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Abstract Many real-world problems belong to the area of continuous
black-box optimization. If the black-box function is also cost-aware,
regression surrogate models are often utilized by optimization algorithms
to save evaluations of the original cost-aware function. Choosing a suitable
surrogate model or a suitable setting of its hyperparameters is a complex
selection problem, where research into reusing knowledge represented
by features of black-box function landscape is only starting. In this
paper, we report the research into surrogate model selection, where
knowledge from the previous experience with using the model is utilized
to design a metalearing system. As a proof of concept, we provide a study
investigating the influence of landscape features on the performance of
various Gaussian process covariance functions as surrogate models for
the state-of-the-art optimization algorithm in the cost-aware continuous
black-box optimization.

Keywords: Benchmarking · Black-box optimization · Gaussian process · Land-
scape analysis

1 Introduction

Surrogate modeling is a technique for saving expensive evaluations of a black-box
objective function during the run of an optimization algorithm. Given a set
of observations, a surrogate model can be fitted to approximate the landscape
of the objective function. However, which surrogate model should be chosen
given a particular optimization task? Generally, no surrogate model improves the
algorithm always better than all other surrogate model approaches (cf. [14,28]).
The performance of each surrogate-assisted algorithm obviously depends on the
properties of the data; therefore, investigation of the suitability of different models
and their settings for different combinations of the data properties is very much
needed.
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Surrogate model selection can utilize the experience from the application
of the considered models to other optimization tasks, a strategy known as
metalearing [19]. Considering the surrogate model selection problem, it is necessary
to extract information about the approximated function, which can be later
utilized by a learning system to make a decision about the convenience of
particular surrogate models. Therefore, features characterizing properties of the
landscape of the objective function should help to better distinguish the model
suitability.

In recent years, many features aiming to describe the properties of objective
function landscapes have been proposed (cf. the overview in [16]). However, a
majority of landscape features was utilized only for the selection of optimization
algorithms and algorithm settings (a. k. a. Algorithm Selection or Algorithm
Configuration problems [33]), not for the selection of surrogate models and their
settings. The discussion in [14] suggests that landscape features can be used to
this end, too. However, only little research in that direction is known so far.

In this paper, we report a research into designing a metalearing system for
surrogate model selection according to past experience. We study relations be-
tween the performance of surrogate models and considered properties of objective
function landscapes. As a proof of concept, we utilize results of the investigation
in [29], where the influence of Gaussian process (GP) covariance function settings
on the error of GP predictions with respect to the original fitness has been studied
in connection with landscape features. We employ a classification tree showing
the dependence of the most suitable covariance function on landscape features to
adaptively select the most promissing covariance for the GP surrogate model in
the surrogate variant of the state-of-the-art black-box optimization algorithm
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10], the Doubly
Trained Surrogate CMA-ES (DTS-CMA-ES). We evaluate the resulting algorithm
performing automatical covariance function selection on the noiseless part of the
COCO framework [11,12] and compare it to five DTS-CMA-ES versions without
online covariance function selection.

The next section provides a brief introduction to surrogate modeling and
landscape analysis. Section 3 states the proposed research problem and our
approach to adress it. Section 4 presents a proof of concept of the proposed
approach and its experimental results. The last section discusses the results and
suggests directions for future research.

2 Background

2.1 Surrogate Modeling

Replacing an expensive function f with a trained regression model has been used
to speed-up black-box optimization for many years. Such regression model, a. k. a.
surrogate model, is trained on the already available input–output value pairs
(xi, yi), i = 1, . . . , N , where xk is a point in a search space and yk = f(xk) is an
objective function value of xk for k = 1, . . . , N . The model is used instead
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of the original expensive objective function to evaluate some of the points
needed by the optimization algorithm. The response-surface models [26] are
low-degree polynomial models and were used as the historically first models in
costly continuous optimization [1,15]. Since then, other models like multi-layer
perceptron- and RBF-networks [34], support vector machine regression [20],
random forests [2] or Gaussian processes [2,5,27,35] were also used in black-box
optimization.

Simpler models like polynomials are cheap to train; they are thus suitable for
the applications where additional computational resources imposed by the model
building would constitute a substantial part of the overall optimization cost. On
the other hand, random forests and Gaussian processes provide estimation of the
prediction uncertainty which can be used in selecting points for evaluation either
with the expensive original function, or with the model fitness function [3,27].

