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models, which are easier to interpret. Such models can then be analyzed by do-
main experts and are easier to validate. Getting more interpretable models is
also a key concern nowadays and even considered by many as a requirement
when deployed in the medical domain.

Feature selection has been already largely studied. Yet, current methods are
still widely unsatisfactory mainly because of the typical instability they exhibit.
Instability here refers to the fact that the selected features may be drastically
different for similar data, even though the true underlying processes (explaining
the target variable) are essentially constant. Such instability is a key issue as
it reduces the interpretability of the predictive models as well as the trust of
domain experts towards the selected feature subsets. We address this problem
here by designing methods balancing between the classification performance and
the selection stability of the well-known Recursive Feature Elimination (RFE)
algorithm. Our approach allows domain experts to explicitly control the trade-off
and to select Pareto-optimal compromises based on their personal preferences.

In the rest of this section, two distinct stability problems that are tackled in
this paper are introduced.

1.1 The Stability Problems

Single Task Stability (1) Feature selection methods are often inherently un-
stable, i.e. they return highly different feature sets when the training data is
slightly modified. Figure 1a illustrates such an instability. The initial dataset
is perturbed1 to form different datasets. Instability arises when little overlap of
the selected features occurs. This prevents a correct and sound interpretation
of the selected features and strongly impacts their further validation by domain
experts. Unlike optimizing the accuracy of predictive models, optimizing selec-
tion stability may look trivial since an algorithm always returning an arbitrary
but fixed set of features would be stable by design. Yet, such an algorithm is not
expected to select informative and predictive features. This illustrates that opti-
mizing stability is only well-posed jointly with predictive accuracy, and possibly
additional criteria such as minimal model size or sparsity.

Transfer Learning Selection Stability (2) Multi-task feature selection aims at
discovering variables that are relevant for several similar, yet distinct, classi-
fication tasks. Different feature subsets can be returned for each task. In this
paper, we focus on the case where all learning tasks are not directly available.
Information from the tasks arising first can be propagated to subsequent tasks,
via transfer learning. Stability has to be encouraged from the domain expert
point of view as features that are relevant for different data sources are likely to
be particularly interesting to study. The accuracy-stability trade-off on such a
learning problem (represented in Figure 1b) can take two extreme values. With
complete disregard to stability, each feature set could be selected on a given task
1 Here by bootstrapping which is often used to measure such instability, but it could

be any small perturbation.
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independently of the others, with no control on the across task stability. On the
contrary, maximum stability can trivially be reached by returning the feature set
computed for the first task, for all subsequent tasks. However, this is expected to
reduce the accuracy of the models built on these subsequent tasks as previously
learned features might turn out to be less informative for them. This would be
the case if the different tasks are obtained by gradually enriching or correcting
the data as features learned on the error-corrected data are expected to be more
relevant.

(a) Single-task (b) Transfer learning

Fig. 1. Illustration of two stability problems. For both problems, the outcome is
a measure of the trade-off between prediction accuracy and selection stability.
Methods allowing domain experts to control this trade-off are proposed in the
subsequent parts of this paper.

In section 2, feature selection methods and propositions to increase stability
are reviewed. Section 3 introduces a metric to assess the performance of methods
compromising between feature selection stability and classification performance.
Then a biased variant of the RFE algorithm is proposed in section 4. Section 5
demonstrates the ability of this biased RFE to tackle the previously mentioned
stability problems.

2 Related Work
Feature selection techniques are generally split into three categories: filters, wrap-
pers and embedded methods. Filters evaluate the relevance of features indepen-
dently of the final model, most commonly a classifier, and remove low ranked
features. Simple filters (e.g. t-test or ANOVA) are univariate, which is compu-
tationally efficient and tends to produce a relatively stable selection but they
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plainly ignore the possible dependencies between various features. Information
theoretic methods, such as MRMR [7] and many others, are based on mutual
information between features or with the response, but a robust estimation of
these quantities in high dimensional spaces remains difficult. Wrappers look for
the feature subset that will yield the best predictive performance on a validation
set. They are classifier dependent and very often multivariate. However, they
can be very computationally intensive and an optimal feature subset can rarely
be found. Embedded methods select features by determining which features are
more important in the decisions of a predictive model. Prominent examples in-
clude SVM-RFE [10] and logistic regression with a LASSO [24] or Elastic Net
penalty [30]. These methods tend to be more computationally demanding than
filters but they integrate into a single procedure the feature selection and the
estimation of a predictive model. Yet, they also tend to produce much less stable
models.

