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Abstract. In recent years, deep learning has shown supreme results in
many sequence labelling tasks, especially in natural language process-
ing. However, it typically requires a large training data set compared
with statistical approaches. In areas where collecting of unlabelled data
is cheap but labelling expensive, active learning can bring considerable
improvement. Sequence learning algorithms require a series of token-level
labels for a whole sequence to be available during the training process.
Annotators of sequences typically label easily predictable parts of the
sequence although such parts could be labelled automatically instead.
In this paper, we introduce a combination of active and semi-supervised
learning for sequence labelling. Our approach utilizes an approximation
of Bayesian inference for neural nets using Monte Carlo dropout. The
approximation yields a measure of uncertainty that is needed in many
active learning query strategies. We propose Monte Carlo token entropy
and Monte Carlo N-best sequence entropy strategies. Furthermore, we
use semi-supervised pseudo-labelling to reduce labelling effort.
The approach was experimentally evaluated on multiple sequence la-
belling tasks. The proposed query strategies outperform other existing
techniques for deep neural nets. Moreover, the semi-supervised learn-
ing reduced the labelling effort by almost 80% without any incorrectly
labelled samples being inserted into the training data set.

Keywords: Active Learning · Semi-supervised Learning · Bayesian In-
ference · Deep Learning · Sequence Labelling

1 Introduction

Deep learning is achieving state-of-the-art performance in image or video pro-
cessing, audio processing or natural language processing. However, without using
a pretrained model, deep learning typically requires a large amount of data. To
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obtain unlabelled input for deep networks in video processing, cameras and other
sensors are increasingly available. In natural language processing, a lot of unla-
belled inputs can be obtained for almost no cost by gathering them from web
sites. Unfortunately, labelling such data is very time consuming and expensive.

In this situation, we can benefit from semi-supervised learning using a large
unlabelled dataset along with a small labelled one. Another option is to use
active learning wherein each iteration, a part of an annotation budget is spent
on labelling the most informative unlabelled samples. The model is retrained
including those new samples and the process repeats. The annotation budget is
significantly lower than the total number of available unlabelled samples.

Although active learning is a promising way to benefit from unlabelled data,
the most common query strategy, uncertainty sampling, requires a measure of
uncertainty. In sequence labelling, the measure can be easily defined for statisti-
cal models, such as hidden Markov models or conditional random fields (CRF),
as they provide a probability of the labelled sequence or a marginal probability
distribution for each element of the sequence. For neural networks, defining an
uncertainty measure is more complicated since the soft-max activation function,
typically used in the last network layer, does not correspond to a real uncer-
tainty of network predictions. To overcome this issue, one can use a Bayesian
neural network or include a statistical model, such as CRF, as the last layer of
the network.

In sequence labelling, query strategies can be divided into two groups. The
first group computes the uncertainty of the sequence predicted by a model.
Query strategies of the second group compute uncertainties of separated tokens
and then aggregate them to express the uncertainty of the whole sequence.

Querying the most informative sequence means that the annotator has to
label every token of the sequence. This is expensive and often not necessary
because some tokens can be very reliably annotated automatically. This situation
can be found in many natural language processing (NLP) tasks, where some
words can be assigned to only one category and we can predict that without
knowing the context. A similar situation can be found in a video where two
consecutive frames often contain the same or similar information and labelling
all frames might be inefficient.

In this paper, we propose an active learning algorithm for sequence labelling
with deep neural networks that queries labels of the most informative tokens
whereas other labels are labelled automatically.

In the following section, we summarize approaches addressing this topic. In
section 3, we define the architecture of our sequence labelling models. In section
4, we describe details of the proposed algorithm. The algorithm is evaluated
with experiments on tasks from natural language processing and the results are
shown in section 5.

