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ABSTRACT
Entity linking and resolution is a fundamental database problem
with applications in data integration, data cleansing, information
retrieval, knowledge fusion, and knowledge-base population. It is
the task of accurately identifying multiple, differing, and possibly
contradicting representations of the same real-world entity in data.
In this work, we propose an entity linking and resolution system
capable of linking entities across different databases and mentioned-
entities extracted from text data. Our entity linking/resolution solu-
tion, called Certus, uses a graph model to represent the profiles of
entities. The graph model is versatile, thus, it is capable of handling
multiple values for an attribute or a relationship, as well as the
provenance descriptions of the values. Provenance descriptions
of a value provide the settings of the value, such as validity peri-
ods, sources, security requirements, etc. This paper presents the
architecture for the entity linking system, the logical, physical, and
indexing models used in the system, and the general linking process.
Furthermore, we demonstrate the performance of update operations
of the physical storage models when the system is implemented
in two state-of-the-art database management systems, HBase and
Postgres.

KEYWORDS
entity resolution, entity linking, graph data, graph model, prove-
nance, multiplicity, text data

1 INTRODUCTION
In entity linking and resolution, entities refer to real-world objects
(e.g., people, locations, vehicles, etc.) and real-world happenings
(e.g., events, meetings, interactions, etc.). Entities are described by
data in information systems. However, the descriptions may be
repeated and different in these systems. In a database, for instance,
a person may have more than one record in a table, and the records
may have repeating, differing and contradicting information about
the person. Likewise, two different databases may capture different
information about the same entity. For example, a medical database
only concerns with a person’s health related properties, whereas
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an immigration database only concerns with the truthfulness of a
person’s identity.

A description of an entity is called a profile, and it can be a record
in a relational database or a paragraph of words about an entity in
a document. An entity may have multiple profiles in one or more
sources. In other words, multiple profiles in one or more databases
(or documents) may refer to the same real-world entity.

Once the profiles of entities are captured into a database, the pro-
files and the entities become separated in that the users of the data-
base know the profiles, but possibly, not the entities. This separation
raises a serious issue. Answering the question of whether a given
profile refers to a particular real-world entity is non-trivial and chal-
lenging. For example, given the profile: {name: Michael Jordan,
nationality: American, occupation: athlete}, there are at
least four real-world persons whose profiles in Wikipedia match
this description (see [1] for details). A dual problem to the above
problem is whether two profiles, which may look similar or very
different, refer to the same real-world entity. This dual problem is
as hard as the above problem.

The goal of entity linking research is to design methods to derive
an answer to the dual question: do a pair of given profiles refer to the
same entity? When a pair of profiles are found to refer to the same
entity, one of two actions may be taken. One is to remove of one of
the profiles. This is called deduplication. The other is to merge the
two profiles and this is called resolution/linking1.

Three complications make the linking/deduplication task more
difficult. The first complication is from non-alignment of attributes
and relationships. That is, different profiles describe entities using
different attributes and/or relations. This is illustrated by the pro-
files p1 and p2 in Table 1. The two profiles have different attributes
except for the name attribute. The non-aligned attributes make their
match less possible. The second complication is from the multiplic-
ity of values. For example, compared with the profile p1, the profile
p3 has two name values. The third complication is the presence of
provenance data. Provenance data describes the background infor-
mation of a value as well as the validity period(s), security & access
restriction(s), source(s), etc., of a value. For example, in p4, {since
2005} specifies when the name ‘George’ started being used, and
{2010} indicates when the height valued ‘160’ was taken. Unlike
non-alignment, multiplicity and provenance of values can be useful
as they provide more information. However, their usefulness comes

1We consider linking and resolution, and use the terms interchangeably in this work
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Table 1: Complexity of entity profiles

p1 {name:George, birth-date:1/Jan/2000}
p2 {name:George, sex:male, height:160}
p3 {name:George, name:Jord, sex:male, height:160}
p4 {name:George {since 2005}, name:Jord, height:160{2010}}

at a cost: they require more powerful matching algorithms and data
structures to enable effective usage.

This paper presents the system supporting our entity linking
method Certus [11], the data and index models that enable multi-
plicity and provenance of attribute and relationship values to be
accurately captured and leveraged for effective and efficient entity
linking. The contributions of the paper are as follows.

