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Abstract—With the increase in demand of services in the 

automotive industry, automotive enterprises prefer to 

collaborate with other qualified cross-domain partners to 

provide complex automotive functions (or services), such as 

autonomous driving, OTA (Over The Air) vehicle update, V2X 

(Vehicle-to-Vehicle communication), etc. One key element in 

cross-domain enterprise collaboration is the mutual agreement 

between interfaces of software components. In this context, 

model-to-model mappings of software component models of 

heterogeneous frameworks for automotive services and to 

explore the synergies in their interface semantics, have become 

an essential factor in improving the interoperability among the 

automotive and other cross-domain enterprises. However, one 

of the challenges in achieving cross-domain component interface 

model-to-model mappings at an application level lies in 

detecting the interface semantics and the semantic relations that 

are conveyed in different component models in different 

frameworks. This paper addresses this challenge using a Model 

Driven Architecture (MDA) based analytical approach to 

explore interface semantic synergies in the cross-domain 

component meta-models that are used for automotive services. 

The approach applies manual semantic checking measurements 

at an application interface level to understand the meanings and 

relations between the different meta-model entities of cross-

domain framework software components. In this research, we 

attempt to ensure that interface description models of software 

components from heterogeneous frameworks can be compared, 

correlated and re-used for automotive services based on 

semantic synergies. We have demonstrated our approach using 

component meta-models from cross-domain enterprises, that 

are used for the automotive application domain. 

Keywords—component, Framework, domain, interface, 

semantic, mapping, synergy, metamodel, syntax, application 

I. INTRODUCTION  

Today’s vehicle electronics are essentially clusters of 
heterogenous ECUs (Electronic Control Units) from various 
suppliers with varying levels of complexity. From simple 
sensor/actuators all the way up to High Performance 
Computing (HPC) chipsets, communicating over 
heterogeneous communication networks or even off-car to 
Wireless Networks. The application (app) developers must 
have knowledge of a wide range of technologies instead of 
being focused on a particular technology such as 
programming or data interchange. The automotive software 
industry always looked for means to narrow the gap on the 
way from requirement to software. Therefore, this would 

require interface adaption [6] at the app component model 
level to achieve transparent interoperability. Since a 
component model is much easier to understand and maintain 
than code, the investment in MDE (Model Driven 
Engineering) to achieve transparent interoperability among 
app software components (SWCs) continues to pay back in 
long-term.  

Current System Engineering models in an automotive 
domain such as SysML (System Modelling Language), UML, 
etc. allows graphical modelling of component interfaces 
independent of software. Typically, an Interface Description 
Language (IDL) defines the software interface agreements 
between the app component interfaces. IDLs are typically 
bound to one or more programming language generators. Over 
the time, in the automotive app domain the level of abstraction 
at which functionality is specified, published and or consumed 
has gradually become higher and higher [16]. Eventually 
progress has been made from modules, to objects, to 
components, and now to services [16]. A service is the major 
construct for publishing and should be used at the point of 
each significant interface. Today most of the SWC interfaces 
are based on Service Contracts, thereby allowing 
heterogeneous systems to communicate and interchange their 
services. The SOA (Service-Oriented Architecture) pattern 
allows us to manage the usage (delivery, acquisition, 
consumption, etc.) in terms of, related services [16]. To bridge 
the semantic gap between the FW SWCs and to achieve 
interoperability by reusing of artifacts, requires understanding 
of the semantic mapping at app SWC interface level [1][9]. 
The IDLs that are used for automotive app domain SOSCM 
(Service- Oriented Software Component Model) interface 
description may need to consider the following fundamental 
characteristics[1]:  

• Interface type: The distinction of the basic interface 
type: operation-based (e.g. methods invocations) and 
data-based service interface (e.g. data passing). 

• Separation of Interface Roles: The distinction between 
the provides-part and the requires-part of a service 
interface. 

• Interface interaction points: Service interface 
interaction points (e.g. ports, topics, etc.). 