Semi-Supervised Active Learning in Sequence Labelling
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2 Related Work

Sequence labelling models have been used in many areas such as part of speech
tagging (POS) or named entity recognition (NER) [25], handwritten recogni-
tion [9], protein secondary structure prediction [19], video analysis [39] or facial
expression dynamic modeling [4]. In the early years, probabilistic models were
the most frequent approach. The most commonly used among them are Hidden
Markov models, dynamic Naive Bayesian classifiers, maximum entropy Markov
models or Conditional Random fields.

With the increasing amount of data and computational power, and with for-
mulating new network topologies, deep networks are more and more popular in
sequence labelling. This is especially true for long short term memory networks
(LSTM), which deal well with vanishing gradient problem and are able to incor-
porate context far from the predicted token. One of the state-of-the-art topolo-
gies in sequence labelling is the bi-directional LSTM network (BI-LSTM) [34]
or an extended version with a CRF layer on top (BI-LSTM-CRF) [15]. An-
other interesting topology specific to language processing uses an additional
layer (LSTM [23] or CNN [22]) as a character-level embedding for words.

Active Learning in Sequence Labelling was studied intensively for proba-
bilistic models [37]. Query strategies used in AL can be categorized into several
groups. Uncertainty Sampling that selects the most uncertain samples, Query by
Committee selects samples in which a committee disagree the most, Expected
Gradient Length selects samples that would conduct the greatest change to the
current model or Fisher information strategy that selects samples that mini-
mize the model variance. These strategies differ in computational complexity
and model requirements. The most commonly used strategy, uncertainty sam-
pling, requires the model to return confidence of its predictions. Furthermore, to
avoid querying samples that are rather outliers than representative samples, the
informativeness of the sample is weighted by its average similarity to all other
samples. The technique is called information density [37].

In active learning for sequence labelling, the most informative sequence is
labelled. The sequence is then added to the training set, the model is retrained
and the process repeats. This requires the whole sequence to be labelled at
once. In contrast, Tomanek [40] introduced the SeSAL algorithm, where parts of
sequences can be labelled automatically. That algorithm was designed for HMMs
and CRFs.

Active Learning in Connection with Deep Learning Although active
learning has been applied to many ML tasks, application to deep learning is
marginal compared to probabilistic modelling. One of the main problems in deep
active learning is that many query strategies require some uncertainty estimate,
however, most kinds of deep neural networks rarely support it. In literature, we
can find several approaches approximating the model posterior: variational infer-
ence [8], probabilistic back-propagation [11], Monte-Carlo (MC) dropout [6, 16]

Semi-Supervised Active Learning in Sequence Labelling
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or mixture density networks [3]. With such approximations of uncertainty, active
learning has been used in connection with deep learning in image classification [7]
or text classification [1]. In the sequence labelling area, active deep learning was
successfully used for NER. In [38], a CNN-CNN-LSTM network was used to-
gether with active learning in a setup where the whole queried sequence had to
be labelled at once.

3 Underlying Models

A sequence labelling model assigns categorical labels to all members (tokens)
of a sequence of observed values. In general, it considers the optimal label for
a given token to be dependent on the choices of nearby tokens. The problem is
often simplified through the assumption that the sequence of labels is a Markov
chain. With that simplification, the problem can be modelled with a probabilis-
tic graphical model such as a hidden Markov model [29] or a conditional random
field. Although the probabilistic models work well on many sequence labelling
tasks [21], the Markov property assumption might be too restrictive and unreal-
istic for problems where a wider context is needed to label tokens correctly. This
can be overcome by considering dependencies of higher-order but the compu-
tational complexity is growing exponentially with the order which makes these
models unusable for real-world problems. Deep learning neural networks can help
to overcome the issue of wider context.

Deep Learning Models. In sequence labelling, various kinds of neural net-
works are used. These networks are typically designed for a specific task. This is
particularly true for their first layers that extract features. In NLP, a character
level embedding layer extracts low-level features from the text. In video analysis,
feature vectors are extracted using pretrained convolutional networks. After the
first layer, a layer that incorporates contextual information from neighbouring
elements is plugged in. The most commonly used layers on this level are LSTM
cells [13] or gated recurrent unit (GRU) [2]. Last, a sequence decoder layer is
used to predict the final sequence. Both context independent layers, for exam-
ple a fully connected dense layer (BI-LSTM-FCN) (Figure 1a), and contextual
layers, for example conditional random fields (BI-LSTM-CRF) (Figure 1b), can
be used.