2.2 Landscape Analysis

Landscape analysis aims at characterizing the landscape of an investigated
function and deriving rules how those characteristics influence the performance of
the optimization algorithm. The final goal is to formulate rules for the selection of
suitable algorithms for an unknown problem according to the calculated features;
this corresponds to the Algorithm Selection problem formulated in [33].

A large number of various landscape analysis techniques have been proposed in
recent years. The following measures quantifying the characteristics of landscapes
were formulated in [23]: multi-modality, global structure, separability, variable
scaling, search space homogeneity, basin size homogeneity, plateaus, and local to
global optima contrast. However, the majority of these high-level properties have
the disadvantages of expert knowledge necessity, categorical character, missing
important information, and requiring knowledge about the whole problem [16].

Exploratory Landscape Analysis [22] is an umbrella term for all such methods,
even though originally developed for combinatorial optimization problems [25]. An
important step in the development of landscape analysis was a proposal of six low-
level easy to compute feature classes [22], each containing a number of individual
features. Generally in continuous black-box optimization field, such feature is a
function ϕ :

⋃
N∈N RN,D×RN,1 7→ R which aims to describe landscape properties

utilizing a dataset of N pairs of observations
{

(xi, yi) ∈ RD × R | i = 1, . . . , N
}
.

Proposed feature classes represent measures related to the distribution of the
objective function values (y-Distribution), the relative position of each value with
respect to quantiles (Levelset), the information extracted from linear or quadratic
regression models fitted to the sampled data (Meta-Model), and three feature
classes requiring additional objective function evaluations – the level of convexity
(Convexity), gradient and Hessian approximation statistics (Curvature), and
features related to local searches conducted from sampled points (Local Search).
It was shown [22] that these low-level features relate well the above mentioned
high-level properties.

The cell-mapping approach [18] discretizes the input space to a user-defined
number of blocks (i. e., cells) per dimension. Afterwards, the corresponding

Knowledge-based Gaussian Process Surrogates

50



4 Zbyněk Pitra, Lukáš Bajer, and Martin Holeňa

features are based on the relations between the cells and points within. Three cell-
mapping feature classes were defined: features extracting information based on the
location of the best and worst observation within a cell w.r.t. the corresponding
cell center, aggregated cell-wise information on the gradients between each
point of a cell and its corresponding nearest neighbor, and estimated convexity
of representative observations from three successive cells in each dimension.
Additionally, the Generalized Cell Mapping features are based on estimated
transition probabilities of moving from one cell to one of its neighboring cells.
Using those probabilities, the barrier tree [7] can be constructed to represent
the local optima by tree leaves and landscape ridges by the branching nodes. It
should be noted that cell-mapping approach is less useful in higher dimensions
where majority of cells is empty and feature computation can require a lot of
time and memory.

Nearest better clustering (NBC) features [17] are based on the detection of
funnel structures. The calculation of such features is based on the comparison of
distances from observations to their nearest neighbors and their nearest better
neighbors, which are the nearest neighbors among the set of all observations with
a better objective value. In [21], the set of dispersion features comparing the
dispersion among the data points and among subsets of these points from the
dataset is proposed. The information content features of a continuous landscape
are derived in Information Content of Fitness Sequences approach [24] as the
adaptation of methods for calculating of the information content of discrete
landscapes. In [16], three feature sets were proposed: the features providing basic
information about the data such as the number of points, boundaries or dimension
(Basic), aggregated information about coefficients of linear models fitted in each
cell, and information obtained from principle component analysis measuring the
proportion of principle components needed to explain a user-defined percentage
of variance. A comprehensive survey of landscape analysis methods can be found,
e. g., in [25].

Research into using landscape features for surrogate modeling selection has
started only recently. In [36], the fitness distance correlation was utilized for
automatic selection between polynomial and RBF models and their settings
as surrogates for a particle swarm optimization algorithm. In [30], we have
investigated relationships between two surrogate models (GP and RF) and a set
of landscape features. In [29], we have proposed the set of landscape features
based on the state variables of the CMA-ES algorithm (CMA features) and
investigated the relationships of GP covariance functions to landscape features.

