodes, as well as characteristics assigned to these
relations. Communication links model system connections
between elements.

3) UML profile definition: To define the UML pro-
file we extended concepts already provided in the de-
ployment diagram that we presented earlier. Extending
Device element we represent Physical nodes, and ex-
tending ExecutionEnvironment we represent Logical
nodes, each with corresponding stereotypes. The parent
element Node is not extended since the base element
already provides the information needed. To represent a
Configuration component we extend the Artifact
component with the corresponding stereotype. This extension
with main concepts from the UML profile is shown in Fig. 2.

Figure 2: Physical, Logical and Configuration stereotypes

9



(a) Physical nodes (extends Physical from Fig. 2)

(b) Logical nodes (extends Logical from Fig. 2)

(c) Specific configurations (extends Configuration from Fig. 2)

Figure 3: Stereotype definitions (excerpt)

Then for each defined element within the three main con-
cepts of Physical, Logical and Configuration we
included them into the metamodel as specialization of the
parent one. Due to space reasons, in Fig. 3 we only include a
couple of examples of each kind.

We implemented this extension as an Eclipse plug-in, based
on Papyrus4, an Eclipse-based UML modeling tool which
already has extension capabilities.

4Papyrus Modelling Environment: https://www.eclipse.org/papyrus/

B. Generation of configuration scripts

We use an existing CMT as a target of the configuration
scripts generated, instead of using yet another new language,
since generating for a specific tool will allow us to validate the
scripts. To select the CMT we review several existing ones,
from which we took an in-depth look at Puppet, Chef, and
Ansible, since they stood up from the rest, selecting Puppet
since we already worked with it. The solution we present in
this subsection satisfies requirements RQ3, RQ5, and RQ6.

1) Mappings for the generation: We defined mappings
between the network and configuration profile we have defined
and the configuration scripts to be generated. For each element
in the specific domain, we generate a file, and these files are
organized in a directory hierarchy which is consistent with the
target CMT, so it can be used to apply the configuration. The
mappings are the following ones:

• two main folders are defined at root level: manifests
and modules, and within the last one, there are two
folders, one that includes the information of the physi-
cal and logical nodes called device, and another that
corresponds to the configuration of these nodes, called
configurations. These directories have their own
manifests directory (this is exemplified in Fig. 7).

• a site.pp file (within the manifests folder, is gen-
erated with a list of the physical nodes to be configured
(this is depicted in Fig. 4).

• for each Physical node a file is generated with includes to
the files generated for the logical nodes belonging to it,
under the device directory. Also, a directory is created
for each Physical node which will contain the files
for the corresponding Logical nodes.

• for each Logical node a file is generated with basic values
regarding its installation, and includes to the configuration
files generated for it, under the directory created for the
Physical node. A directory is also created for each
Logical node in the configurations directory,
which will contain its configuration scripts.

• for each configuration, a file is generated and located in
the directory of the Logical node.

• for any element for which does not correspond to create
a configuration script, a text file with its information is
created and located in the directory of the corresponding
Physical node in a Information directory.

2) M2T transformation: The mdcms2puppet transforma-
tion takes as input a model defined with the UML profile and
generates the configuration scripts in the Puppet format file,
which will be imported in Puppet to configure the network.
The transformation was implemented using Acceleo and inte-
grated with the modeling tool. Complete information can be
found at [9].

The output of the transformation is organized in the direc-
tory hierarchy we described, generating also a Puppet file that
includes the modules to be installed, and the file site.pp
(manifests/site.pp) which includes information about nodes
in the topology, to be used by Puppet to declare nodes

10



Figure 4: Example of a source model, the M2T transformation and the file generated

and their configuration. This file is the starting point of the
configuration, information regarding each node, either physical
or logical, will be generated under modules/device/manifests,
and configuration elements will be generated under mod-
ules/configurations/manifests.

Basic knowledge of Puppet is still needed to be able to
make use of the generated code, is that it is necessary to run
it in each one of the components that need to be configured.
However, since a model contains all the information of the
infrastructure, it could be possible to include the execution of
the scripts as part of the generation process (or later on).