• First, we present the architecture of our entity linking system
(Section 3). This architecture enables textual data to be pro-
cessed and the entities described in the texts can be linked
to entity profiles from other data sources. The architecture
uses Elasticsearch2, an index engine, to increase the linking
and search efficiencies.

• Secondly, we propose a graph model for entity linking in-
volving multiplicity of attribute and relation values with
provenance information (subsection 4.1). In this model, the
attributes and relations of profiles are well-represented by
lists of sets (of attribute/relation, value, and provenance),
instead of dictionaries of attribute- and relation-value pairs.
Our model enables provenance and value-multiplicity to be
captured, indexed and used correctly.

• Thirdly, we propose physical models for the storage of the
graph of entity profiles; detail the index structures that sup-
port effective search and blocking operations (subsections 4.2
& 4.3); and give the processes in the entity linking compo-
nent of the system (Section 5).

• Lastly, we show experiments about the time performances of
our physical model implementations on both relational and
non-relational database management systems (Section 6).

2 RELATEDWORK
Entity linking and resolution is a well-known database problem
that has attracted volumes of research in the literature, especially in
the relational data setting. Readers are referred to [14] for details. In
general, the existing works focus on two main directions: accuracy
and efficiency. The accuracy concern is on finding true matches
of different entity profiles when they refer to the same real-world
entity without introducing false matches. A more specific term
called efficacy is defined to mean accuracy in [2]. The efficiency
issue is about alleviating the infeasible pairwise comparison of
profiles, and making the linking process scalable in large data.

For accurate entity linking and deduplication, early works on the
subject examined many methods such as cosine similarity match,
distance-based match, TF/IDF, and Soundex. The well known sim-
ilarity measures for entity linking are summarized and reviewed
in [10]; and the work in [9] presents a comparative evaluation of
some existing works.

The efficiency problem has also drawn significant research at-
tention. The complexity of calculating the exact similarity between

2https://www.elastic.co/

profile pairs is O(n2). Given a large number of entity profiles, say
n = 100 million, the time for computing similarity is too long to be
practical. Thus, several ideas have been introduced in the literature
to address the problem, like canopy (sorting and moving window),
hierarchical, bucketing (clustering), and indexing approaches. In
practice, the indexing approach has been found to be more useful,
resulting in the proposal of a plethora of indexing methods in the
literature (see [4, 17] for surveys of techniques).

In the recent years, there has been an increasing research in-
terest in linking entity-mentions in texts to existing entities in
knowledge-bases. From Wiki Miner in [13], many works have been
produced in this area and are reviewed in [5, 20]. The fundamental
steps in text-based linking include: entity-mention detection, can-
didate matching-entity generation, and candidate matching-entity
ranking. The work in [5] reviews the methods for detecting entity-
mentions in texts. Whereas the review paper [20] summarizes the
details of how features (such as the mentions, types, contexts, etc.)
and models (e.g., unsupervised, supervised, probabilistic, graph-
based, and combined methods) are used in the ranking of candidate
matching-entities. The efforts toward ranking is continuing, and
the work in [12] aims to identify effective relationship words among
entity-mentions to increase the accuracy of linking.

Most data management and software companies claim to sup-
port entity linking in structured data, but the systems are often
not available for evaluation. In contrast, a number of open source
research frameworks are available on entity linking in text data.
For example, [13] proposes a method to extend terms in texts using
Wikipedia pages. [6] is a framework tagging terms in short texts
by Wikipedia pages, which is then followed by the works in [8, 19]
for software improvement. [19] and [3] are other tools that contain
a three step implementation for linking entity-mentions in text to
Wikipedia pages. The work in [22] sets up a framework for entity
linking work to be tested and evaluated.

There exists works in the literature on the support and use of
provenance for entity linking. For example, [15] is on provenance
modeling and capture for entity linking whereas [23] presents a
provenance-aware framework for improving entity linking results.
Our work models, supports, and leverages provenance as well as
attribute- and relation-value multiplicity for accurate entity linking
in both structured and text data.

3 SYSTEM ARCHITECTURE & FUNCTIONS
This section covers the architecture of our entity linking system,
and outlines the functions of the components of the system.

