
Towards a Window-based Diverse Entity Summarisation Engine
in Publish/Subscribe Systems

Niki Pavlopoulou
Insight Centre for Data Analytics

National University of Ireland Galway
Galway, Ireland

niki.pavlopoulou@insight-centre.org

Edward Curry
Insight Centre for Data Analytics

National University of Ireland Galway
Galway, Ireland

edward.curry@insight-centre.org

ABSTRACT
The rise of Smart Homes, Smart Cities and Internet of Things results
in the creation of a wide range of entity-based data streams and
users interested in the real-time analysis of these streams. These
smart environments possess characteristics, like dynamism, con-
tinuity, heterogeneity and high volume of data and users. A suit-
able data dissemination paradigm is needed that can overcome
these challenges and at the same time, provide expressive notifi-
cations to users, but not at the expense of usability or resources.
Publish/Subscribe systems can efficiently realise some of these re-
quirements; however, they need additional support when applied
in smart environments to overcome assumptions related to usabil-
ity and redundancy-awareness. Therefore, the key question of the
paper is: Can we define an entity-centric Publish/Subscribe system
that provides expressive user notifications along with high usability
and limited resource usage?

In this work, we explore this question and propose a Publish/Subscribe
system with windowing, data fusion, and top-k diverse ranking that
can result in the creation of expressive entity summaries using lim-
ited resources. Our results show that sending a top-k fused diverse
summary as a notification is better than sending all the separate
notifications or the fused ones without top-k filtering. Specifically,
top-k fused diverse summarisation results in 50% to 80% reduction
of forwarded messages and redundancy-awareness with an F-score
ranging from 0.35 to 0.73 depending on the k. Nevertheless, these
results are achieved at the expense of a slightly higher latency;
therefore, there is some trade-off between latency, the number of
forwarded messages, and expressiveness.

KEYWORDS
Publish/Subscribe Systems, Data Fusion, Diversity, Entity Summari-
sation, RDF Graphs

1 INTRODUCTION
The emergence of Smart Homes, Smart Cities and Internet of Things
has resulted in multiple sensors (producers) that create a wide range
of entity-based data streams and multiple users or applications
(consumers) that are interested in the analysis of these data streams
for various needs. These needs could vary from safety (e.g. the
tracking of the spread of wildfire in forests or seismic measurements
[1]) to the environment (e.g. environmental and climatological
monitoring where phenomena such as temperature, pressure and
humidity are measured periodically [14]).
1Copyright ©2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

These entity-based data streams present a high level of data het-
erogeneity [19], either schematic or semantic, as well as duplication.
For example, semantics could involve the use of different words
describing conceptually similar things. Duplicates and conceptu-
ally similar things result in redundant information. On the other
hand, data consumers may have different levels of expressibility.
Expressibility [8] refers to users’ level of prior understanding of
their needs to create queries with specific filters or their level of
technical ability to use complex query languages. Sometimes a user
might find it difficult to create an appropriate query or one might
need to create separate complex queries or join queries to bring
together the information needed from multiple sources.

The challenges above when combined with dynamism (deletion
or addition of data producers or consumers), continuity (unbounded
data streams) and the high volume of producers and consumers,
characteristics that exist in smart environments, may result in in-
efficient and ineffective processing of streaming data. Specifically,
high data volume and redundancy may lead to significant propa-
gation, as well as storage overheads of unnecessary data within
a network and slower processing time [2]. At the same time, low
user expressibility may lead to abstract user queries that result in
redundant answers and high volumes that might present the user
with unnecessary information [25].

Publish/Subscribe systems provide a suitable interaction scheme
for dynamic large-scale applications, where subscribers (users) ex-
press their interest in an event or pattern of events, and they are
notified when a suitable event was generated by a publisher [7].
These systems are characterised by space decoupling (publishers
and subscribers do not need to know each other), time decoupling
(publishers and subscribers do not need to be active at the same
time) and synchronisation decoupling (publishers are not blocked
during event production, and subscribers can be notified while
performing another activity).

Nevertheless, Publish/Subscribe systems cannot cope with the
challenges of redundancy-awareness and the need for high usabil-
ity as defined above. For example, if a subscriber is interested in
an entity, then existing Publish/Subscribe systems assume that:
1) Subscribers are experts in query languages to perform specific
filtering queries, 2) Subscribers are aware of the publication se-
mantics and format so performing semantic-specific and schematic-
specific queries would necessarily lead to matches, 3) Publications
are mostly seen as separate pieces of information for ranking, with-
out considering that by fusing and ranking these pieces may lead
to better notifications without redundancy.

Therefore, the key question of the paper is: Can we define an
entity-centric Publish/Subscribe system that provides expressive (non-
redundant) user notifications alongwith high usability (no assumption
of high user expressibility) while using limited resources?