3 Landscape Analysis for Surrogate Model Selection

3.1 Surrogate Model Selection Problem

The surrogate model selection problem can be formalized as follows: In an
iteration i of a surrogate-assisted algorithm A, a set of surrogate models M
with hyperparameters θ are trained utilizing particular choices of the training
set T . The training set T is selected out of an archive A (T ⊂ A) using some
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training set selection method (TSS). The archive contains all points in which the
fitness f has been evaluated so far A = {(xi, f(xi))| i = 1, . . . , N}. Afterwards,
the surrogate model M ∈M is utilized to evaluate new set of points (population)
P = {xk|k = 1, . . . , α}, where f(xk) can be obtained using the expensive black-
box fitness function and α ∈ N depends on the strategy for the selection of new
points for evaluation by the models fromM. The main question related to this
problem is: How can we select the most convenient models from the setM (and
possibly θ) according to A, T , and P?

3.2 Proposed Methodology

We suggest to use the metalearing approach based on landscape features to tackle
the surrogate model selection problem.

Learning phase: First, a set of datasets D = {A(l), T (l),P(l)}Ll=1, L ∈ N, is
created (ideally via recording the datasets from independent runs of the algorithm
A). Second, for each l, each model M ∈M with hyperparameters θM is trained
on T (l) and its performance is assessed with some error measure ε on P(l).
Third, each dataset from D is characterized using a set of landscape features
Φ. In this way, a mapping SM : Φ →M or Sθ : Φ → ⋃

M∈MΘM from feature
space toM or

⋃
M∈MΘM is learned, where ΘM stands for the set of possible

hyperparameters of the model M .
Application phase: In each iteration i of an algorithm A, the landscape

features Φ are calculated on datasets A(i), T (i),P(i). After that, the mapping S
is used to select the surrogate model M ∈M and its hyperparameters θM ∈ ΘM .
The selected M ∈M is trained on T (i) and then utilized for predicting fitness
values of the elements of P(i).

4 Proof of Concept

4.1 Learning phase

Optimization Algorithm Considering cost-aware black-box single-objective
optimization of continuous functions, the CMA-ES [10] has been many times
successfully improved using surrogate models to save fitness function evaluations
[13,15,20,27]. The DTS-CMA-ES [3,27] has been shown a valuable representative
of such surrogate-assisted versions of the CMA-ES. Therefore, we have utilized
DTS-CMA-ES to play the role of the algorithm A in our concept.

Surrogate Model and Hyperparameters As a surrogate model, the DTS-
CMA-ES uses Gaussian processes [31] due to their ability to estimate the whole
distribution of the fitness function. In the DTS-CMA-ES, the Gaussian process
model setting is fixed during the whole optimization process, so is the GP
covariance function. An essential GP hyperparameter is the type of covariance
function. In [32], we have proposed to select the covariance function for a GP-
based surrogate model for the CMA-ES using a Bayesian approach.
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Mapping The results in [29] suggested that mapping from the space of features
calculated on A, T , and P to the value set of a categorical hyperparameter can
be represented by a classification tree.

Error Measure The CMA-ES state variables are adjusted according to the
ordering of µ best points from the current population. Therefore, the Ranking
Difference Error [3] is a convenient measure of model error for the DTS-CMA-ES

RDEµ(ŷ,y) =
∑
i:(ρ(y))i≤µ |(ρ(y))i − (ρ(ŷ))i|

maxπ∈Permutations of (1,...,λ)
∑
i:π(i)≤µ | i− π(i)| , (1)

where (ρ(y))i is the rank of yi among the components of y.

Dataset To generate a set of datasets D, we have used independent runs of the
DTS-CMA-ES on the 24 noiseless single-objective benchmarks from the COCO
framework [11,12] in dimensions 2, 3, 5, 10, and 20 on instances 11–15. Using each
of the 8 different covariance functions from [29] in each of those independent
runs, data from 25 uniformly selected generations were recorded. The runs of the
algorithm were terminated in cases when the limit of 250 function evaluations
per dimensions was exceeded or when the target fitness value 10−8 was reached.
The details1 of generating the datasets can be found in [29].

Landscape Features The following 6 feature classes were employed to charac-
terize all the sets A, T , and P from the datasets in D: y-Distribution, Levelset,
Meta-Model, NBC, Dispersion, Information Content, and CMA features. In ad-
dition, the dimension D and the number of observations N from the Basic
feature class were also utilized. The rest of features from classes described in
Subsection 2.2 were excluded, mainly due to requiring additional evaluations of
the objective function f.