Figure 1 presents an overview of the architecture of our system.
Central in the system is the Knowledge-Base (KB) which is a graph
of entity profiles (details in Section 4). The profiles in the KB come
from three sources: (a) ingested profiles from different data sources
(through the Ingester) with no restriction on model; (b) extracted
profiles from user-supplied textual documents (via the Text Parser);
and (c) profiles created from the User-Interface (UI). The profiles are
linked and indexed by the Entity Linking & Resolution (ELR) and
Indexer components respectively. And, all user interactions with
the system are via the UI, mediated by the Query Processor.

The following are brief details and functions of the components.



Linking Graph Entities with Multiplicity and Provenance EYRE’19, 03 November 2019, Beijing, China

User-Interface

Indexer

Indexes

Knowledge-Base (KB)

Entity Linking &
Resolution (ELR)

Ingester

Data Sources

Query Processor

Text Update Query

Text Parser

Figure 1: The architecture of our entity linking system

The Ingester: maps entity descriptions from various data sources
into graph-modelled profiles in the knowledge-base. Its operation
is straight-forward and dependent on the respective models (or lack
thereof) of the various sources of data.
The Text Parser: reads textual user-inputs (e.g., documents, re-
ports, etc.), and extracts mentioned-entities and their relationships
from the texts, and stores the extracted entity profiles into the
knowledge-base. In our implementation, we use Stanford NER [7],
Stanford POS tagger [21], and Open IE 4.x [16] for this purpose.

The problem with the above-mentioned packages is that they
may produce many triples (subject, relation, object) that do not
reflect the original intention of authors in the writings. For exam-
ple, extractions for the sentence “John said that, Peter has taken
away the mobile phone”, include the triple: (“Peter”, “has taken away”,
“the mobile phone”). This extract is only syntactically correct. The
semantic correctness of this extraction is, however, dependent on
John’s credibility/position. If John is a Police spokesman, for in-
stance, then the chance of semantic-correctness would be high.
However, if John is an adversary of Peter, for example, then the
chance for the extraction to be correct would be low.

Therefore, we developed some heuristic rules to filter ambiguous
extractions. The rules: (a) replace coreferences (pronouns) with the
actual entity-mentions; (b) remove extractions that are conditional,
and indirect speech; and (c) filter extractions that describes feelings
and emotions. The inputs to the rule-based filtering system (RbFS)
are the text and labelling from Stanford NLP. The rules improve
the F1-score of extractions by 18% on average on our test datasets.
The details of the RbFS is out of the scope of this paper.
The Query Processor: receives requests from the user-interface
and responds based on the request type. An insert or update re-
quest is directly sent to the knowledge-base. For a query by profile
identifier or keywords, the index is searched and then answers are
retrieved from the knowledge-base.
The Indexer: keeps the indexes up to date with the current system
state. Whenever the knowledge-base is updated, this component
sends the update to the indexes. The indexes support users’ queries
and the ELR component. We use Elasticsearch, an open source dis-
tributed search and index engine, as our index management system.
Later on (in subsection 4.3), we present details of the structure of
the indexes in our system.
The ELR component: as the name suggests, is the main compo-
nent in the system. In principle, for every entity profile p in the

knowledge-base, indexes are read for candidate matching profiles;
calculations of the similarity of p to each of the candidates are per-
formed; and the knowledge-base is updated to store the similarities.
A candidate p′ of p from the indexes is a profile that is roughly
similar to p, i.e., the pair share some similar attribute and/or re-
lationship values. We remark that the fact that p and p′ share a
similar ‘word’ does not necessarily mean that they refer to the same
real-world entity. For instance, if p is a male with the name Pete
and p′ is a female and has a friend called Peter, then p′ can be
a candidate of p as they share a similar value (i.e., Pete & Peter),
but they do not match. Therefore, the indexes merely give a set of
possible profiles that may match which require further evaluation.