• Method invocation: Method signatures containing 
information with valid parameter types, e.g. Client-
server, Sender-Receiver, Publish-Subscribe etc. 
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• Attributes: Specification of attributes or fields e.g. 
getters, setters, Notifiers, etc. 

• Abstraction of Component: abstract description of the 
SWC (single or composite) using the interfaces. 

• Interaction with Connectors: Specification of software 
connectors used for realization of an interface mapping 
between provider and receiver SWCs interfaces. 

• Interface Behavior & Semantic Annotation 
constraints: The invariants, pre- and postcondition 
constraints of a component interface internal behavior 
depends on the state of the SWC.  

• Interface Binding: The binding type describes the way 
a vehicle app SWC interfaces binds to a middleware 
communication protocol for intra- or inter-ECU 
communication. 

A component construct fundamentally combines both 
service interfaces and interaction description. However, SWC 
interface binding to middleware is not considered in the 
current scope to align the focus towards interface semantic 
synergies exploration for heterogeneous component models 
purely at app level. 

A. Contribution of the Report 

The automotive industry can be regarded as a complex yet 
connected network (ecosystem) of highly interdependent 
subsystems as seen in Fig. 1. Systems with a heterogeneous 
implementations, architectures, semantics have to be 
integrated into collaborative environments to support 
automotive complex services. The interoperability between 
them has become a major challenge in this new ecosystem, 
thereby generating several research questions about how to 
manage the information exchange and collaboration between 
these heterogeneous system’s FWs at app level with so vastly 
different properties [17]. This paper presents a detailed 
investigation on semantic survey of the component interface 
models of various cross-domain FWs. The paper explores the 
possibilities of semantic service-based interfaces matches and 
reveals the areas of semantic mismatches between the 
information ex-change formats of heterogeneous system’s 
FWs at an app level where the interoperability is crucial [17]. 
The proposed solution in this paper is based on exploration of 
component interface semantic synergies [2][9]. Exploration of 
interface semantic synergies could also further aid in SWC 
reusability in the future.  

B. Motivation Scenario and Related Work 

In the last decade a plethora of different interface 
specification models or IDLs were designed using different 
technologies to support automotive app domain. This could be 
due to the fact: firstly, coexistance of new ECU HW interfaces 
with legacy as seen in Fig. 1, secondly, the conformance to 
frequent new standards in automotive domain [10], thirdly, the 
non-functional system requirements such as performance and 
scalability. Unlike adaption of ADLs (Architecture 
Description Languages) of frameworks that requires adaption 
of the entire end-to-end stack at system specification level, 
adaption of IDLs would basically focus on adaption of 
components, ports, connectors, algorithmic code of FW 
SWCs purely at an app level [18].  To increase interoperability 
and efficient reuse of component interface model, it is 
important to understand the differentiation of component 
model interfaces.  

Fig. 1. An Overview of Service Interdependent Communication between 

the ECU partitions 

The authors of [1] proposes a Component Model 
Classification FW which identifies and discusses the basic 
principles of component models. The authors of [15] proposes 
alignment of ontologies of source UML models with semantic 
heterogeneity into a single ontology or merged coherent 
model by using a process of detection and resolution of 
semantic conflicts that may exist among the different UML 
models. To deal with interoperability, one possible option is 
to make each component implement several interfaces, which 
makes the software interface unnecessarily big. A second 
possible option may be to provide different implementations 
of a single component for each of the automotive development 
environments. Such a solution however, will increase the 
development cost and test effort. A third option could be to 
possibly consider the role of connectors in the construction of 
a software system from reusable components that is to 
consider especially the role connectors should play when the 
distribution and deployment of a component-based 
application is considered, as proposed by authors of [7].  