Classification Tree for Covariance Functions The classification tree T
depicted in Figure 1 has been obtained in [29] and represents the influence of
landscape features on the most suitable covariance function. To train the tree T ,
all the sets described by features in the previous paragraph were divided into
8 classes according to which of the 8 considered GP model settings achieved
the lowest RDEµ. The tree was trained using the MATLAB implementation
of the CART algorithm [4], where all features were considered as continuous
variables. The fully-grown tree was pruned to depth 8 resulting in the shown
tree T . The set of training points and the respective population is denoted
TP = T ∪ {(x, ◦)| ∀x ∈ P}, where ◦ indicates the unknown fitness value of a
point from the current population P.

1 Source code covering all mentioned experiments is available on http://uivty.cs.cas.
cz/~cma/ecml2019/source.zip
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Figure 1: Classification tree T selecting the most suitable covariance function
based on landscape features [29]. In each iteration of the DTS-CMA-ES, the
landscape features in the splitting nodes are calculated on sets in brackets, i. e.,
archive of points evaluated so far A, GP model training set T , and the set
of training points and current population TP = T ∪ {(x, ◦)| ∀x ∈ P}, where ◦
indicates an unknown fitness value of a point from the current population P . The
covariance function is determined by the leaf reached by the sequence of splitting
nodes decisions. The features used for node splits are explained in the text of
Subsection 4.1. Covariances in leaves are listed in Table 1.
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Figure 2: Median (solid lines) and 1st/3rd quartiles (dash-dot lines) of RDEµ
values dependency on ϕL(A) for all tested covariances calculated on all available
datasets.

The features employed in the tree T represent various landscape properties:
D is the dimension of the investigated function; ϕL is the log-likelihood of the set
of points X with respect to the CMA-ES sampling distribution [29] (see Figure 2
for the average RDEµ dependency on ϕL(A)2); ϕR(mean) and ϕR(med) denote two
ratios of the mean and median distances of the ’best’ objectives vs. ’all’ objectives
[21]; ϕLs, ϕQs, and ϕQi represent the adjusted R2 (i. e., the model fit) of linear,
quadratic simple, and quadratic with interactions fitted regression models [22];
ϕQDA is the mean missclassification error of Quadratic Discriminant Analysis on
points divided into two classes according to the fitness values with median as a
threshold [22]; ϕε denotes the argument of the maximum information content of
the fitness sequence [24].

The covariance functions located in leaves of the tree T are listed in Table 1.

2 Figures of the RDEµ dependencies on the remaining features can be found on an
authors’ webpage: http://uivty.cs.cas.cz/~cma/ecml2019/.
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Table 1: Considered GP covariance functions. Notation: d – metric measuring
the distance d(xp,xq), hyperparameters σ0 – scalar multiplication factor, σ2

f –
signal variance, ` – characteristic lenght-scale (spatially varying in the Gibbs [9]
covariance, where `(x) is an arbitrary positive function of x), and α > 0.
name kernel

linear (LIN) KLIN(xp,xq) = σ2
0 + x>p xq

squared-exponential (SE) KSE(d;σf , `) = σ2
f exp

(
− d2

2`2

)

rational quadratic (RQ) KRQ(d;σf , `) = σ2
f

(
1 + d2

2`2α

)−α

Matérn 5
2 [31] (Mat) K

5
2
Mat(d;σf , `) = σ2

f

(
1 +

√
5d
`

+ 5d2

3`2

)
exp
(
−
√

5d
`

)

Gibbs [9] KGibbs(xp,xq)=σ2
f

(
2`(xp)`(xq)
`(xp)2+`(xq)2

)D/2
exp
(
− (xp−xq)>(xp−xq)

`(xp)2+`(xq)2

)

Algorithm 1 Covariance function selection in DTS-CMA-ES model training
Input: A (archive), P (population), Nmax (maximum training set size), TSS (training

set selection method), r (maximal radius of selected points), µ (GP mean function),
σ (CMA-ES step-size), C (CMA-ES covariance function)

1: {(xk, yk)}Nmax
k=1 ← select max. Nmax points from A using TSS and r

2: xk ← transform xk into the (σ)2C basis k = 1, . . . , Nmax
3: yk ← normalize yk to zero mean and unit variance k = 1, . . . , Nmax
4: K← T (A, T = {(xk, yk)}Nmax

k=1 ,P)
5: θ← fit the hyperparameters of (µ,K) by likelihood maximization

Output: M – trained GP model with hyperparameters θ

4.2 Application phase

Covariance Function Selection The implementation of the selection of the
covariance function for the DTS-CMA-ES based on the classification tree T is
quite straightforward. We have modified the original algorithm only in the GP
model training method (see Algorithm 1). We have incorporated an additional
step applying covariance function selection using the classification tree T between
the training set transformation and fitting the GP hyperparameters θ.