4 MODELS
In this section, we present the logical, physical, and indexingmodels
used in our entity linking system.

4.1 Modelling of Profiles
A real-world entity, naturally, has many attributes (or properties)
and relates to other entities in multiple ways. An entity profile
(simply, profile) captures some of the attributes and relationships
of an entity; and another profile may capture different attributes
and relationships of the same entity with possible overlaps and
contradictions. For example, a person may have multiple profiles in
the same/different sources of data (e.g., databases, knowledge-bases,
social networking sites, etc.).
Entity profile structure. The data structure of profiles should be
able to capture multiple values of the same attribute or relation-
ship as well as their provenance information. This is because of
the ever-changing or evolving nature of the properties and rela-
tionships of real-world entities. For example, a person may change
his/her names, live at different addresses over time, have multiple
marriages spanning different periods, etc. These changes lead to
multiple values for attributes and relations and these values may
be associated with provenance information.

We represented an entity profile as a triple p = ⟨ id,A,R ⟩,
where: id is the identifier of the profile,A = [a1, · · · ,an ] is a list of
attribute-objects, R = [r1, · · · , rm ] is a list of relationship-objects;
and each a ∈ A, r ∈ R is a set of ordered3 key-value pairs. Four
profile examples are given in Table 2, shown in our structure. Profile
p1 describes a person entity: a male called Peter up to 1991 and
now called John. He lived_at location L1 from 1989 to 1995, owns
L1 since 1989 and has a friend named Bob. Our data structure for
profiles is thus able to capture the multiplicity and provenance of
values.
Entity profiles graph.We use a graph model for modelling pro-
files, as it is capable of representing any number of attributes and
relationships. Moreover, since A and R are defined as lists, instead
of dictionaries, value multiplicity can be presented easily. Further-
more, the edges of the profiles graph allow the traversal of the
profiles.

Formally, we use the following definition of an entity profiles
graph,G = (V ,E, FA ), where: (i)V is a finite set of nodes; (ii) E is a
finite set of edges, given by E ⊆ V ×V ; (iii) each node v ∈ V (resp.
3attribute/relation key-value pairs are first in the set, followed by the provenance data
(if exists)
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Table 2: Example of profiles as triples

p1 ⟨ P1, A = [{type: person}, {name: John}, {name: Peter, until: 1991}, {sex: m}],
R = [{lives_at: L1, from: 1989, to: 1995}, {friend: P2}, {owns: L1}] ⟩

p2 ⟨ P2, A = [{type: person}, {name: Bob}, {name: John, until: 1990}, {bdate: 1980.12.12 }],
R = [{lives_at: L1, from: 1990, to: 2000}, {lives_at: L2, from: 2001}, {friend:P1}] ⟩

p3 ⟨ L1, A = [{type: location}, {numb: 1}, {street: Brown Blvd.}, {post:2000}],
R = [{owned_by: P1, from: 1989}] ⟩

p4 ⟨ L2, A = [{type: location}, {numb: 69}, {street: Brown Ave.}, {post:5000}] ⟩

P1

L1P2

friend
ownslives_at

from:	1989
to:	1995

friend

lives_at
from:	1990
to:	2001

p1

p2 p3

L2

lives_at
from:	2001

owned_by
from:	1989

sim
score: 0.5
cfm: false

location

location

person

person

Legend

Similarity-edge

Relation-edge

Figure 2: Graph representation of profiles in Table 2

edge e ∈ E) has a label L(v) (resp. L(e)); and (iv) each node v ∈ V
has an associated list FA (v) = [a1, · · · ,an ] of attribute-objects.

A node in an entity profiles graph represents a profilep, identified
by the profile id , and is associated with A and R as defined. Two
types of edges exist in the graph. One is called a relation-edge,
derived from R. That is, the edge (rel , P1, P2) is an edge in the
graph iff.: P2 is the value for relation rel in P1 where P1 and P2
are profile/node identifiers. The second type of edge is called a
similarity-edge, derived from the profile pair similarity and has the
form (sim, P1, P2, score, c fm) where sim is a fixed label, score is
the similarity score (defined later in Section 5), and c fm is a binary
indicator showing whether the link-state of a profile pair has been
confirmed by a user. The indicator is necessary because, in sensitive
systems like policing, we want 100% precision if two profiles are
linked. Thus, c fm requires user-interaction (to be discussed further
in Section 5). Figure 2 is an example of the graph of profiles in
Table 2. Note that each node in the graph carries its attribute list
(not shown in the diagram).