Moreover, to avoid over-fitting, a dropout regularization technique can be
used. In our experiments, we use dropout for non-recurrent connections (solid
lines in Figure 1). The dropout enabled for each layer allows to estimate predic-
tion uncertainties, as the following section describes.

Bayesian neural networks aim to tackle several drawbacks of neural networks
such as overconfidence about their predictions or tendency to overfitting. In
classification, the prediction probabilities obtained from the soft-max function
are often erroneously interpreted as model confidence [6]. It means, the model
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(a) BI-LSTM with fully connected neural network on the top.
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Fig. 1: Schematic representation of deep neural network sequence labelling mod-
els used in experiments.

can be uncertain despite high values of the soft-max function and these values
require correct calibration [10] before using them as confidences. The main idea of
Bayesian neural networks is placing probabilistic distribution over nets’ weights
[24,26]. However, the approach introduces two issues, intractable inferences and
computation costs. Although stochastic variational inference [14,18,27,30] solves
the problem with intractable inference, the number of parameters is doubled and
it requires more time to converge.

Semi-Supervised Active Learning in Sequence Labelling
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Gal & Ghahramani introduced Monte Carlo dropout [6]. They have shown
that dropout or various other stochastic regularization techniques can be used
to obtain an approximation of Bayesian inference. Consider a sequence of input
vectors denoted x to which a sequence of labels denoted y is assigned. A training
set containing pairs 〈x, y〉 is denoted T . Consider a neural net with parameters
ω that uses dropout at every layer for the training. Using dropout during testing
can be seen as sampling from a model’s approximate posterior. This leads to
approximate variational inference in which a tractable distribution q∗θ(ω) min-
imizes the Kullback-Leibler (KL) divergence [20] to the true model posterior
p(ω|T ) given a training set T . The prediction uncertainty can be approximated
by marginalization over the approximate posterior using Monte Carlo integra-
tion:

p(y = c|x, T ) =

∫
p(y = c|x, ω)p(ω|T )dω

≈ 1

R

R∑

t=1

p(y = c|x, ω̂t),

where ω̂t ∼ q∗θ(w), R is the number of Monte Carlo runs, and where qθ(w)
denotes the Dropout distribution [7].

Monte Carlo dropout does not affect the model training complexity, however,
each point has to be inferred repeatedly to obtain prediction uncertainty.

4 Active Learning Strategies

Query strategies for sequence labelling models can be divided into several frame-
works such as uncertainty sampling (US), query by committee (QbC), expected
gradient length (EGL) or information density (ID) [36]. In this section, we de-
scribe some of the strategies and propose how they can be used together with
the introduced models. The most informative samples are considered to be found
by maximising a particular utility function:

x∗ = arg max
x

φ(x).

The probability of the sequence y in a by model M given the input sequence
x is denoted PM (y|x). The set of labelled sequences is denoted L and set of
unlabelled sequences is denoted U .

4.1 Query Strategies Utility Functions

Query strategies of the uncertainty sampling framework select the sequences
that have the most uncertain label. The uncertainty measure can be expressed
in several ways. Least confidence query strategy [5] selects the sequence with
the lowest probability of the most likely sequence:

φLC(x) = 1− PM (y∗|x),

Semi-Supervised Active Learning in Sequence Labelling
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where y∗ is the most likely sequence. For CRF, the most likely sequence and
its probability can be found using the Viterbi algorithm. For neural nets, the
probability of the most likely sequence can be approximated by an empirical
probability based on Monte Carlo dropout, which will be denoted PMC

M (y|x). This
empirical distribution is calculated by counting the occurrences of the sequence
y for input sequence x in several forward passes through the network, where each
forward pass has a different dropout mask. These counts are normalized to sum
to 1.