Covariance selection validation setup We have compared the described
adaptive DTS-CMA-ES that online chooses the covariance function using the
tree T (denoted as T-DTS) with five DTS-CMA-ES versions that use solely one
covariance from Table 1. The comparison was performed on the noiseless part
of the COCO framework using instances 1–5 and 81–90 of all 24 benchmark
functions in dimensions 2, 3, 5, 10, and 20. Each of the six DTS-CMA-ES
versions had a budget of 250D fitness function evaluations to reach the target
value 10−8 from the function optimum. Except the choice of the covariance
function, the DTS-CMA-ES was tested in its non-adaptive version using the
overall best settings from [3].
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4.3 Results

Results from the comparison of six DTS-CMA-ES versions are depicted in
Table 2 and Figures 3 and 4. The graphs in Figures 3 and 4 show the dependence
of the scaled best-achieved logarithms ∆log

f of median distances ∆med
f to the

optimal fitness value on the number of cost-aware fitness evaluations divided
by the dimension. Medians ∆med

f , 1st, and 3rd quartiles are calculated from 15
independent instances for each respective algorithm, function, and dimension.
The scaled logarithms of ∆med

f are calculated as

∆log
f =

log∆med
f −∆MIN

f

∆MAX
f −∆MIN

f

log10
(
1/10−8)+ log10 10−8 , (2)

where ∆MIN
f (∆MAX

f ) is the minimal (maximal) distance log∆med
f found among

all the compared algorithms for the particular function f and dimension D
between 0 and 250 function evaluations per D. The resulting values are scaled to
interval [−8, 0], where −8 corresponds to ∆MIN

f and 0 to ∆MAX
f . More detailed

results can be found on an authors’ webpage3.
We have tested the statistical significance of performance differences on 24

COCO functions in 5D using the Iman and Davenport’s improvement of the
Friedman test [6]. The test was conducted separately for two function evaluation
budgets. Let #FET be the smallest number of function evaluations at which
at least one DTS-CMA-ES version reached the precision ∆med

f ≤ 10−8, or
#FET = 250D if no version reached the precision within 250D evaluations.
The DTS-CMA-ES versions are ranked on each COCO function with respect to
∆med
f at a given budget of function evaluations. The null hypothesis of equal

performance of all versions is rejected for the higher function evaluation budget
#FEs = #FET, as well as for the lower budget #FEs = #FET

4 (in both cases,
p < 10−3).

We test pairwise differences in the performance using the post-hoc Friedman
test [8] with the Bergmann-Hommel correction controlling the family-wise error.
The numbers of functions at which one DTS-CMA-ES version achieved a higher
rank than the other are enlisted in Table 2. The table also contains the pairwise
statistical significances.

From the results in Table 2 and in Figures 3 and 4, we can consider the results
of the T-DTS, and the DTS-CMA-ES with SE, Mat, and RQ covariances being
statistically equivalent meaning that neither of them is significantly better than
the other one. Looking on the detailed results on the authors’ webpage3, those
covariances provided the best performance on the functions f5, f8−11, and f14.
On the other hand, slightly worse results can be observed on functions f7, f13,
f16, and f20. On functions f6 and f17,18 the T-DTS results more or less follow SE,
Mat, and RQ performance although the best performance was provided by the
Gibbs covariance. The results on multimodal functions f22−24 show increasing
T-DTS performance with growing dimension. The versions using LIN and Gibbs
3 http://uivty.cs.cas.cz/~cma/ecml2019/
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Table 2: A pairwise comparison of the algorithms in 5D over the COCO for
different evaluation budgets. The number of wins of the i-th algorithm against the
j-th algorithm over all benchmark functions is given in i-th row and j-th column.
The asterisk marks the row algorithm being significantly better than the column
algorithm according to the Friedman post-hoc test with the Bergmann-Hommel
correction at the family-wise significance level α = 0.05.
5D T-DTS LIN SE Matérn RQ Gibbs
#FEs⁄#FET