Some works specifically study the causes of selection instability. Results show
that it is mostly caused by the small sample/feature ratio [2], noise in the data
or imbalanced target variable [5] and feature redundancy [23]. While all of these
reasons clearly play a role, the first one is likely the most important one in a
biomedical domain with typically several thousands, if not millions, of features
for only a few dozens or hundreds of samples. This is likely why stable feature
selection is intrinsically hard in this domain and why existing techniques are still
largely unsatisfactory.

Looking for a stable feature selection also requires a proper way to quantify
stability itself and lots of measures have already been proposed: the Kuncheva
index [15], the Jaccard index [14], the POG [21] and nPOG [26] indices among
others. Under such a profusion of different measures, it becomes difficult to
justify the choice of a particular index and even more to compare results of works
based on different metrics. Furthermore, the large number of available measures
can lead to publication bias (researchers may select the index that makes their
algorithm look the most stable) [6]. In the hope of fixing this issue, a recent
work [17] lists and analyzes 15 different stability measures. They are compared
based on the satisfaction of 5 different properties that a stability measure should
comply. A novel and unifying index has been proposed in this regard. This index,
used throughout this paper, measures the stability across M selected subsets of
features. It can be computed according to equation (1).

φ = 1−
1
d

∑d
f=1 s

2
f

k
d ∗ (1− k

d )
(1)

with s2
f = M

M−1 p̂f (1 − p̂f ) the estimator of the variance of the selection of the
fth feature over the M selected subsets and k the mean number of features se-
lected from the original d features.2 This measure is the only existing measure
satisfying the 5 (good) properties described in [17], namely fully defined, strict
monotonicity, bounds, maximum stability ⇔ deterministic selection and correc-
2 p̂f is the fraction of times feature f has been selected among the M subsets.
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tion for chance. It is formally bounded by −1 and 1 but is asymptotically lower
bounded by 0 as M → ∞. It is also equivalent to the Kuncheva Index (KI)[15]
when the number of selected features k is constant across the M selected subsets
but can be computed in O(M ∗ d) time, whereas KI can only be computed in
O(M2 ∗ d).

Several authors already proposed different methods to increase stability. For
instance, instance-weighting for variance reduction [11] which tends to increase
feature stability while keeping a comparable predictive performance. Ensemble
methods for feature selection have also been proposed [1] and generally increase
feature stability. Nonetheless, the gain in stability offered by existing methods is
still limited and, maybe more importantly, the stability of the selection cannot
be controlled explicitly, which is the main goal of this paper.

Multi-task feature selection has already been largely studied [27]. Encourag-
ing the selection of common predictors across tasks can be done by using the
`1/`p regularization scheme. The cost of selecting different predictors for differ-
ent tasks can be controlled by using different norms `1/`p, as p → ∞ favors
the selection of common features. As with the differential shrinkage approach
proposed here, penalties caused by selecting several times the same feature are
reduced. Notably, the `1/`∞ [16] and `1/`2 [18,19] penalties have been studied
in details. Efficient projected gradient algorithms, for general p, are proposed
and the effect of p on the shared sparsity pattern and the classification perfor-
mance is analyzed [25]. The main goal of [25] is to find adequate feature-sharing
degrees such as to maximize the prediction performance of the models, which is
different from the objective of explicit control of the accuracy-stability trade-off
that is pursued in the present paper. Although this approach has been originally
introduced for standard multi-task feature selection, it can trivially be adapted
to the transfer learning setting [25]. Other similar approaches have also been
proposed [3,4,8] (see [27] for a complete survey).

