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Abstract. Human-machine collective intelligence systems for decision support 
are distributed systems involving multiple heterogeneous participants usually 
represented by services. In order for such systems to function efficiently, the 
participants have to intensively collaborate, what requires interoperability sup-
port. Besides, this support also has to consider auxiliary system elements such 
as user task description, negotiation protocol, etc. The paper performs a state of 
the art analysis in the areas of cloud and service-oriented systems and concludes 
that multi-aspect ontologies that preserve internal aspect ontologies would be 
the most suitable solution. An example of multi-aspect ontology is presented for 
a collective intelligence decision support system for the smart city domain. 
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1   Introduction 

Human-machine collective intelligence is a result of synergy arising due to intensive 
collaboration between humans and machines aimed at solving a certain task and con-
tinuously learning from each other to produce new knowledge. One of the areas that 
could benefit from collective intelligence is decision making [1]. Due to the distribut-
ed nature of such kind of systems and presence of multiple independent participants 
(community members), they have to self-organise in order to solve the task set. Self-
organization stands for mechanisms that enable interactions among community mem-
bers, which can result in the whole being more than the sum of its parts [2]. That is, 
self-organization is the mechanism that can help to achieve the main goal of collective 
intelligence, that is to provide more knowledge than any individual element provides. 

However, successful self-organisation can be achieved only if systems the ele-
ments (community members) are interoperable with a shared understanding of the 
task, the context, and each other’s perspectives and capabilities [3]. There are four 
levels of interoperability [4]: technical, semantic, organizational and legislative. Se-
mantic interoperability is understood as shared semantic interpretation of knowledge 
presented using meta-models. The problem of shared knowledge faces many obstacles 
in human-machine environments. Namely, different meanings for terms [5], diverse 
data formats, diverse ontologies reflecting different contexts and area of practice, 
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diverse classification systems, diverse folksonomies emerging from social tagging in 
various social media [6], and multiple natural languages [7]. All these obstacles exist 
when heterogeneous teams are aiming at providing collective intelligence.  

In 2008, T. Gruber addressed the issue of collective intelligence in the Web, where 
humans and machines contribute actively to the resulting intelligence, each doing 
what they do best [5]. Most of the research on the human-machines activities use 
ontologies as a mechanism enabling interoperability. Ontologies are a mean to repre-
sent knowledge about a problem domain in a machine-readable way. They enable 
obtaining, exchanging and processing information and knowledge based on their se-
mantics rather than just syntax. Ontology is a formal conceptualisation of a particular 
domain of interest shared among heterogeneous applications [8], [9]. Usually, it con-
sists of concepts existing in the problem domain, relationships between them and 
axioms. Ontologies are a well-proven tool to solve the interoperability problem, 

However, the problem arises due to the independency of the community members. 
Each of them works within terminology and formalism of own ontology and one can-
not make them to agree on that. Besides, solving specific tasks might require certain 
formalisms of information and knowledge representation. In this case switching to 
different formalisms would decrease the task solving efficiency and multiple transla-
tion of information and knowledge between different formalisms might cause losses 
of information.  

The paper is aimed at answering the question, how to efficiently solve the problem 
of semantic interoperability support in human-machine collective intelligence systems 
taking into account the above mentioned limitations. The structure of the paper is as 
follows. The state of the art review starts with the analysis of ontology usage in cloud 
computing and service-based systems (Section 2). Then, in Section 3 task-specific 
ontologies are considered. Finally, the possible solution based on application of the 
multi-aspect ontologies is proposed in Section 4, which is validated through an exam-
ple. The results are discussed in the conclusion. 

2   Ontologies in Cloud Computing and Service-Based Systems 

There is a number of papers that, though looking at cloud-based systems from differ-
ent perspectives, consider a cloud as a single system (or a class of systems) and pro-
pose ontology-based modelling of cloud knowledge. The ontological view of cloud 
computing [10] as well as the ontology of cloud-based systems [11] do not look into 
PaaS (Platform as a Service) or IaaS (Infrastructure as a Service) systems and only 
systematize knowledge about them. The authors of [12] consider an evolution of on-
tologies for cloud-based systems and discuss ontologies for different types of such 
systems assuming that all system services use them. Unfortunately, such approaches 
do not take into account that cloud might consist of multiple independent heterogene-
ous services and are not aimed to provide for their interoperability. 