C. Final Remarks

The language covers most types of regular hardware and
software components within a network for which a configu-
ration is needed. There are many possible improvements, as
discussed in Section VI. Also, the profile design could be
improved to be more strict enforcing correct by construction
modeling with strong typing of properties.

Unlike Puppet, our approach provides a generic approach
based on topology models and a corresponding graphical
notation, both aspects provide some benefits. First, the lan-
guage is independent of any specific CMT, which seems to
be more interesting for a heterogeneous IoT environment. In
fact, Puppet is used just as a proof of concepts. Second, a
graphic notation favors understanding when it comes to aspects
of a topology, which Puppet does not represent. Nevertheless,
the visualization we provide is only a default concrete syntax
provided for deployment diagrams. Future work could be to
explore other advanced and scalable alternatives.

V. CASE STUDY

The case study validates the approach for basic system
administration: unification of configuration and network el-
ements, topology visualization and automatic configuration.
However, as will be discussed in Section VI the whole
approach can be extended in a more general context of IoT.

For space reasons we present an excerpt of the case study.
The whole case study (available at [9]) comprises two routers
connected to each other. On the one hand there is a subnet
corresponding to the PCs and, on the other, there are the

servers. Within the PC’s subnet, depicted in Fig. 5, there are
two switches (SwitchWin and SwitchUnix) that separate
the Windows-based computers from Unix-based computers
(and a printer Printer). Notice how the different devices are
represented with their corresponding stereotypes. In particular,
PCUnix2 is a PC (a physical device) with two logical
components installed within: Ubuntu, a logical operative
system, and mydb2, a logical PostgreSQL db engine. There
is also a configuration PCUnix2DB which is a «PSQLDB»
configuration applied to the logical node mydb2.

The visualization of the network is partitioned: its topology
together with an identification of the hardware, software and
configurations within are depicted using deployment diagrams,
as well as specific properties of their components are visual-
ized in a properties view, as depicted in Fig. 6.

The generation process takes the network configuration
model and generates every configuration file in a concrete
directory structure (as depicted in Fig. 7) required by Puppet.
A Puppetfile is generated containing the modules that
need to be installed for use in Puppet, and also a site.pp
file with the information of the existing nodes in the topology.
If the configuration of the network is defined correctly, the
generated files will be executable without modifications.

Within the modules/device directory there is a con-
figuration file for each configurable device component. In
the example, we have a directory for the PCUnix2 physical
device, and a Puppet file PCUnix2.pp with its configuration
defined in Fig. 6a. The generated file is depicted in Fig.
8a. Within this directory, there is a Puppet file for each
logical node, e.g., mydb2.pp depicted in Fig. 8b which was
generated from the configuration in Fig. 6b.

Within the modules/configurations directory there
is another directory for each component class, e.g., db for
databases and the corresponding files generated from the
configuration artifacts, e.g., PCUnix2DB configuration for
the mydb2 database. The corresponding Puppet file for this
configuration is depicted in Fig. 8c. Notice that within the
configuration file for the mydb2 database (depicted in Fig.
8b) there is an import of the PCUnix2DB configuration.

11



Figure 5: Case Study: network configuration

VI. TOWARDS IOT CONFIGURATION MANAGEMENT

IoT poses a more general context than what we have
presented, with a wide range of different devices and inter-
connection requirements. Our proposal can be considered the
first step towards this context, at least for some IoT scenarios.
As reviewed in [6], there are specific challenges for MDE, and
from a CM perspective, we can discuss the following aspects.

1) Configuration and Control: Devices are usually pro-
vided with generic configurations which require to be further
refined with specific settings. It is also required to remotely
configure the devices for recovering and maintenance issues.
As claimed in Section IV-C, it is useful to have a more abstract
language, such as the one proposed, which links devices
together with configurations, that can also be easily applied to
many of them. The aid of a CMT is also beneficial, especially
when it is possible to automatically generate scripts.