3 A Multi-Objective Evaluation Framework Through Pareto
Optimality

In this section, we propose to use a classical evaluation framework in multi-
objective optimization to assess the efficiency of methods balancing between
classification performance and selection stability. An (accuracy,stability) pair3

(a1, φ1) dominates another pair (a2, φ2) iff a1 ≥ a2 ∧φ1 ≥ φ2 and at least one of
the inequalities is strict (>). A given method m is able to generate some pairs
Pm in the space of all possible pairs4 P = {(a, φ) : 0 ≤ a, φ ≤ 1}. From the set of
generated pairs Pm, the set of pairs that are not dominated by any other pair,
3 Common alternatives to the classification accuracy, such as specificity/sensitivity or
AUC, can also be used.

4 The careful reader may remember that the stability measure φ formally lies in the
[−1, 1] interval. However, as φ = 0 corresponds to the stability of a uniformly random
selection, we argue that the only interesting part of the stability spectrum is in fact
[0, 1].
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Pam, can be found. This set, called the Pareto set, defines a subspace where
no point dominates any other point. A domain expert would then choose his
favorite pair based on his personal preference towards classification performance
and feature selection stability.

As performance metric, we propose the widely used hypervolume measure
[29], also known as S-metric. This volume represents the space containing the
sets of accuracy-stability pairs that are dominated by at least one point of the
Pareto set Pam. The hypervolume measure has the convenient property that
whenever a Pareto set dominates another, the hypervolume of the former is
greater. As our objective space is bidimensional, the hypervolume measure is
referred to as the Dominance Area (DA) in the rest of this work.

An example of the DA metric can be seen in Figure 2. The blue method
starts from the left with a higher accuracy. It thus gains some area over the
red method. Nonetheless, the red method can reach higher stabilities without
dropping the accuracy as much as the blue one. Overall, the red method has a
larger DA. Note that this DA is also equal to the fraction of the total area that
is dominated by the method, or 1 minus the fraction of area that dominates the
method. Its value thus lies in the [0, 1] interval.

As noticed by [28], this DA measure is biased towards convex, inner parts
of the objective space. [28] tackles this problem by giving different weights to
different portions of the objective space. This weighted DA can be computed via
the weighted integral

DAP =
∫ 1

0

∫ 1

0
w(a, φ)fP (a, φ)dadφ (2)

with w the weighting function and fP the attainment function which is equal
to 1 if (a, φ) is dominated and 0 otherwise. To preserve the [0 − 1] bounds, w
has to be normalized such that its integral over the objective space is 1. For
example, the normalized weighting function wa(a, φ) , eA∗a

eA−1 gives a higher
weight to the portions of the space where the accuracy is high. In the example
of Figure 2, the blue method actually outperforms the red one for A > 2.5.
For the sake of generality, our methods are evaluated with w(a, φ) = 1 but the
proposed evaluation framework allows for more, for instance, if domain experts
are particularly interested in some parts of the objective space.

In order to evaluate the pair (a, φ) ∈ P corresponding, for instance, to a set of
meta-parameters, some data has to be used to learn the features and some data
to evaluate them on independent examples. This can be done via standard cross-
validation or by bootstrapping. Each set of meta-parameters produces different
pairs in P and their average value is reported. Concretely, each point in Figure
2 comes with an uncertainty linked to the sampling of the data. In the following,
we define a confidence interval on the true value of DA based on the derivation
of confidence regions for each Pareto-optimal pair.

Let A be the random variable representing the accuracy value measured on
a given subsampling of the data and Φ be the corresponding stability value.
Let P = (A,Φ) be the multivariate random variable with the accuracy and
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Fig. 2. Dominace Area (DA) toy example. The DA metric represents the area
that is dominated by at least one point generated by the method.

stability as dimensions. Let us assume that the evaluation protocol produces B
measurements of P for each Pareto-optimal point5, represented by the vector p.
The Hotelling distribution T 2 is the multivariate counterpart of the Student’s t
distribution, with which we can define confidence (here 2-dimensional) regions.