The discussion on interoperability in cloud computing [13] argues for semantic 
models’ applicability in such environments. It is claimed that “some parts of the sci-
entific and engineering community weren’t impressed by early semantic modelling 
approaches, especially ones that required large up-front investment”. However, the 
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authors note that the situation is changing due to appearance of multiple new applica-
tions and technologies using detailed semantic models. Ontologies are pointed out as 
semantic models that can formalize a great level of details and enable reasoning (mak-
ing inferences and gaining new knowledge) though they are not often used for over-
coming the interoperability problem. For example, an approach to use an ontology for 
locating services presented in [14] does not consider the issue of interoperability at 
all. 

Multiple works propose usage of one central ontology. The review of cloud com-
puting ontologies [15] among other aims, addresses the interoperability between cloud 
computing services and mentions several other works but all of them propose a single 
ontology that has to be accepted by all the services. 

The mOSAIC ontology [16] can be considered a step to solving the interoperability 
problem. It has been developed within the FP7 mOSAIC project aimed at creating and 
exploiting an open-source Cloud API (Application Programming Interface) and a 
platform for developing multi-Cloud oriented applications. It does consider that cloud 
services come from different independent providers, however, it concentrates on the 
technical issues such as deployment, language, technologies, etc.  

The problem of service negotiation through establishing Service-Level Agreements 
(SLA) is addressed in [17]. The authors consider effects of environment changes to 
the Quality of Service (QoS) and solve it via introducing context-dependent SLA 
ontology (called “Cloud SLA Contextual Ontology” or “CSLAC’Onto”). The ontolo-
gy uses Ontology Web Language (OWL) [18] and specifies the main parties of the 
SLA process and support Semantic Web Rule Language (SWRL) inference rules [19] 
to perform reasoning. Though this work does not address the interoperability issue, it 
can be useful for ontology-based specification of the negotiation process in human-
machine collective intelligence systems. 

This work is “in-line” with the research aimed at application of the Unified Foun-
dational Ontology for Services (UFO-S) to modelling cloud computing systems with 
the accent set to SLA [20]. It is concluded that UFO-S by itself only accounts for 
initial agreement relationships and does not account for the factual relationship. In 
order to provide such a support an extension is needed. It also lacks the description of 
the multiple roles that services can perform in a cloud computing system. 

The approach in [21] is aimed at building two ontologies (general service ontology 
and software service ontology) through collecting, specifying and defining relation-
ship between components pertinent within the context of service engineering. 

A central ontology proposed in [22] is aimed at low-level description of various 
cloud services in order for a user to find one that better meets current needs. The au-
thors present an example with nine services of independent providers specifying their 
characteristics within the ontology manually. However, when dealing with tens or 
hundreds of services this approach unfortunately will not be efficient since manual 
description of each service would be too time consuming. The same applies to [23] 
where an ontology-based information model is proposed to describe properties of 
entities involved in interactions within an industrial environment that unifies data 
exchange between these. 

An approach to enabling ontology-based web service integration for flexible manu-
facturing systems is based on building an ontology for the given set of orders, prod-
ucts, industrial equipment, manufacturing processes, events and services [24]. The 
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resulting ontology gives significant benefits to automated decision-making in a manu-
facturing system but does not help to resolve the interoperability problem. 

Works requiring development of an ontology for each particular application give a 
birth to the ontology as a service concept [25]. Ontology as a service (OaaS) is a ser-
vice where Cloud vendors provide the application and infrastructure to tailor the 
source ontology to the users’ requirements. The authors of the study reported in elab-
orated ontology extraction and sub-ontology merging process. 

One of the possible solution to support interoperability of heterogeneous independ-
ent services can be service encapsulation [26]. The usage of uniform resource expres-
sion model is proposed based on the shared cloud ontology. The interoperability be-
tween decentralized services is achieved through introduction of virtual resources 
incapsulating the decentralized ones. Wrappers and annotations can be used in a simi-
lar way [27]. These approaches seem to be beneficial for environments with more or 
less stable set of community members, when new ones do not join too often. In more 
dynamic environments the necessity to create encapsulating service for each new 
member could be problematic. 

3   Ontologies in Decision Support and Interoperability 

There are multiple works offering ontologies in the area of decision support. Domain-
specific ontologies are used for inference to support decision making [28, 29] and can 
be based on different formalisms. Different approaches aimed at decision support are 
also based on the formalisms that better match used techniques. Thus, ontology-based 
capturing, representing and documenting knowledge related to decisions in the design 
of complex engineered systems assumes building a hierarchical structure where Deci-
sion Support Problem (DSP) are embedded [30]. Utility-based Decision Support 
Problem (u-sDSP) templates [30] are aimed at documenting and reuse of the 
knowledge embedded in earlier made selection decisions. They are described in an 
ontology based on the Frames formalism [31].  