4.2 Physical Model for Profiles
Profiles are modelled as a graph; and the nodes and relation-edges
are stored in one structure while the similarity-edges are stored
in a separate structure. Similarity-edges are updated frequently as
any profile change triggers a re-computation of similarities for the
profile and other affected profiles. Therefore, storing similarity-
edges in a separate structure improves the update efficiency. The

Figure 3: Physical model for storing the profiles graph

two structures for storing the graph are called the physical model
and shown in Figure 3.

The model in Figure 3 is self-explainable; and the data in the two
tables of the model are derived from some of the exemplar profiles
in Table 2. The table in Figure 3(a) stores the nodes (profile ids
and attributes) and relation-edges (relationships). Each node uses
multiple lines and each line is for an attribute or relationship value
pair with provenance details. The table in Figure 3(b), on the other
hand, is for the storage of similarity-edges and each pair of profiles
has an entry in the structure. simsc and rejsc represent similarity
score and rejecting score respectively (details in Section 5). Since
the size of the table in Figure 3(b) is the square of the number of
nodes/profiles, to reduce the size, a threshold may be used to filter
out very lowly-scored entries.

We realize that the performance of accessing the similarity-edge
table plays a crucial role in the overall linking time performance
due to its frequent update operations. Therefore, we show empirical
results on three different implementation options of the physical
model in Section 6.

4.3 Index Mappings
Our aim is to design index structures to support users’ search for
profiles and support the candidate matching-profiles generation
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(a.k.a blocking) of the ELR component. Thus, we use Elasticsearch,
a distributed index management system that can support multiple
indexes with various structures.

Recall that, logically, each profile is a triple of the form ⟨ id,A,R ⟩

in the knowledge-base. We consider two options for building in-
dexes for the profiles (discussed below), and both are configured
with the double-metaphone phonetic analyzer [18], and custom-
built synonym and alias transformers.
Keyword search & blocking indexes. The indexes that support
keyword search of profiles and blocking for entity linking uses
a set of words generated from the profiles. The set of words are
values from the profile without provenance. That is, the provenance
values, the structure, the attribute and relation names are all ig-
nored, relationship targets (i.e., other profile ids) are replaced by
the summary of the target, and all duplicate words are removed.
For example, the target summary for p1 in Table 2, is a bag of the
following values: “John, Peter, m, 1, brown, 2000”.

The ‘loose’ structure of these indexes guarantee high recall of
search and blocking results.
Structured search indexes. The indexes for structural search con-
sider the structure of the profiles. For example, if a user wants to find
a person with “name : John, lives_at : 1 Brown street− {until :
2000}”, the index should enablep1 in Table 2 to be found. To support
such structural search, we build indexes with the nested mappings
in Elasticsearch for profiles structured as JSON objects with:

A = [{A1 : v1, from : t0, to : t1}, {A1 : v2, to : t2}, {A2 : v3}, · · · ],

where t0, t1, t2 are date time values; R mapping similarly defined.
We remark that the usage of nested mappings is critical to the

preservation of the correct semantics of the multiplicity of values
and their associated provenance information in Elasticsearch. Oth-
erwise, Elasticsearch indexes the profiles in a ‘flat-format’ of the
form: {A1 : [v1, v2], A2 : [v3], from : [t0], to : [t1, t2]} – which
loses semantics and leads to errors and very low precision.

In settings where smaller and more precise blocking are required,
the nested-mapped indexes should be used.

5 LINKING OF PROFILES
This section presents a description of our profiles comparison and
linking processes. First, we highlight some relevant preprocessing
steps. Then, we detail the profile-pair comparison and evaluation;
and finally, give a brief overview of the match prediction and con-
firmation.
Preprocesses. Prior to the calculation of the similarity between
profile pairs, some preprocessing are necessary. For example, con-
sider person and location entities: it is important to tackle the dis-
parate representation of the same names and addresses respectively.
The name Richard is often aliased as Dick; and the street-type
Boulevard is often shortened as BLVD. To enable Dick to match
Richard, a dictionary of name aliases of people is created (similarly,
for addresses). Each name/address in a profile is checked against
the dictionary. If the name has an alias, the name is expanded in
the form “name alias”, e.g., “Richard Dick”. Similar operations are
performed on the initials, and pre-/post-fixes of names.
Similarity evaluation. Given two profiles p1 and p2, our entity
linking method uses two scoring and one decision processes to

determine whether they refer to the same entity in the real-world.
The two scores are the similarity score, simsc , and the rejection
score, rejsc ; while the decision process is a data-dependency-based
prediction model. We discuss the scoring here.