T 2 = B(p̄− µ(p))′C−1(p̄− µ(p)) ∼ 2(B − 1)
B − 2 ∗ F2,B−2 (3)

with C the sample covariance matrix. It can be shown that T 2 is distributed like
a Fisher distribution F2,B−2. Thus,

P

[
(p̄− µ(p))′C−1(p̄− µ(p) ≤ 2 ∗ (B − 1)

B − 2 ∗ F2,B−2(α)
]

= 1− α (4)

The inequality defines an ellipsoidal region, that is likely to cover µ(p). The
center of the ellipsoid is p̄. The length of the axis and their angle can be found by
computing the eigenvalues and eigenvectors of the sample covariance matrix C.
To compute a confidence interval on the DA, the most dominant and dominated
point of each ellipse are found and used to compute the upper and lower bound
of the confidence interval (see Figure 3c and 3d for concrete examples in our
experiments).

4 A Biased Variant of the RFE Algorithm

In this section, we propose a simple method to balance between the classifica-
tion performance and selection stability of a logistic RFE algorithm. The RFE
5 B could be e.g. the number of bootstrap samples.
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algorithm was originally introduced with a hinge loss. We prefer here the logis-
tic variant for an expected smoother control of the trade-off under study. RFE
iteratively drops the least relevant features until the desired number of features
k is reached. We opt here to drop a fixed fraction (20%) of the features at each
iteration. The loss function that a logistic RFE minimizes for a binary classifi-
cation task is the following, with n the number of samples, xi sample number i
made of d features as dimensions, and yi its label.

L =
n∑

i=1
log(1 + e−yi∗(w∗xi)) + λ||w||2 (5)

The weight vector w contains a weight assigned to each feature. The features are
then ranked based on the absolute value of their weight, which represents the
importance of the feature in the final prediction. The term λ||w||2 of the loss
function is a regularization term, preventing coefficients of the model to take
too high values, which would most likely result in overfitting. In the classical
approach, every feature is regularized by the same amount λ.

We propose to extend equation (5), such that the regularization term be-
comes λβ||w||2. The function of the vector β is to bias the selection towards
certain features via differential shrinkage. A feature f with a small βf is less
regularized and vice-versa. Its selection in the model is less penalized than a fea-
ture with a higher βf . The search is thus biased towards features with small βf .
A similar differential shrinkage has already been applied to the `1-AROM and
`2-AROM methods [12,13] with the objective of biasing the selection towards a
priori relevant features or in a transfer learning context. In the remaining part of
this section, three possible schemes to set the β vector, according to the setting
of interest, are discussed.

Biased RFE for Single Task Feature Selection By varying the distribution of β,
the accuracy-stability trade-off of the biased RFE can be controlled. The biased
RFE is equivalent to a standard RFE when β = 1. Otherwise, the selection is
biased towards features with a small βf . This is expected to increase stability at
the possible cost of some classification performance, as uninformative features
could be prioritized. In this initial approach, we decide to favor some features
non-uniformly at random, following a gamma distribution.

βf ∼ Γ (α, 1)

with α the shape of the gamma distribution, which controls the trade-off. All
βf are post centered such that µ(β) = 1. As α → ∞, the gamma distribution
tends to a Dirac delta, δ(α). All features have then the same weight (equal to
µ(β) = 1) and no bias is put in the selection. As α → 0, the distribution of
β departs from δ(α) which increases the bias. Domains experts can thus play
with the α values and therefore explicitly tune the trade-off between selection
stability and prediction accuracy.
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Using Prior Knowledge The biased RFE can take advantage of available prior
knowledge. If a ranking of the features is known, then the βf can be assigned
such that this ranking is respected. If the prior knowledge is meaningfull, the
selection is no longer biased towards arbitrary features, but towards features
that are high in the ranking, and thus potentially informative. Another type
of prior knowledge could be an unordered set of features that are suspected to
take part in the process of interest. The lowest βf could then systematically be
assigned to those features.