 In this context Software Adaption is a promising approach 
to build flexible interfaces for variable software systems. 
Authors of  [17] proposes adapter systems to deal with service 
mismatch problems that can happen in the information 
exchange in heterogeneous SOA-based environments where 
the interoperability is crucial. The authors of [2] present an 
automated approach to model-to-model mapping and 
transformation methodology, which applies semantic and 
syntactic checking measurements to detect the meanings and 
relations between different models automatically. The authors 
of [11] propose component model-to-model transformations 
to establish translation of semantics by manual mapping of 
programming languages of heterogeneous platforms [11].  

II. METHODOLOGY 

With the proposed methodology based on static analysis 
of interface semantics, we have attempted  to provide a level 
of abstraction at SWC interface semantic specification level 
and have defined an abstract UML profile (M2 level) model 
also called Component-Port-Connector (CPC) model [1] [7] 
[5], to describe each of the cross-domain FW SWC constructs 
in context of interfaces. The SWC constructs agrees mostly to 
the traits that are visible in the Black-box view of a component. 
A SWC construct of SOA based automotive app domain FWs 
fundamentally represents (i) the SWC service-based-
interfaces used for the interaction with the other components 
for inter- or intra-ECU communication, and (ii) the means of 
SWC binding and communication using middleware. With the 
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given approach each of the FW SWC constructs are 
represented using the CPC models, abstracted from the SWC 
meta-models of heterogeneous domain FWs. 

A. Classified Levels for Semantic Survey of Software 

Component Interfaces  

 To illustrate the approach of static semantic analysis of 
SWC interfaces, we have considered few of the SWC 
constructs of the cross-domain platforms supporting 
automotive apps. In this approach, Interface Syntactic level 
was not considered as it covers only the syntactic aspect and 
describes the signature of an interface in a FW specific 
programming language and is relatively out of current 
research scope. For simplicity, we have classified SWC 
constructs into three basic levels [1][12] : 

• Interface Semantic level: reinforces the syntactic level 
and concerns with the meaning of features often 
specified by the expectations and effects of individual 
features. A generalization of this level can be assumed 
as semantics [12].  

• Interface Behavioral level: represents dynamic 
behavior of service-based interfaces based on 
constraints (e.g. constraints on their temporal ordering, 
precondition, postcondition, invariants, etc.). It 
expresses their internal behavior (e.g. internal states). 

• Composition level: Connection represents interactions 
between interface functionalities and behavior in two 
components as far as accessible through SWC ports [5] 
e.g. Synchronous, Asynchronous, etc. 

Fig. 2 illustrates automotive app domain SWC constructs 
represented by an abstract generic CPC model [1][12][19]. 
Towards the SWC interface semantic synergy exploration, the 
structure of an abstract generic CPC model illustrates the 
abstract view of the components at different containment 
levels, their interface types, their typed input and output ports, 
and the connectors between them. Abstraction of the generic 
CPC model emphasize on the common service-based interface 
semantic properties and hide the platform specific details that 
are not needed in the interface description [19].  

A generic specific CPC model can further provide 
knowledge base for future automotive domain specific 
software solution such as coherent, unified IDL or a Meta-IDL 
model. With the reference to the abstract generic CPC model, 
we have tried to represent the CPC model for each of the FW 
SWC constructs based on three identified basic levels: 
Interface semantic, Interface Behavior and Composition [1]. 
With the semantic survey we have compared and revealed the 
areas of service interface semantic matching and mismatches 
among the cross-domain FW IDLs at model level in reference 
to the generic CPC model.

 

Fig. 2. Abstract hierarchical generic Software Component-Port-Connector (CPC) model based on Black-Box perspective
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III. A SEMANTIC COMPARISON OF COMPONENT CONSTRUCTS 

BETWEEN CROSS-DOMAIN FWS AND AUTOMOTIVE FW 

This section provides an overview of abstract SWC 
interface model descriptions in context of “constructs”, for 
those FW components that are used in automotive app 
domain. The meta-models used for component constructs 
identifies the list of relevant concepts and a list of relevant 
relationships between these concepts specific to FWs. 