Margin query strategy [33] selects samples where the first and the second
most likely sequences have the most similar probabilities. Finding the second
most likely sequence in case of probabilistic graphical models requires an updated
version of the Viterbi algorithm called N-best Viterbi algorithm [35]. For neural
nets, the distribution PMC

M (y|x) can be used to find the probability of the second
most likely path.

The margin query strategy utility function is defined as:

φM (x) = −
(
PM (y∗1 |x)− PM (y∗2 |x)

)
,

where y∗1 and y∗2 are first and second the most likely sequences.
Token entropy query strategy [37] uses the Shannon entropy of the model’s

posteriors:

HM (l) = −
K∑

k

PM (yl = k) logPM (yl = k),

where yl is label of the sequence in time l and K is the number of possible labels,
over its labellings to define the utility function for selecting the most uncertain
sequence:

φTE(x) = − 1

L

L∑

l=1

HM (l),

where L is the length of the sequence. The utility function is normalized by the
length of the sequence. Omitting this normalization, the strategy would lead to
querying long sequences as they contain more information. The unnormalized
utility function is called total token entropy.

Whereas the marginal probability for CRF can be calculated using forward
and backward scores, those scores are not available for neural networks. We pro-
pose an approximation called Monte Carlo approximation token entropy,
which uses the idea of Bayesian inference with Monte Carlo [6]:

φTEMC(x) = − 1

L

L∑

l=1

K∑

k=1

(
PMC
M (yl = k) logPMC

M (yl = k)).

Sequence entropy query strategy computes the entropy of probabilities of
all possible sequences. This strategy is unfeasible for long sequences as the num-
ber of possible sequences grows exponentially with the length of the sequence.
Furthermore, it is not possible to obtain probabilities of a particular sequence

Semi-Supervised Active Learning in Sequence Labelling
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directly in neural network based models. For probabilistic graphical models, the
strategy can be approximated with the N-best sequence entropy [17]:

φNSE(x) = − 1

C1

∑

ŷ∈N
PM (ŷ|x)logPM (ŷ|x),

where N = {y∗1 , ..., y∗N} is set of N most likely sequences found by N-best Viterbi
algorithm [35] and C1 normalizes the probabilities to sum to 1.

While the probabilities of N most likely sequences can be obtained directly
in probabilistic models, this cannot be done in neural networks. Therefore, we
propose a Monte Carlo approximation of the sequence entropy:

φNSEMC (x) = − 1

C2

∑

ŷ∈NMC

PMC
M (ŷ|x)logPMC

M (ŷ|x), (1)

where NMC = {y1, y2, . . . } is set of all sequences predicted by Monte Carlo
sampling and C2 normalizes the probabilities to sum to 1.

In the query by committee framework, a committee of models C = {M (1), ...,M (C)},
representing different hypotheses, is maintained during the whole process of
learning. The committee is used to query the sequence over which the mem-
bers are most in disagreement about how to label it. The committee is usually
trained using bagging. In each round, the labelling set is sampled with replace-
ment to create a unique training set L(C) that is used to train model M (C). The
committee prediction is obtained by models voting. In the context of deep neural
networks, maintaining a committee is too expensive for practical use. Although
dropout can be considered as a form of bagging [12], we do not deal with the
framework in the paper.

US and QbC strategies are prone to querying outliers as they are often un-
certain for the model and the committee of models often disagrees about them.
The framework, called information density(ID), can be used to avoid this
problem. ID uses a base utility function φB(x) and weights it by samples‘ rep-
resentativeness. All above defined utility functions can be used as base utility
functions. ID utility function is defined:

φID(x) = φB(x)×
( 1

|U|

|U|∑

u=1

sim(x, x(u))
)β
, (2)

where sim(x, x(u)) is a chosen similarity function for two sequences and β a
parameter that controls a relative importance of the representativeness term.
The similarity measure differs from task to task.