Biased RFE for Transfer Learning We are now interested in the across task
stability that can be obtained via transfer learning. Tasks are thus ranked such
that information from previous tasks can be used in the selection of features for
subsequent tasks.6 In task i, features that have been returned for tasks 0..i− 1
should be prioritized over the rest, such that the feature stability is increased.
Given the definition of stability used here (equation (1)), it is actually possible to
compute the drop/gain in stability that the selection of a feature would cause.
Intuitively, we propose to bias the selection, through a specific choice of the
vector β, towards features that would cause the highest gain/lowest drop in
stability if they were to be selected. Constant terms put aside7, each feature
influences (negatively) the total stability by its variance in the selection s2

f ∝
pf (1− pf ). Feature f is given an attractiveness score scf , expressed in equation
(6).

scf = (N + 1)2

N
∗ (pf,no(1− pf,no)− pf,yes(1− pf,yes)) (6)

with s2
f,no the selection variance of feature f assuming f is not selected in the

current task and s2
f,yes its selection variance if it were to be selected. N is the

number of tasks for which feature sets have already been selected. This score
is thus proportional to the difference of stability between the cases where the
feature is selected for a given task and not. This is illustrated in table 1a where
the current task is T4. For instance, the selection of the feature F2 in task T4
would make its mean selection, pf , equal to 0.75. If it were not to be selected, pf

would be equal to 0.5. The attractiveness score of F2, scF 2 is actually positive,
meaning that the selection of F2 in T4 would increase the measured stability.

The (N+1)2

N factor of equation (6) is there to correct a downards tendency of
scf when the index of the considered task increases. This is illustrated on table
1b. If feature f is selected in each task, scf would actually decrease which would
decrease the bias. It can be shown that including the correction term leads to
scf = 2 ∗ pf − 1 with pf the proportion of the selections of feature f in the
past N tasks. Let S be the sum of the such selections. By definition, pf = S

N ,

6 Tasks can be ranked naturally from their chronological order or by the domain
expert.

7 We purposely drop the M/(M − 1) term, for convenience. Also, the denominator
k
d

(1 − k
d

) is constant if the number k of selected features is fixed.
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Table 1. Illustration of the attractiveness score (a). Need for the correction term
of equation (6)(b).

(a)
F1 F2 F3 F4 F5

T1 0 0 1 1 0
T2 0 1 1 0 1
T3 0 1 1 1 0
T4 ? ? ? ? ?
pf,no 0 0.5 0.75 0.5 0.25
pf,yes 0.25 0.75 1 0.75 0.5
scf -1 1/3 1 1/3 -1/3

(b)
T1 T2 T3 T4 T5

f 1 1 1 1
s2

f,no 1/4 2/9 3/16 4/25
s2

f,yes 0 0 0 0

s2
f,no = S

N+1 ∗ (1− S
N+1 ) and s2

f,yes = S+1
N+1 ∗ (1− S+1

N+1 ). Thus,

scf = (N + 1)2

N
∗
(

S

N + 1 −
S2

(N + 1)2 −
S + 1
N + 1 + (S + 1)2

(N + 1)2

)
=

(N + 1)2

N
∗
(

2S + 1
(N + 1)2 −

1
N + 1

)
= (N + 1)2

N
∗ 2S −N

(N + 1)2 = 2pf − 1 ut

This results demonstrates the intuitive idea that the selection should be
biased towards features that have been selected often in previous tasks. Based
on the attractiveness scores, we propose to pose

βf = exp(−scf ∗ αt) (7)

to bias the selection towards previously selected features.8 With αt = 0, features
are learned independently on each task. On the contrary, an increasing αt raises
the bias towards features that were already selected in past tasks. Domain ex-
perts can thus tune the αt values to control the accuracy-stability trade-off in
such a transfer learning setting.

5 Experiments

In this section, we evaluate to what extent an actual compromise between predic-
tion accuracy and selection stability can be made with the proposed approaches.
Experiments are performed on two distinct tasks, prostate cancer diagnosis from
microarray data and handwritten digit recognition. The Prostate dataset con-
tains 12600-dimensional (microarray) gene expression data from 52 patients with
prostate tumors and 50 healthy patients [22]. The Gisette dataset contains 5000-
dimensional integer data, with features aimed at discerning pictures of the num-
ber 4 from the number 9. Gisette was originally constructed from the MNIST
8 Again, β is post-centered such that µ(β) = 1 at each iteration of the RFE algorithm.
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data but was extended with 2500 noisy features [9]. It consists of 6000 examples,
but, in order to better illustrate the trade-off, only 100 examples are used here.