A. Automotive Domain: AUTOSAR Adaptive Framework 

AUTOSAR (AUTomotive Open System Architecture) is 
widely accepted as the defacto standard of automotive system 
software architecture for developing apps of various 
automotive platforms during the different phases of a vehicle 
life cycle. The AUTOSAR Adaptive platform (AR AP)  app 
SWC template meta- model is implemented using ARXML 
Schema. The AR AP SWC has a service provider port 
(PPortPrototype) and a receiver port (RPortPrototype). Each 
PortPrototype is typed using service interfaces. An example 
of AR AP app SWC (release version 18-10) specific meta-

model (M2 level) UML profile representation can be seen in 
Fig. 3. The Service interface model employed for interface 
description is specified using various elements, this includes 
[3]: 

• Aggregation of variable data prototypes in the role of 
Events (VariableDataPrototype); 

• Aggregation of Getter, Setter and Notifiers in the role 
of Fields. A Field is a combination of a Remote 
Procedure Call (RPC) and an event. 

• Aggregation of Client-Server Operations in the role of 
Methods. Arguments data required for Client-Server 
Operation is represented in the role of 
ArgumentDataPrototype in the meta-model as a pre-
condition. Method calls used for communication 
among SWC types in AR AP can be described as 
synchronous or asynchronous (e.g. fireAndForget). 

The service interfaces instances in AR AP are deployed 
using RPC communication. 

 

Fig. 3. Overview of Abstract SWC  constructs meta-model also named as Graphical Model G1 for  AUTOSAR Adaptive Framework

B. Infotainment Domain: Franca Framework 

Franca IDL (FIDL) is developed as a part of the GENIVI 
standard Franca (version 0.13.0) FW and supports IVI (In-
Vehicle infotainment) system’s interfaces. Franca IDL is 
language binding neutral and independent of concrete 
bindings. Franca+ IDL (FCDL) provides an extension to the 
Franca FW that adds support to the modeling of components, 
composition of components, typed ports (provides and 
required), port interfaces (optional major and minor versions) 
and connectors between ports as seen in the meta-model 
represented by UML profile in the Fig. 4 [10].  Franca FW 
uses FIDL to define app interfaces and FCDL to define app 
SWCs and their configurations. Like AR AP, Franca+ FW 
also supports the CompositionComponentPrototype (named 
as Component). A component contained in a composition is 
called Component Prototype.  

TABLE I.  INTERFACE SEMANTIC SYNERGIES OF SWC MODEL:  
AUTOSAR ADAPTIVE VS FRANCA (‘C’ IS CONSTRUCT  MODEL ELEMENT) 

AUTOSAR Adaptive 
Component Construct Element 

Franca Component 
Construct Element 

C1 C10 

C3 C11 

C4 C13 

C5 C14 

C6 C19 

C7 C16 

C8 C17 
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The service attribute marks a component as service 
running on the target platform. The Methods, Events, and 
Fields of AR AP service interface are semantically aligned to 
Franca+ IDL’s (FCDL) Methods, Broadcasts and Attributes. 
TABLE I. illustrates interface semantic synergies (indicated 
by arrows) observed between the app SWC constructs (only 

at app interface level) meta-model elements of AR AP and 
Franca FWs. Semantic mapping of Franca IDL Fire-and-
Forget Method to AR AP app service interface Method can be 
achieved by activation of the “fire & forget” semantics of a 
given method by setting the value of attribute 
method.fireAndForget to value true [4].

 

Fig. 4. Overview of Abstract Component Constructs meta-model also named as Graphical Model G2 for Franca (also Franca+) Framework

C. Robotics Domain: ROS  Framework 

The Robot Operating System (ROS) developed by Willow 
Garage aims to provide a software development environment 
for robotics. ROS is a perfect FW for autonomous driving cars  
and provides high-level functions such as route planning, 
connectivity, etc. Literally, ROS (version 2.0) is not a 
component-oriented software. However, like in many 
programming paradigms (objects in object-orientation, etc.), 
ROS also strives to build apps from modular units. In the ROS 
programming model, the modular programming unit is a node 
[8].Nodes are semantically similar to SWComponentPrototype 
in AR AP as can be seen in Fig. 5.  