1⁄4 1 1⁄4 1 1⁄4 1 1⁄4 1 1⁄4 1 1⁄4 1

T-DTS — — 22.5∗ 24∗ 10.5 12 11.5 12 12.5 11 17.5 22.5∗
LIN 1.5 0 — — 0.5 0 0.5 0 0.5 0 0.5 0
SE 13.5 12 23.5∗ 24∗ — — 10.5 11.5 13.5 9.5 15.5 20∗
Matérn 12.5 12 23.5∗ 24∗ 13.5 12.5 — — 10.5 10.5 16.5 23.5∗
RQ 11.5 13 23.5∗ 24∗ 10.5 14.5 13.5 13.5 — — 14.5 22∗
Gibbs 6.5 1.5 23.5∗ 24 8.5 4 7.5 0.5 9.5 2 — —

covariance functions provide considerably lower performance in comparison with
the remainder. Variability of length-scale utilized by Gibbs covariance function
helps the DTS-CMA-ES to converge on hard-to-regress f6 and on multimodal
Schaffer’s functions f17,18 especially in higher dimensions, where the performance
of DTS-CMA-ES using Gibbs covariance in GP model is the best of all compared
versions.

A possible reason of the T-DTS results may lie in an imbalance of the input
dataset for decision tree. Covariances SE, Mat, and RQ performed almost similar
and, in average, provided the overall best prediction performance among tested
covariances on the set of datasets D. Therefore, these three covariances were
marked as best on most of datasets and the remaining two (LIN and Gibbs) were
best on minority of datasets. The trained classification tree was probably not
able to capture such imbalance of the input data and predicted LIN or Gibbs as
the most convenient covariances more often than it was necessary.

5 Conclusion and Future work

This article investigates the surrogate model selection problem for continuous
single-objective black-box optimizers in the context of reusing knowledge through
landscape analysis. The proposed concept was applied to select a hyperparameter
of Gaussian process models, namely the covariance function, and was utilized
during the DTS-CMA-ES run to save costly fitness evaluations. The DTS-CMA-
ES upgraded with hyperparameter selection was compared to five DTS-CMA-ES
versions using different covariances on the set of noiseless benchmarks.

The presented proof of concept has shown that the methodology can be
utilized for hyperparameter selection. The tree-assisted DTS-CMA-ES had a
performance equivalent to DTS-CMA-ES versions with successful fixed covariance
functions. On the other hand, the classification tree as a mapping of values of

Knowledge-based Gaussian Process Surrogates

58



12 Zbyněk Pitra, Lukáš Bajer, and Martin Holeňa

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0
"
lo
g

f

separable fcns (f1-5) 3D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

moderate fcns (f6-9) 3D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

ill-conditioned fcns (f10-14) 3D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

multi-modal fcns (f15-19) 3D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

weakly structured multi-modal fcns (f20-24) 3D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0
"
lo
g

f
all functions (f1-24) 3D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

separable fcns (f1-5) 5D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

moderate fcns (f6-9) 5D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

ill-conditioned fcns (f10-14) 5D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

multi-modal fcns (f15-19) 5D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

weakly structured multi-modal fcns (f20-24) 5D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
lo
g

f

all functions (f1-24) 5D

T-DTS

LIN

SE

Mat4ern

RQ

Gibbs

Figure 3: Scaled medians (solid) and 1st/3rd quartiles (dotted) distances ∆log
f

averaged over the groups of noiseless COCO functions in 3D and 5D for different
settings of DTS-CMA-ES GP covariance function.
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Figure 4: Scaled medians (solid) and 1st/3rd quartiles (dotted) distances ∆log
f

averaged over the groups of noiseless COCO functions in 10D and 20D for
different settings of DTS-CMA-ES GP covariance function.
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landscape features to the covariance functions for the DTS-CMA-ES seems not
to have learned very accurately.

Future research should be focused mostly on deeper understanding of the
surrogate model selection problem and the possibilities of landscape analysis
in this context. The investigation of various mappings to models and their
hyperparameters capable to capture relationships between landscape features
and surrogate model performance is definitely needed. Another direction is to
extend the presented research also to other kinds of surrogate models.
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