5.1 Evaluation Methodology

To obtain the results presented in the next sections, the following methodology
has been used. Each (a, φ) pair is obtained with a different α (problem 1) or
αt (problem 2). For the single task stability problem, the βf are first sampled
from the gamma distribution. Then, M bootstrap samples are built. k features
are then selected using the proposed biased RFE on each bootstrap sample. For
the transfer learning stability problem, a single bootstrap sample for each task
is created. Features are selected from it, then β for the next task is computed
according to equation (7). The final prediction model is learned by minimizing
the classical, unbiased, logistic loss with a L2 regularization (see equation (5))
with a non-strongly fitted9 regularization parameter λ. Every model is evaluated
on its out-of-bag examples. The mean accuracy as well as the stability of the
selected features are computed. As these values are obviously dependent on the
sampling of β (problem 1) or the features learned on the first few tasks (problem
2), this procedure is repeated B times and the mean values are reported. The
95% confidence regions of the expected value of the accuracy-stability trade-off
are computed as well as the confidence interval on DA described in section 3.
Stability of the feature selection (x-axis on Figures 2, 3 and 4) has not to be
confused with its corresponding uncertainty which is the width of the confidence
regions along the x-axis.

5.2 Single Task Selection Stability

The λ meta-parameter of the RFE formulation (equation (5)) has not been
strongly optimized. A value of 0.1 which provides a good accuracy has been
used for both tasks. To obtain the below graphs, the methodology detailed in
section 5.1 has been used with M = 30, k = 20 and B = 100.

Results on both data sets can be seen in Figure 3. The blue curves are
obtained without any prior knowledge. The top-left point of each subgraph cor-
responds to the (accuracy,stability) trade-off obtained with the classical logistic
RFE method. Following Pareto lines from left to right, the shape α of the gamma
distribution decreases. This makes the biased logistic RFE departs from its unbi-
ased version which raises stability but reduces classification performance. As the
method fails to reach maximum stability, it was extended with the trivial point
(arand, 1), obtained by always returning the same arbitrary feature subset.10 It
9 Values used for λ are 0.1 for problem 1 and 1 for problem 2. The final classification

algorithm does not influence the selection stability. It can thus be optimized to
maximize the predictive accuracy only.

10 It is actually impossible to reach a maximum stability of 1 for a finite regularization
parameter λ. In such a case, even with no regularization, a feature is not guaranteed
to be always selected.
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(a) (b)

(c) (d)

Fig. 3. Performance evaluation of the single task stability problem. DA obtained
on Prostate (a,c) and Gisette (b,d) with or without prior knowledge and the
corresponding confidence regions.

seems that, while it is possible to increase significantly the stability without de-
grading too much the accuracy on the Gisette dataset (Figure 3b), it is not the
case for the Prostate dataset (Figure 3a) where the accuracy drops directly.

To measure the effect of prior knowledge, N = 10 examples are sampled
randomly. The 100 features with the highest variance are selected as part of the
prior knowledge, here representing a set of potentially relevant features. As can
be seen on Figure 3a and 3b, even such a small prior knowledge improves the
Dominance Area considerably.

Figures 3c and 3d have been obtained with a small subset of the Pareto points.
The ellipses are the 95% confidence regions of the expected value (on the β
sampling) of the accuracy-stability trade-off. For large α values, the importance
of β is reduced, and thus the uncertainty limited. As α decreases, this confidence
region grows. The ellipses are also all inclined towards the right. This represents
the covariance between the accuracy and stability for a single β sampling. If the
sampling appears to be bad, .i.e. poor features are prioritized, poor accuracy
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and poor stability are obtained. The opposite is true for a good sampling. By
using the top-right and bottom-left point of each ellipse, it is possible to derive
a confidence interval on the true DA of the method on these datasets.