A Topic can be considered as a named communication 
channel which is used to send and receive messages between 
nodes and can be semantically mapped to PortInterface of AR 
AP. In ROS2 (ROS version 2.0) all the necessary information 
exchange among nodes is performed through messages. ROS2 
has two basic types of interaction endpoints attached to a node 
that are data and control interaction endpoints.  

In case of the exchanged information having data 
semantics (using DDS: Data Distribution Services) and being 
communicated mostly asynchronously (non-blocking mode) 

as a pre-condition between invoker and invoke, this 
functionality is achieved through introduction of the messages 
and the concept of topics to which the messages are published  
for subscription [8]. ROS2 TopicSubscription can be 
semantically mapped to EventSubscription in AR AP.  Data 
Semantics are semantically similar to the asynchronous 
fireAndForget Method invocation of AR AP [5]. In contrast to 
AR AP, the concept of a connection does not exist in ROS2. 
Location-transparency between nodes is achieved through the 
concept of a master node. The master node provides naming 
and registration facilities for all nodes [8][5]. In ROS2 in case 
of the exchanged information having command semantics and 
being communicated mostly synchronously (blocking mode) 
as a pre-condition between invoker and invoke, this 
functionality is achieved through introduction of a service 
concept. The service in ROS2 is defined by a string name and 
a pair of messages, a request and a reply message and is 
semantically similar to RPC based ClientServerOperation in 
AR AP. Unlike AR AP, services cannot be grouped through 
service ports in ROS2. In ROS2 component models or nodes 
are described using Message Description language (MDL) or 
Service Description Language (SDL) based on data and 
command semantics requirements.
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Fig. 5. Overview of Abstract Component Constructs meta-model also named as Graphical Model G3 for ROS Framework  

TABLE II.  illustrates interface semantic synergies 
(indicated by arrows) observed between the app SWC 
construct (only interface) meta-model elements of AR AP and 
ROS FWs. 

TABLE II.  INTERFACE SEMANTIC ANALYSIS OF COMPONENT MODEL: 
AUTOSAR ADAPTIVE VS ROS (‘C’ IS CONSTRUCT  MODEL ELEMENT) 

AUTOSAR Adaptive 
Component Construct Element 

ROS Component Construct 
Element 

C1 C22 

C2 C25 

C4 C26 

C5 C27 

C6 C29 

C7 C28 

 

D. Telematics Domain: Android  Framework 

An Android application runs in its own process and cannot 
access the data of another application running in a different 
process. To allow one application to communicate with 
another running in a different process, Android provides an 
implementation of IPC (Inter Process Communication) 
through the Android Interface Definition Language (AIDL). It 
allows to define the programming interface that both the client 
and service agree upon in order to communicate with each 
other using IPC. Four different types of app components are 
used as essential building blocks of an Android app namely, 
Activities, Services, Broadcast receivers and Content 
providers.  

Three of the four component types activities, services, and 
broadcast receivers are activated by an asynchronous 

message called an Intent (also an IPC). Intents bind individual 
components to each other at run-time using messages [13]. 
However, a data request is treated by the Content Provider 
(CP). The requesting data is indicated through URI (Uniform 
Resource Identifier), which provides the standard access to 
CP. The communication between various functionalities of 
app components is provided by Receiver of Broadcast and 
Intents (RBI). For the communication, the object Intent must 
be passed as a parameter for the RBI to search the 
functionality.  The broadcast receiver schedules the 
JobServices event chains. These Events are semantically 
similar to Events used by AR AP app SWCs. However, if an 
app service is used only by the local application and does not 
need to work across processes, then only a Binder class 
implementation can provide direct client access to public 
methods in the service [14]. Unlike AR AP apps, for most of 
the Android apps, the service doesn’t need to perform multi-
threading, so using a Messenger allows the service to handle 
one call at a time. If it’s important that the service to be multi-
threaded, use of AIDL is preferred to define the interface [13]. 