Given a profile p, we use the notation X ∈ p to represent either
an attribute X in p[A] or a relation X in p[R]. The similarity score,
simsc , of two profiles p1,p2, is calculated as follows:

simsc(p1,p2) =
∑

X ∈p1,p2

M(p1.X , p2.X ) · IX (p1.X ,p2.X ),

where M is a function that returns a value indicating the level
of approximate match between a pair of values for the same at-
tribute/relation X , and I returns the level of information supplied
by the matchM for the values of X .

The function M considers many factors, dependent on the at-
tribute/relation; and the values of an attribute/relation are in the
form of a bag of words after synonym/alias expansion with prove-
nance data. For example, to evaluate a name match for person enti-
ties,M considers the initials, ordering, post-/prefixes, aliases, and
phonetics of names, as well as n-gram matching of character/word
sequences. Edit distance is used after n-gram matching to improve
accuracy and efficiency. If two values match within a user-specified
threshold, then the provenance information are considered.

The function I returns the highest information level of matching
values. For example, for the name-pair “John Smith White” and
“Jones Smiths Green”, the Iname -weight is derived as:

max{
in f (John) + in f (Jones)

2
,
in f (Smith) + in f (Smiths)

2
}.

The function in f (w) indicates the probability of two profiles to be
linked if they match on the valuew . Note that, in this example, the
name-pair “Green” and “White” are not considered in the evaluation
of I as they are dissimilar (i.e., have lowM value). Intuitively, if
a wordw is rare, it has high in f (w)-value. Consider the two first-
names ‘John’ and ‘Cherith’. When two profiles share the name
‘Cherith’, the probability for the two profiles to be linked is much
higher than when two profiles share the name ‘John’.

The in f (w)-value of a wordw is controlled by two factors: the
numberm(w) of profiles sharing the word, and the number k(w)

of real-world entities shared by the profiles sharing the word. If
k(w) is large, the fact that them(w) profiles share the same word
contributes very little to the linking, and in f (w) should be small.
When the total number of profiles increases, the chance for two
profiles to share the same word becomes larger but the crucial
control of the probability is still by k/m. That is, in f (w) ∝ m/k ;
and m can be easily obtained from word statistics but k is often
unknown. A largem does not mean a largem/k ratio. We use a
variation of the Sigmoid function to estimate in f (w), given as:

in f (w) =
1

1 + exp(α ·m(w) − β)
,

where α , β control the steepness of the decay curve and its mid-
point respectively. For a givenw , k(w) can be empirically estimated
and linked to β . However, in general, our empirical results suggest
α = 0.1 and β = 60 are suitable settings for our applications.

The rejsc score, on the other hand, is based on a simple penalty
system. Given two profiles with a high overall simsc score, a penalty
of 1 is added to their rejsc score if the pair are dissimilar on a key
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Figure 4: Time performance of update transactions

Figure 5: Implementation options of the similarity structure

attribute/relation (determined by application and domain). For ex-
ample, in a law enforcement context, one such key attribute for
person and location entities is birth-date and zip-code respec-
tively.
Match prediction & confirmation. As mentioned earlier, we use
a data-dependency aided decision model to predict whether a given
pair of similar profiles refer to the same real-world entity. This
decision model is a major topic (and we refer interested readers to
the paper on it in [11]). The approach eliminates the challenge of
and need for fine-tuning dis/similarity thresholds for approximate
matching, through the use of a discovery algorithm that learns
matching rules in labeled data. Thematch predictionmodel achieves
high precision without significant compromise of recall.

In some applications, even accurate prediction of the linked
status of two profiles require human confirmations. Thus, our entity
linking system supports this scenario, allowing the keeping of
domain experts in the loop. Indeed, every similarity-edge between
profiles carry the data structure for the confirmation of predicted
matches (when needed). For example, in Figure 2, the similarity-
edge between nodes L1 and L2 is not confirmed (i.e., cfm: false).