5.3 Multi-task Selection Stability via Transfer Learning

(a) (b)

Fig. 4. Accuracy-stability trade-off in a transfer learning setting evaluated on
Prostate (a). In red is displayed the DA obtained with the proposed biased
RFE. In blue is the DA obtained by combining the two trivial options: either
select features on each task independently, or always return the features selected
for the first task. Confidence regions of a few points computed by the biased
RFE in the transfer learning setting (b).

To generate different, yet similar, classification tasks, normally distributed
noise has been added to the Prostate dataset. This noise is centered on 0 and
has a specific standard deviation for every couple of feature and task, such
that features relevant in some task, could be irrelevant in others. Yet, tasks are
expected to share common informative features. 8 tasks are considered here, with
an arbitrary order between them. Results with k = 10, B = 500, λ = 1 are shown
on Figure 4a. The blue area is obtained by combining two trivial options. First,
the features learned on the first task can be selected for all subsequent tasks,
achieving a stability of 1. Or features can be learned independently from each
other (equivalent to αt = 0). This strategy offers poor selection stability, but also
a sub-optimal classification performance. Knowledge from previous tasks can be
used to guide the search towards potentially good features for subsequent tasks.
This increases both the accuracy and stability at first. Then, the accuracy starts
to decrease, as the selection of features is forced too much. This tendency is
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better illustrated in Figure 4b, which contains some non-Pareto optimal points.
This result is consistent with the conclusion drawn by the analysis of the Group-
Lasso with `1/`p regularization [25], i.e. that weak coupling norms (1.5 ≤ p ≤
2) outperforms no and strong coupling norms. Unlike for single task feature
selection, the confidence regions are similar for all compromises, meaning that
differential shrinkage does not increase the uncertainty of the obtained accuracy-
stability pair. Furthermore, as the ellipses are straight, the measured accuracy
and stability are uncorrelated.

6 Conclusion and Perspectives

The typical instability of standard feature selection methods is a key concern
nowadays as it reduces the interpretability of the predictive models as well as
the trust of domain experts towards the selected feature subsets. Such experts
would often prefer a more stable feature selection algorithm over an unstable
and slightly more accurate one. In this paper, the compromise between feature
relevance and selection stability is made explicit by biasing the selection towards
some features through differential shrinkage of the Recursive Feature Elimina-
tion algorithm. Domain experts are given the opportunity to select any Pareto-
optimal trade-off of accuracy and selection stability based on their preferences.
We propose the use of the hypervolume metric to assess the performance of meth-
ods realizing such a compromise. An associated confidence interval, based on the
derivation of confidence regions of the accuracy-stability trade-off, is derived.

Results on prostate cancer diagnosis and handwritten recognition tasks show
that the selection stability can be increased at will, often with a cost of classi-
fication performance. When some prior knowledge is available, far better com-
promises can be made. The design and evaluation of hybrid methods, learning
the prior knowledge from the data, and using it to stabilize the selection is part
of our future work.

Motivated by the needs of domain experts, across tasks feature stability is
also studied in a transfer learning setting (i.e. when tasks are ordered). A biasing
scheme that takes the stability measure explicitly into account is proposed. For
similar, yet different, tasks, we show on microarray data that some bias is at first
beneficial for both the accuracy and the stability. A too strong bias continues to
increase the selection stability but at the cost of some classification performance,
as the most relevant features vary across tasks. Our approach is evaluated here
in a simulated transfer learning setting and further experimental validations will
be conducted.

Different multi-task feature selection methods have been proposed in the
literature (e.g. Group-Lasso with `1/`p regularization [25], additive linear mod-
els [8], . . . ). Such methods were introduced with the primary objective of building
accurate predictive models across several (this time unordered) tasks. We will
study to which extent they could also be used to allow the tuning of the across
task selection stability and classification performance trade-off. The biased RFE
proposed here can be extended to tackle classical multi-task feature selection, for
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example by prioritizing the most relevant features when all tasks are considered
together. Our future work includes the evaluation of all these approaches in the
proposed assessment framework.

The present paper answers the growing necessity of considering the selection
stability not only as a side-effect of learning accurate predictive models but as an
actual goal in a bi-objective framework. It proposes initial approaches to learn
Pareto-optimal compromises in such a framework and, hopefully, opens the way
to new works and improvements in this area.
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