The terminological changes are addressed in different ways. The first one that 
might come to one’s mind is ontology matching. The research presented in [32] is 
aimed at developing a method based on Linked Data and Semantic Web principles for 
composing microservices through data integration. It uses matching techniques con-
sidering under constraints of resource design. The authors have achieved a successful 
automatic ontology matching but only for microservices designed as data providers. 

The domain-aware matching algorithm aimed at translation between different lan-
guages [33] also does not produce results reliable enough for matching ontologies of 
various services coming into and leaving the community on a continuous basis. As 
stated by the authors its F-measure reaches the value between 70% and 80%. Applica-
tion of various techniques such as fuzzy string comparison and dictionaries (e.g., 
Wikipedia) produces similar level of matching accuracy (up to 80% in [34]). 

Ontologies are also used as a tool supporting the integration of heterogeneous 
sources [35], what improves but does not exclude the manual information processing. 

The notion of Semantic Drift has appeared quite recently. It stands for phenome-
non of ontology concepts gradually changing as our knowledge of the world evolves, 
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what results in obtaining different meanings, as interpreted by various communities or 
in different contexts [36]. There are no mechanisms directly aimed at modelling onto-
logical knowledge taking into account the semantic drift. However, for example, the 
apparatus of temporal logics can be applied for this purpose: the authors of [37] pro-
pose to address the problem of terms having different meaning at different PLM stag-
es or different company departments through usage of temporal logics, assigning 
validity timestamps to the ontology concepts and rules. 

Integrating knowledge into multi-domain ontologies works only for specific termi-
nology-related tasks as document processing and analysis [38, 39], but are not effi-
cient for tasks that require strict semantics and inference. 

Translations between different ontologies are currently almost not paid attention 
from the scientific community. A new “distributed ontology language” (DOL) ained 
at description of translations between terminologies and formalisms of different on-
tologies is proposed in [40] as a part of the OntoIOp (Ontology Integration and In-
teroperability), a new international standard proposed in ISO/TC 37/SC 3, aiming at 
filling this gap. However, if a continuous joint usage of diverse ontologies is required, 
translation back and forth might likely result in the loss of knowledge. 

The most promising approach is to preserve the ontologies of services and build 
some structure on the top of them. An application of top-level ontology called Basic 
Formal Ontology (BFO) to facilitate interoperability of multiple engineering-related 
ontologies [41]. The authors present a system of formal linked ontologies by re-
engineering legacy ontologies to be conformant with BFO.  

A layered framework is proposed in [42] aimed for integration heterogeneous net-
worked data sources, whose heterogeneity originates from different models (e.g., 
relational, XML, or RDF), different schemas within the same model, and different 
terms associated with the same meaning. The authors use metadata representation and 
global conceptualization with further mapping support in order to provide information 
translation. 

The approach presented in [43] is aimed at description of multi-cloud systems 
where clouds differ both syntactically and semantically. It is built around an ontology-
based abstract model that on the one hand is different from models of the clouds, but 
on the other hand bridges gaps between them through establishing mappings between 
own concepts and those of particular clouds.  

Viewing a problem domain from different viewpoints has resulted in appearance of 
Multi-Viewpoints Ontology (MVpOnt) where each viewpoint corresponds to the 
knowledge representation useful to a particular group of people, which coexists and 
collaborates with other groups [44]. This approach seems to be the most suitable for 
the problem set. 

4   Multi-Aspect Ontology for Interoperability Support in Human-
Machine Collective Intelligence Systems 

As it was noted before, the most suitable approach to support interoperability in hu-
man-machine collective intelligence systems is multi-viewpoints ontology. However, 
if we consider different interrelated aspects (facets, constituents) of a complex prob-
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lem domain we can speak of a multi-aspect ontology that on the one hand provides for 
the common vocabulary enabling the interoperability between different decision-
making processes and ontologies supporting these, and, on the other hand, makes it 
possible to preserve internal notations and formalisms suitable for efficient support of 
these processes. 

It is generally based on three levels (Fig. 1): 
• Global level: at this level the concepts and rules related to all aspects are located. 
• Aspect level: at this level the concepts and rules related to one aspect but accessi-

ble from other aspects are located. 
• Local level: at this level the concepts and rules related to one aspect (both accessi-

ble from other aspects and not) and are located. 