4.2 Token-Level Semi-Supervised Active Learning

In the standard AL approach, the annotator has to label the whole sequence
although the sequence can contain subsequences that do not add too much value
to the utility function. If the model is sufficiently learned, these subsequences can

Semi-Supervised Active Learning in Sequence Labelling
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be easily annotated automatically using model inference. The decision whether
a token can be labelled automatically can rely on some kind of model confidence
[40] or the disagreement about the most probable paths [31].

We propose to use a combination of active and semi-supervised learning. For
models with CRF layer on the top, marginal probability represents the model
prediction confidence. Otherwise, the Monte Carlo dropout estimates the model
prediction confidence. First, the most informative sequence is found with a cho-
sen query strategy. Tokens in which the model is confident are automatically
labelled using semi-supervised learning and the rest is given to an annotator.
The labelled sequence is added to the training set and the process repeats. De-
tails of the approach are described in Algorithm 1. The confidence threshold has
to be chosen according to the model, problem type and query strategy.

Algorithm 1: Sequential semi-supervised AL framework

Input:
L: labelled set
U : unlabelled set
φ(·): query strategy utility function
θ: confidence threshold
M : model type
begin

train model m of type M on data set L
while stopping criterion is not met do

// Find the most informative sequence from U
x∗ = argmaxx∈Uφ(x)
// label the sequence with the model or query the annotator
ŷ = m(x∗)
for i = 1 to length of x∗ do

if Pm(yi = ŷi|x∗) > θ then
y∗i = ŷi

else
y∗i = query(x∗i )

end

end
L = L ∪ 〈x∗, y∗〉
U = U \ x∗
retrain model m on L

end

end

5 Experiments

To evaluate the performance of the proposed approach, we have chosen three
different sequence labelling problems: named entity recognition(NER), part of

Semi-Supervised Active Learning in Sequence Labelling
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speech tagging (POS) and chunking. Experiments were performed with two se-
quential models: BI-LSTM-FCN with Monte Carlo dropout and BI-LSTM-CRF,
and various query strategies designed for each of those models.

In the paper, we report two experiments. The first experiment tests proposed
query strategies against random sampling and least confident query strategies
as a baseline. The second experiment is using sequential semi-supervised active
learning framework to reduce the labelling effort. Our primary aim was reducing
the amount of labelled data required for training, rather than labelling perfor-
mance. Therefore, we did not extensively optimize hyper-parameters such as
learning rate, batch size or momentum.

5.1 Experiment Design

The experiments were performed on the publicly available benchmark dataset
CoNLL 2003 [32]. The dataset provides a predefined training set and two testing
sets for POS, NER and Chunking. We report performance for the testing set A.
The training set was randomly divided into a labelled set and an unlabelled set
in the ratio 1:9.

Both models use GloVe embeddings [28] where each word is represented by
a vector of length 300. The models contain two LSTM hidden layers with size
100 and dropout with probability 0.4 applied to all layers. The last layer of the
BI-LSTM-FCN is linear and uses the soft-max activation function. The number
of forward passes for computing PMC was set to 500.

First, each model was trained on the labelled training set with 10% of the
original size for 30 epochs. This model was used for experiments with all query
strategies. For each query strategy, the model was used to find the most likely
paths and their scores together with tokens prediction confidences for all unla-
belled sequences. The most informative sequences were selected and annotated
until the annotation budget was exhausted. We have defined the annotation bud-
get of one AL cycle in two ways: the number of labelled sequences and the total
number of annotated tokens. In the first scenario, 100 sequences were selected
and annotated, whereas, in the second scenario, sequences were annotated until
the total number of annotated tokens reached 1000. With the updated labelled
training set, the model was updated by iterative training for one epoch, then
the new score was calculated. This active learning cycle was repeated 20 times.
In the second experiment, samples were sorted according to their confidences,
and the threshold value was chosen to achieve 0% or 1% of incorrectly labelled
samples.