The startService() service method call invoked by a client 
result in a corresponding call to the server or service’s 
Service.onStartCommand (Intent, int, int) method. On 
successful service connection binding with the stub or server, 
the client receives an instance of IBinder interface using 
onServiceConnected() callback method as seen in Fig. 6. 
These method calls of an Android app can be semantically 
mapped to ClientServerOperation() method  calls and Notifier 
fields of an AR AP app SWC. The oneway keyword modifies 
the behavior of remote calls. When it is used, a remote call 
does not block, it simply sends the transaction data and 
immediately returns. The oneway remote method calls can be 
semantically mapped to asynchronous ClientServerOperation 
or method calls of an AR AP app SWC. If oneway is used with 
a local call, there is no impact and the call is still synchronous.  
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Fig. 6. Overview of Abstract Component Construct meta-model also  named as Graphical Model G4 for Android Framework

Unlike AR AP app SWC model, Android app model does 
not have ports. TABLE III. Illustrates interface semantic 
synergies (indicated by arrows) observed between the app 
SWC construct (only interface) meta-model elements of AR 
AP and Android FWs. 

TABLE III.  INTERFACE SEMANTIC ANALYSIS OF COMPONENT MODEL: 
AUTOSAR ADAPTIVE VS ROS (‘C’ IS CONSTRUCT  MODEL ELEMENT) 

AUTOSAR Adaptive 
Component Construct 

Elements 

Android Component 
Construct Elements 

C1 C30 

C2 C31 

C5 C34 

C6 C37 

C7 C36 

IV. FUTURE SCOPE: SEMANTIC ONTOLOGY MAPPING OF 

COMPONENT INTERFACE MODELS OF FRAMEWORKS 

Aligning semantic ontologies represents a great interest in 
automotive app domains that manipulate heterogeneous 
overlapping knowledge FWs. For a future general domain-

specific software solution for automotive app interface 
models, aligning ontologies is a crucial issue in the field of 
semantic integration, which aims to find semantic 
correspondences between a pair of elements of ontologies by 
identifying semantic relations. The interoperability of 
different UML profile-based component interface models 
(described in section III) within the same vehicle information 
system would require a process of detection of interface 
semantic synergies and resolution of semantic conflicts. The 
ontologies alignment can use one or more similarity measures 
(syntactic, semantic and structural) to detect the set of 
mappings [15]. To better meet this objective, and to 
significantly increase the scope of future semantic integration 
algorithms for automotive app interface models following our 
approach, an overall semantic ontology mapping must be done 
between the different component construct meta-models.  

If we consider G1, G2, G3 and G4 are the graphical model 
representations of different FW component construct meta-
models (as described in section III) and P1,P2,P3 and P4  are 
specific semantic relations or ontologies included in G1, G2, 
G3 and G4 such that P1 ⊂ G1, P2 ⊂ G2, P3 ⊂ G3 and P4 ⊂ G4. 
Then based on interface semantic static analysis approach and 
semantic synergy results, we can say that the semantic 
ontologies represented by P1, P2, P3 and P4 are such that P1 ≅ 
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- RegisterReceiver(): int

«interface»

IBinder

+ getService(): LocalServiceInstance

- onServiceConnected(): Boolean

- onServiceDisconnected(): Boolean

+ registerCallback()

Service is a special type of 

activity that does not have a 

visual user interface and usually 

run in the background .

«signal,message»

Intent::InitiateBroadcast

+ sendBroadcast()

Using 

InterProcess 

Communication 

(IPC) Protocol.