Heterogeneity is also an issue. Up to now, some technical
aspects are fixed in the metamodel, e.g., concrete types of

databases, so the language itself needs to change for adding
new technologies. To improve language evolution, it could be
interesting to essay a multi-level approach, such as in [16],
providing means for metamodel extensibility.

We also claimed in Section III (RQ2) that we need to
provide a common way of modeling both hardware and
software aspects to improve communication and interoper-
ability. We need to analyze how to relate our work with the
Modeling and Analysis of Real-time and Embedded systems
(MARTE) [17] proposal since it provides a more specific
view on the specification, design, and verification/validation
aspects of this kind of systems. Also, the OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA),
a domain-specific language for defining portable deployment
and automated management of services on a wide variety of
infrastructure platforms, was analyzed for the automatic de-
ployment of IoT environments [18]. Like ours, it also provides
topology models and a corresponding graphical notation.

12



(a) PCUnix2 properties

(b) mydb2 properties

(c) PCUnix2DB properties

Figure 6: Case Study: properties configuration

2) Discovery and Monitoring: We already claimed, in
Section III, that desirable requirement are the discovery of
a network configuration (RQ7) and the monitoring of such
configuration to automatically detect changes (RQ8). It could
be useful to dynamically discover newly added devices and
service processes. As presented in Section II, tools such as
SolarWinds help in this direction. In previous work [19] we
have dealt with the automated generation of Quality of Service
(QoS) configurations for software services specified in the
SoaML UML profile [20] which we can also integrate for
a complete view of IoT services monitoring.

Concerning visualization, our language can be improved to
support a more succinct concrete syntax in the way of existing
network visualization tools. As discussed in Section IV-C

Figure 7: Case Study: configuration files organization

we used the basic concrete syntax provided by deployment
diagrams, but other notations could be considered to balance
understanding and scalability.

3) Maintenance and Adaptation: Device heterogeneity
poses a challenge for maintenance since not every device can
be configured using the same CMT, e.g.: resource-constrained
devices cannot execute a CMT client. As claimed before, it is
convenient to generate different target languages from a more
abstract model, even with uncertainty aspects (e.g., partial
configuration). Cloud services and middleware typically play
an important role. Several proposals can be integrated into this
context, e.g., WSO2 Application Server Puppet Module 5.

Adaptation requirements are related to the models@runtime
approach [21] which extends the applicability of models
produced in MDE approaches to the runtime environment.
In particular, sometimes IoT devices are required to adapt
their behavior at runtime with little or no human intervention.
Further work is needed in this sense.

4) Security: As a final issue concerning configuration man-
agement, the administrator may meet problems of access con-
trol trying to reach a good balance between smooth execution
and the proper protection for security and privacy. In this
sense, it could be interesting to consider other models, such
as SecureUML [22] which provides a modeling language for
the development of secure, distributed systems based on Role-
Based Access Control (RBAC) with additional support for
specifying authorization constraints.

5WSO2 App Server Puppet Module: https://github.com/wso2/puppet-iot

13



(a) PCUnix2 generated script

(b) mydb2 generated script

(c) PCUnix2DB generated script

Figure 8: Case Study: generated configuration scripts

VII. CONCLUSIONS & FUTURE WORK

We experimented with a model-driven approach for system
administration linking visualization and automation needs. A
domain-specific language (a UML profile of deployment dia-
grams) links hardware, software and configuration aspects of
network infrastructure, and a model transformation generates
Puppet configuration scripts based on these models.

A common language for the whole network configuration
simplifies the communication between members of a team,
which reduces the problems associated with it. Moreover, the
use of a visual editor and a language with known semantics
(UML deployment diagrams) considerably reduces the access
barrier to the use of configuration management systems.
The proposal is currently being evaluated in a real context
associated with the management of the basic infrastructure
configuration for electronic government.