Early results showed that proposed query strategies are prone to select out-
liers. Therefore, the information density wrapping strategy was used for all of
them. Each sequence was represented by the average of embedding vectors. The
representativeness of the sequence was computed as an average cosine distance
to all other sequences in the unlabelled dataset. The cosine distance is claimed
to be an efficient similarity measure of the linguistic or semantic similarity of
corresponding words for the chosen embedding [28]. In the results, we use the
names of base query strategies for clarity.

Semi-Supervised Active Learning in Sequence Labelling
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5.2 Results

In experiments, we studied the achieved performance in terms of F-measure
(specifically F1 score) and accuracy by particular query strategies and the num-
ber of tokens that can be labelled automatically by semi-supervised learning.
We report the macro-averaged F1 score that is calculated:

F1macro =
1

|Q|
∑

q∈Q
F1q,

where Q is the set of all possible labels and F1q is the F1 score for the class
labeled q considered as the positive class and all remaining classes as the negative
class.

These scores were compared with the models learned on the whole labelled
dataset and models learned on a small labelled dataset that was later used for
active learning.

Query Strategies Comparison Query strategies were compared in two AL
scenarios: an unlimited number of tokens and a limited number of tokens. Table
1a shows that the strategies MC total token entropy and MC sequence entropy
outperforms other strategies in both F1 score and accuracy. The MC total token
entropy, however, required more tokens to be labelled. In NER, it queried almost
twice as many tokens. In the scenario with a limited number of tokens, the MC
sequence entropy dominates over other strategies except in the Chunking.

Table 1b shows that for the BI-LSTM-CRF model, the least confident and
total token entropy query strategies have shown better results compared to the
token entropy query strategy. We conclude that total token entropy query strat-
egy dominates in the scenario with an unlimited number of tokens, whereas
least confident achieves better results in the scenario with a limited number of
tokens. The sequence entropy query strategy is missing as our implementation
was lacking n-best Viterbi algorithm.

Moreover, Table 1b shows that the MC sequence entropy query strategy is
the best among the compared strategies in the NER and POS tasks during the
whole AL loop if the number of annotated tokens is limited in each cycle of the
AL loop (Figures 2a and 2b).

Active Learning in Combination with Semi-supervised Learning Last,
we studied a possible reduction of the labelling effort using semi-supervised learn-
ing. We report how many tokens were automatically labelled if the threshold is
set to not allow errors propagate into the training dataset and if 1% of errors
are allowed. The results in Table 2 indicate that the BI-LSTM-CRF model has
a more reliable uncertainty measure for the marginal distribution than the BI-
LSTM-FCN model. It can reduce the labelling effort up to almost 80% without
any incorrectly labelled samples being inserted into the training data set. The la-
belling effort is reduced up to almost 84% with 1% of incorrectly labelled samples
being inserted into the training dataset.

Semi-Supervised Active Learning in Sequence Labelling
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Table 1: Comparison of query strategies for BI-LSTM-FCN. The column ’Tokens’
represents the ratio of labelled tokens to the number of all tokens in sequences
from the complete dataset. The percentage sign is omitted. The first two lines
of the table report performance of the supervised model trained on complete
dataset and dataset with only 10% of training data available respectively.

(a) BI-LSTM-FCN

NER POS Chunking
F1 Acc Tokens F1 Acc Tokens F1 Acc Tokens

No active learning

BI-LSTM-FCN
85.3 98.6 100 85.3 95.4 100 70.5 96.0 100
75.4 97.7 10 74.6 92.0 10 53.7 93.7 10

Active learning with an unlimited number of tokens

Random 73.5 98.1 24 79.6 93.2 24 54.8 94.7 25
Least Confident 76.2 98.0 17 83.2 93.7 39 57.8 95.0 33
MC Token Entropy 77.2 98.2 24 82.7 93.7 40 57.8 94.8 36
MC Total Token Entropy 82.4 98.3 40 83.0 93.7 45 63.4 95.0 45
MC Sequence Entropy 78.0 98.4 26 83.3 94.0 41 59.7 95.0 37