6 EXPERIMENTS
In this section, we empirically evaluate the performance of the
three different implementations of the physical model. We remark
that, the accuracy of the ELR system is already evaluated in [11].

We note that updating the pairwise similarities of profiles is
a major performance bottleneck. This is because, for every 1,000
profiles, the updated similarity entries are around 20,000-100,000.
Therefore, we examine the time efficiency of accessing the similarity
structure (Figure 3(b)).

All procedures in the work are implemented in Java, and the
entity linking system runs on Ubuntu 18.04 machine(s). For single-
machine tests, the experiments were run on an Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz computer with 32GB of memory. In the
cases where multi-node HBase clusters are required, an Intel(R)
Core(TM) i7 CPU @ 2.30GHz computer with 16GB of memory is
added. The versions of Postgres and HBase used are 9.6.12 and 1.4.8
respectively.

Efficiency of Similarity Storage Structure
We present our experiment results on the efficiency of accessing
the similarity structure on different platforms with different imple-
mentations. We tested the implementation in Postgres4 and HBase,
with schemas summarized in Figure 5.

The operations to access the similarity structure include search,
insertion, update and deletion. Since the similarity is for a pair, the
search must be supported from either ID. We created two indexes
for this purpose in the relational option of Postgres. With the HBase
options, CF means a column family which is a dictionary of key-
value pairs with the keys listed in the brackets. The ‘id-pair’ is
constructed by ID1+"-"+ID2. In the case of HTable3 in Figure 5(c),
the second id-pair is ID2+"-"+ID1.
Performance of the physical model on small to large data.
In this experiment, we examine the relative update transaction
(involving search, insert & delete operations) time performance of
the three physical model implementations (in Figure 5) over small
to large datasets. The results for: (a) small- to medium-sized data
(i.e., 23K to 23M profile pairs), and (b) medium- to large-sized data
(i.e., 23M to 468M profile pairs) are presented in Figure 4 (a) & (b)
respectively. The x-axes show the number of profile pairs updated;
and the y-axes give the average time, in seconds (on a log2 scale),
taken to perform update transactions (over five iterations).

For case (a) above, the HBase-1 and HBase-2 implementations
are on a single-node cluster for a fair comparison with the Postgres
implementation; and for case (b), the HBase implementations are
on a two-node cluster. The results show that in all cases, of the
three implementation options, the relational option (Postgres) is
significantly slower than the HBase counterparts; and the HBase-1

4It is noteworthy that the performance difference of the Postgres implementation for
ON/OFF AUTOCOMMIT settings is marginal. Thus, we report the best (i.e., AUTO-
COMMIT OFF).
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implementation (i.e., option (b) in Figure 5) is the better of the two
HBase options. It is also noteworthy that there is no significant
performance difference between the HBase implementations on
single-node and two-node clusters.
Stress test of HBase implementations. In this experiment, we
perform further tests to examine the insertion and update (replace-
ment) operations of the best-performing models (i.e., the two HBase
models). We consider three data sizes: 6, 30, and 54 billion profile
pairs. As the results in Figure 4(c) show, the insertion operations
are, as expected, more efficient than update operations for both
models over the three datasets. Moreover, both the insertion and
update operations are scalable for both implementations on very
small-sized (i.e., just a two-node) cluster.

7 CONCLUSION
In this paper, we present the details of the entity linking system
that powers our entity linking method called Certus. We describe
the architecture of the system, the graph and data models, and
index structures used to support the multiplicity and provenance
of attribute and relation values, for effective entity linking and
resolution. Further, we give the details of the physical model for
storing the entity profiles graph, and discuss three different imple-
mentations of the structure for storing the similarity-edges. Due
to the frequency of the update transaction of similarity-edges, we
perform experiments to evaluate the time performance of accessing
the similarity structure on two state-of-the-art database manage-
ment systems (HBase and Postgres) to demonstrate the relative
performances of the three different implementations. The empirical
results show a generally good performance for all implementation
options. In particular, the HBase implementation options, with even
just one- or two-node clusters, scale very well for huge data sizes.
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