«DataRequestIdentifiable»

ContentResolv er

- delete()

- insert()

+ query(): URI

- update()

«signal,message»

Intent::startServ ice

+ startService()

«signal,message»

Intent::Ev ent

- JobScheduler: VariableDataPrototype

«AndroidService»

JobServ ice

+ JobScheduler()

C30

C31

C32

C33

Intent is used 

for IPC 

communication

such as 

method 

invokation

C34

C35

C36

C37

On Successn of 

bindService(),Client 

receives an 

IBinderinstance from 

Stub or Service

G4 

P4 

P4   A Semantic Relation 

P4 ⊂ G4 

∪ 
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P2 ≅ P3 ≅ P4 with overlapping knowledge domains. Therefore, 
we can also say that I (G1, G2, G3, G4) is the set of isomorphic 
or similar sub-graphs [15]. However, such a semantic 
ontology mapping could be better explained with 
transformation of the UML profiles in ontologies. 

V. CONCLUSION 

Today the development of vehicle software systems is 
getting more and more complex and widely distributed. End 
users expect faster, reliable and scalable results despite 
unpredictable changes in the market. With the proposed 
approach towards interoperability, we were successful to 
explore interface semantic synergies among few of the cross-
domain component-based software FWs. The app component 
constructs dimension refers to the notions of reusability and 
resolvability, which are important principles of CBSE 
(Component based Software Engineering). The proposed 
approach of interface static semantic analysis ensures that 
SWC interface models of heterogeneous frameworks can be 
compared, correlated and re-used for vehicle apps. The main 
contribution of this paper is based on the semantic survey of 
various cross-domain FW SWC interface models from 
component construct perspective. The FW components 
considered in the research scope are associated with 
automotive app domain. Each FW component construct is 
represented in a CPC (Component-Port-Connector) model 
format using an UML profile (M2 level) representation based 
on the hierarchically classified three distinct levels: Semantic, 
Behavior and Composition. The semantic survey of IDLs 
revealed several areas where they provide common extensive 
support, both in terms of modeling capabilities and 
algorithmic (IDL) support. On the other hand, the survey also 
pointed out areas in which existing IDLs are severely differed 
from one another.  

The static interface semantic analysis approach is at a 
conceptual stage and is carried out manually.  The approach 
considered the target meta-model as automotive domain SWC 
construct meta-model and the source meta-model as other 
cross-domain industrial SWC construct meta-models, for the 
semantic mapping (or comparisons). With our approach, we 
considered AUTOSAR Adaptive app SWC meta-model as 
target model. The intention of this consideration of the target 
SWC meta-model is due to the fact that AUTOSAR has been 
accepted as a de-facto standard for automotive software 
architecture. The decision for the selection of source and 
targets meta-models has been made from autonomous driving 
app’s interoperability viewpoint. There is no evolutionary 
relation between the source and target. In order to transform 
source models to target models in future or to evolve the 
model transformation rules from source to target, semantic 
mappings should be built on the meta-model level and used on 
the model level. 

 Considering the context of enterprise interoperability and 
collaboration that is cross-enterprise, the static interface 
semantic analysis and comparison approach could simulate 
the process of integrating the information systems of different 
enterprises for EIS (Enterprise Integration System) 
integration. In the last decade, the automotive and other cross-
domain research in the field of Self-driving has facilitated the 
development and state-of-the-art so that this technology is 
evaluated nowadays in large-scales on public roads. In this 
context of autonomous driving functionality, it is worth to 
mention that for some of the other existing cross-domain 

component models that we have already shortlisted, we would 
like to extend our work in the direction of cross-domain 
interface semantic analysis and comparison to explore more 
semantic synergies between these component models and 
automotive standard FW component models in the future. 

 

REFERENCES 

[1] I.Crnkovic, S.Sentilles, A.Vulgarakis and M.Chaudron, “A 
Classification Framework for Component Models”, IEEE Transactions 
on Software Engineering 37 (5), 593-615. 