Active learning with a limited number of tokens

Random 76.5 98.0 20 78.1 93.3 20 53.3 94.5 20
Least Confident 76.9 98.0 20 80.8 93.1 20 55.2 94.5 20
MC Token Entropy 76.8 98.1 20 81.5 93.0 20 55.3 94.5 20
MC Total Token Entropy 76.9 98.1 20 80.2 93.2 20 56.7 94.4 20
MC Sequence Entropy 77.5 98.3 20 82.0 93.4 20 55.3 94.4 20

(b) BI-LSTM-CRF

NER POS Chunking
F1 Acc Tokens F1 Acc Tokens F1 Acc Tokens

No active learning

BI-LSTM-CRF
85.5 98.7 100 82.3 95.3 100 58.1 95.9 100
75.9 97.8 10 72.8 92.0 10 50.2 93.7 10

Active learning with unlimited number of tokens

Random 76.8 98.1 24 75.2 93.3 24 50.7 94.6 24
Least Confident 78.4 98.6 33 81.4 94.0 40 56.0 95.2 37
Token Entropy 77.3 98.3 23 75.0 93.0 17 55.9 94.9 20
Total Token Entropy 78.0 98.5 32 82.0 94.0 39 56.3 95.1 40

Active learning with limited number of tokens

Random 76.4 98.0 20 75.6 93.2 20 55.7 94.4 20
Least Confident 77.4 98.3 20 82.1 93.3 20 57.0 94.5 20
Token Entropy 77.4 98.3 20 75.6 93.6 20 56.4 94.7 20
Total Token Entropy 77.5 98.3 20 79.3 93.3 20 56.5 94.6 20

Semi-Supervised Active Learning in Sequence Labelling
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Fig. 2: Query strategies comparison for NER and POS for BI-LSTM-FCN in the
scenario with fixed number of annotated tokens.

6 Conclusions and Future Work

In this paper, we presented an application of Monte Carlo dropout, an approxi-
mation of Bayesian inference for deep neural networks, to active learning strate-
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Table 2: Proportion of data labelled automatically by pseudo-labelling.

Task type NER POS CHUNK

Allowed errors 0% 1% 0% 1 % 0 % 1 %

BI-LSTM-FCN

Least confident 6.9 21.5 0.2 1.7 3.5 10.5
Sequence entropy 14.2 28.7 0.3 2.0 3.6 10.5
Total token entropy 7.8 12.8 0.2 1.4 2.0 6.2
Token entropy 9.0 18.7 0.2 1.6 2.6 8.3

BI-LSTM-CRF
Least confident 77.3 84.3 72.4 82.5 66.6 79.6
Token entropy 79.5 83.7 72.2 77.9 72.9 79.3
Total token entropy 75.5 83.5 71.2 81.6 65.3 78.3

gies developed for probabilistic graphical models. We proposed two not yet used
adaptations of token entropy and sequence entropy query strategies suitable for
LSTM-type deep neural networks. Moreover, we tested a combination of active
and semi-supervised learning for sequence labelling for that network.

The proposed query strategies have shown a substantial improvement over
the until now used strategy in sequence labelling with deep neural networks,
least confident. The proposed strategies outperformed the least confident in all
three considered sequence labelling tasks in case of the network without a CRF
layer. This is particularly true, if the annotation budget is limited for each active
learning batch, which is a typical real-world situation.

The combination of active and semi-supervised learning allows us to achieve
up to 80% labelling cost reduction for the BI-LSTM-CRF model. The uncertainty
measure based on Monte Carlo dropout, however, still needs improvement to
achieve labelling effort reduction comparable with BI-LSTM-CRF. To this end,
we would like to study uncertainty measures provided by other approaches to
Bayesian recurrent neural networks.

Although uncertainty sampling has shown to be applicable to deep neural
networks, other active learning frameworks have not been enough studied. In
the future, we would like to study, in the context of sequence labelling and deep
neural networks, active learning based on expected gradient length. In addition
to this, we would like to apply deep active learning to sequence labelling in video
processing, where context is also very important information.
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