Although it is as exploratory work, it lays the foundations
for its application in a more general context of IoT. In this
context, there are many open issues for its improvement, as
presented in Sections III and VI, ranging from the extension
of the language with the support of new components in an
IoT environment and the definition of transformations to other
configuration management tools and platforms, to the improve-

ment of the tool with respect to its visualization features and
the automatic discovery of the network configuration.

REFERENCES

[1] T. Limoncelli, C. Hogan, and S. Chalup, The Practice of System and
Network Administration. Addison-Wesley Professional, 2007.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[4] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1125–1142, 2017.

[5] J. Quigley and K. Robertson, Configuration Management: Theory,
Practice, and Application. Addison-Wesley Professional, 2003.

[6] S. Wolny, A. Mazak, and B. Wally, “An initial mapping study on
mde4iot,” in Proc. of MODELS 2018 Workshop: MDE4IoT, ser. CEUR
Workshop Proceedings, vol. 2245. CEUR-WS.org, 2018, pp. 524–529.

[7] S. Kent, “Model driven engineering,” in International Conference on
Integrated Formal Methods. Springer, 2002.

[8] F. Research, “The forrester wave: Configuration management software
for infrastructure automation, q4 2018,” 2018.

[9] M. Centurion, M. Kotvinsky, D. Calegari, and A. Delgado,
“MdNetConf: Model-driven Network Configuration software,” 2019.
[Online]. Available: https://gitlab.fing.edu.uy/open-coal/mdnetconf

[10] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, “Network topology generators: Degree-based vs. structural,” in
ACM SIGCOMM Computer Communication Review, vol. 32, no. 4.
ACM, 2002, pp. 147–159.

[11] F. Essaadi, Y. B. Maissa, and M. Dahchour, “Mde-based languages for
wireless sensor networks modeling: A systematic mapping study,” in
Advances in Ubiquitous Networking 2. Springer, 2017, pp. 331–346.

[12] M. Bjorklund, “Yang-a data modeling language for the network config-
uration protocol,” Internet Engineering Task Force, Standard, 2010.

[13] G. A. H. Castro, “Metamodelo para configuraciones en dispositivos de
redes como estándar soportado en la ingeniería dirigida por modelos,”
Master’s thesis, Universidad "Francisco José de Caldas", 2016.

[14] T. Buchmann, A. Dotor, and B. Westfechtel, “Model-driven development
of software configuration management systems - A case study in model-
driven engineering,” in Proc. of the 4th Intl. Conf. on Software and Data
Technologies (ICSOFT), Volume 1. INSTICC Press, 2009, pp. 309–316.

[15] H. Giese, A. Seibel, and T. Vogel, “A model-driven configuration
management system for advanced it service management,” in Proc. of
4th Intl. Workshop on Models@run.time, vol. 509, 10 2009, pp. 61–70.

[16] S. Jácome and J. de Lara, “Controlling meta-model extensibility in
model-driven engineering,” IEEE Access, vol. 6, pp. 19 923–19 939,
2018.

[17] Object Management Group, “A uml profile for marte: Modeling and
analysis of real-time embedded systems,” 2015. [Online]. Available:
https://www.omg.org/omgmarte/

[18] A. C. F. da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp,
F. Leymann, B. Mitschang, and R. Steinke, “Internet of things out of the
box: Using TOSCA for automating the deployment of iot environments,”
in Proc. of 7th Intl. Conf. CLOSER. SciTePress, 2017, pp. 330–339.

[19] A. Delgado, “Qos modeling and automatic generation from soaml ser-
vice models for business process execution,” in 2015 IEEE International
Conference on Services Computing, 2015, pp. 522–529.

[20] A. Delgado and L. González, “Eclipse SoaML: A tool for engineering
service oriented applications,” in Joint Proc. of the CAiSE 2014 Forum,
ser. CEUR Workshop Proceedings, vol. 1164. CEUR-WS.org, 2014,
pp. 201–208.

[21] G. S. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[22] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A uml-based
modeling language for model-driven security,” in Proc. of Intl. Conf.
on the Unified Modeling Language. Springer, 2002, pp. 426–441.

14