[2] T.Wang, S.Truptil and F.Benaben, “An automatic model-to-model 
mapping and transformation methodology to serve model-based 
systems engineering”, Information Systems and EBusiness 
Management, Springer Verlag, 2017, 15 (2, SI), pp.323-376. 

[3] AUTOSAR, “Specification of Manifest”, AUTOSAR AP Release 18-
10, 2017.http://www.autosar.org. 

[4] AUTOSAR, http://www.autosar.org, “Integration of Franca IDL SWC 
Descriptions”, AUTOSAR Release 16-11,November 2016. 

[5] H. Bruyninckx, N. Hochgeschwender, L. Gherardi, M. Klotzbücher, G. 
Kraetzschmar, D. Brugali, "The BRICS Component Model: a Model-
based Development Paradigm for Complex Robotics Software 
Systems", Annual ACM Symposium on Applied Computing (SAC). 

[6] T. Pramsohler, S. Schenk, A. Barthels und U Baumgarten, “A layered 
interface-adaptation architecture for distributed component-based 
systems”. en. In: Future Generation Computer Systems,Elsevier,Vol 
47,June 2015,pp 113-126. 

[7] D. Bálek, F. Plášil (2001) “Software Connectors and Their Role in 
Component Deployment”. (eds) New Developments in Distributed 
Applications and Interoperable Systems.DAIS 2001. IFIP International 
Federation for Information Processing, vol 70. Springer, Boston, MA. 

[8] A.Shakhimardanov, N.Hochgeschwender, and G. K. Kraetzschmar, 
“Component Models in Robotics Software”. In Proceedings of the 
Performance Metrics for Intelligent Systems Workshop (PerMIS 
2010). Baltimore, US. 

[9] D.Stampfer, “D2.2.1 State of the Art on Service-Oriented Software 
Component Models”, FIONA ITEA2-12038, version 1.0, March 2014. 

[10] Birken, K., http://www.bmw.com “Franca User Guide”, “Franca 
Component Definition language Franca+ User guide” “.Release 
0.12.0.1, Eclipse Foundation, itemis AG, 2013. Release 0.13.0, BMW 
Group,2018. 

[11] D.Di. Ruscio, D. Wagelaar, L. Iovino and A.Pierantonio “Translational 
Semantics of a co-evolution Specific language with the EMF 
Transformation Virtual Machine”, ICMT 2012, pp 71-89.  

[12] P.Brada, “A Look at Current Component Models From Black-box 
Perspective”, 35th Euromicro Conference on Software Engineering 
and Advanced Applications,2009. 

[13] A. G. Parada and L. Brisolara, “A Model Driven Approach for Android 
Application Development”, Brazilian Symposium on Computing 
System Engineering,2012. 

[14] H. Benouda, R. Essbai,  M. Azizi and M. Moussaoui, “ Modeling and 
Code Generation of Android Application Using Acelo”, International 
Journal of Software Engineering and Its Applications vol. 10, No. 3 
2016, pp. 83-94. 

[15] H. Elasri,,E.Elabbassi,S.Abderrahim and Muhammad, “Semantic 
integration of UML Class diagram with Semantic Validation on 
Segments of Mapping”,ArXiv 2018. 

[16] D. Sprott and L. Wilkes, “Understanding Service-Oriented 
Architecture”. The Architecture Journal, 1(1):10-17,2004. 

[17] C. Paniagua, J.Delsing and J.Eliasson, “Interoperability Mismatch 
Challenges in Heterogeneous SOA-based Systems”, 2019 IEEE 
International Conference on Industrial Technology (ICIT), DOI: 
10.1109/ICIT.2019.8754991. 

[18] I. Malavolta,  "Software Architecture Modeling by Reuse, Composition 
and Customization." Universita di L’Aquila, L’Aquila, Italy, Thesis 1 
(2012). 

[19] RobMoSys,“Block-Port.Connector”, RobMoSys Wiki, June 2017 
http://www.robmosys.eu. 

 

 

64