 

Fig. 1. The main entities of the implemented approach and identified roles 

Obviously, the first two aspects have to be described using a formalism, which is 
global for the system, and the third one – in the internal formalism of the given as-
pect. There have to be established relationships between the concepts of different 
levels.  

An illustration of a multi-aspect ontology for interoperability support in human-
machine collective intelligence systems is based on the domain of decision support in 
smart city. As the representation formalisms for the first two levels the one proposed 
in [44] has been used. The illustrative ontology is based on integration of several ex-
isting ontologies and considers only three aspects: “Competences”, “Negotiation Pro-
tocol”, “User Task” corresponding to different processes of the decision support 
based on human-machine collective intelligence. The three aspects are aimed at dif-
ferent tasks and, as a result, they use different formalisms (below, these are described 
with the most illustrative concepts).  

The task considered in the Negotiation Protocol aspect is providing an agents with 
ability to communicate and reach the desired result. Inference rules are defined on top 
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of the negotiation ontology to guide agents’ reasoning ability. The negotiation proto-
col aspect makes agents’ negotiation behaviors more adaptive to various negotiation 
environments utilizing corresponding negotiation knowledge, that does not need to be 
hard-coded in agents, but it is represented by an ontology [45, 46]. The formalism 
used in this aspect is OWL, and the example classes are “Community Member”, “Hu-
man” (subclass of Community Member), “Agent” (subclass of Community Member), 
“Strategy”, “Utility Function”, “Parameter” and “Role” (all four are associated with 
the class Community Member). 

The User Task aspect is aimed at definition of the user tasks in the considered do-
main (in the given case study the domain is the smart city user information support), 
their interdependencies and subtasks, as well as functional dependencies between 
their parameters. The formalism of object-oriented constraint networks makes it pos-
sible to define functional dependencies (represented by constraints) between different 
parameters of the smart city environment then process these via a constraint solver 
when a particular situation takes place. The internal representation is basically con-
sists of entities, their parameters and constraints defined between them. However, for 
the interoperability reasons, the following connecting classes are defined at the aspect 
level: “Entity”, “Social” (subclass of Entity), “Physical” (subclass of Entity) , “Cyber” 
(subclass of Entity), “Parameter”, “Domain”, subclasses of the Domain class (e.g., 
“Healthcare”, “Education”, etc.), “Rule”. 

The third example aspect is Competences where competences of the members of 
the human-machine community. The competences are organized into a hierarchy for 
facilitating tasks of matching between competences and tasks to be solved. The fol-
lowing classes are considered in this aspect: “Community member”, “Competence”, 
“Domain”, “Competence Level”, “Competence Statement” (a more detailed descrip-
tion of this ontology can be found in [47]). In this aspect, an OWL ontology is used. 

The resulting ontology with all the mentioned classes located at different levels is 
presented in Fig. 2. The following bridge rules (relationships between concepts) have 
been introduced:  

Parameter  ParameterNegotiationProtocol  
Parameter  ParameterUserTask  
Parameter  CompetenceLevelCompetences 
CommunityMember  CommunityMemberNegotiationProtocol  
CommunityMember  EntityUserTask  
CommunityMember  CommunityMemberCompetences 
Role  RoleNegotiationProtocol  
Role  RoleUserTask  
Domain  DomainUserTask  
Domain  DomainCompetences 
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i.e., the Roles from different aspects are the same roles, and Entity from the User Task 
aspect is Community Member from the Negotiation Protocol aspect. Only the bidirec-
tional inclusion bridge rule indicated with the symbol  is shown in the example that 
states that two concepts under different viewpoints are equal). 

Conclusions  

The paper investigates the problem of providing for semantic interoperability in hu-
man-machine collective intelligence systems, that are distributed systems involving 
multiple heterogeneous participants. A state of the art in the areas of cloud and ser-
vice-oriented systems has been carried out. As a result, it was concluded that multi-
aspect ontologies that preserve internal aspect ontologies would be the most suitable 
solution. An example of multi-aspect ontology is presented for a collective intelli-
gence decision support system for the smart city domain. 

Fig. 2. Multi-aspect ontology for three viewpoints. 
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The research is currently at an early stage, and building a full size multi-aspect on-
tology together with prototyping and experimenting are planned as future work. The 
main limitation visible at the moment is the limited number of aspect ontologies that 
can be integrated since the building the global and aspect levels is a manual work.  
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