To address the key question above, we propose in this paper a
window-based diverse entity summarisation engine in Publish/Subscribe
systems, as approximate solutions [14] are acceptable as quick an-
swers [1] within a small error range with high probability while
using limited resources. These summaries, when derived from the
fusion of multiple publishers that contain complex entity-based
semantic data and when combined with diversity (and not only
relatedness) will result in expressive subscription notifications. Nev-
ertheless, there is a trade-off between latency, number of forwarded
messages, and expressiveness, which we also examine.

2 PROBLEM ANALYSIS
The problem introduced is analysed more below.

2.1 Motivational Scenario
Sensors create a high amount of data streams with frequent sam-
pling rates. Therefore, they might produce many unchanged or
identical values for a period of time [15]. When users create ab-
stract, non-sophisticated queries to gain knowledge on these data
streams, they might be presented with undesired duplication.

For example, imagine Houston is a smart city, and a user is
interested in information concerning Rice University. The user has
no other information apart from the name of the university, and one
needs to gain more knowledge without exactly knowing what one
is looking for. A wide range of sensor readings contain information
about the university, ranging from the temperature of the university
to the city it is located in, which some might be redundant. The
user would like to quickly gain knowledge about the university,
but not to be overwhelmed, especially with duplicate data. This
scenario is illustrated in Fig. 1.

2.2 Problem Challenges
The aforementioned motivational scenario faces a number of chal-
lenges:

• Redundancy awareness: Multiple publishers create het-
erogeneous data about the entity. Some of this data, like
temperature and city results in redundant information due
to duplication.

• Low user expressibility: The user has limited informa-
tion about the entity and has no prior knowledge of what
they are looking for. The user is unable to create a complex
filtering query and is not an expert in query languages. For
example, a SPARQL-like query that notifies the user when
the energy usage exceeds 4kWh would be the following:

SELECT ?energy_value
FROM STREAM
WHERE {
Rice_University energy_usage ?energy_value;
FILTER (?energy_value > 4kWh).
}

This query assumes a priori knowledge from the user of
the publication semantics and schematics concerning "en-
ergy_usage" instead of synonyms like "energy_consumption",
"kWh" instead of "Wh" or which stream or streams pro-
duce energy usage readings. On the other hand, if the user
creates an abstract query like the keyword-based one "Rice
University", it may lead to redundant or undesired infor-
mation.

3 BACKGROUND
Some concepts and definitions concerning knowledge graphs, entity
summarisation, and Publish/Subscribe systems are described below.

3.1 Knowledge graphs and Entity
Summarisation

Knowledge graphs contain information regarding entities, which
are real-world or abstract things [20]. Within knowledge graphs
the nodes represent the entities, and the directed labelled arcs con-
stitute relations among them. In Fig. 2 a part of the knowledge
graph is represented that supports the motivational scenario, where
Rice University, 15°C, 5kWh, United States, Houston, Texas and Divi-
sion I (NCAA) are entities or literals and temperature, energyUsage,
country, city, state and athletics are relations among the connected
entities or literals by the directed arc. The Resource Description
Framework (RDF) is a data modelling language that represents these
representations as triples <subject, property, object>, where sub-
ject are entities, object are entities or literals and property is their
relation. RDF triples with the same subject form an RDF star-like
graph.

In knowledge graphs, though, there might be some redundant
information. This could be addressed by summarising the triples of
an entity. A summarisation of an entity e that is represented by a
node v in a knowledge graph G is a subgraph of G that surrounds
v [20].

By adopting and adapting definitions that were introduced in
Cheng et al. [5], we provide some definitions for completeness.

Let E be the set of all entities, L the set of all literals and P the
set of all properties.

Definition 1 (Data Graph). A data graph is a digraph G =
⟨V ,A,LblV ,LblA⟩, whereV is a finite set of nodes,A is a finite set of
directed edges where each a ∈ A has a source node Src(a) ∈ V and a
target nodeTдt(a) ∈ V , and LblV : V 7→ E∪L and LblA : A 7→ P are
labeling functions that map nodes and edges to entities or literals,
and properties, respectively.

Definition 2 (Triple). A triple tr is a sequence of <subject,
property, object> defined as tr = ⟨sub(tr),p(tr),obj(tr)⟩, where
sub(tr) ∈ E, p(tr) ∈ P and obj(tr) ∈ E ∪ L.

Definition 3 (Triple Set). Given a data graph G, the triple set
of an entity e , denoted by Tr (e), is the set of all unique triples of e
that can be found in G.

Definition 4 (Diverse Entity Summarisation). Given Tr (e)
and a positive integer k < |Tr (e)|, the problem of diverse en-
tity summarisation is to select DivSumm(e) ⊂ Tr (e) such that
|DivSumm(e)| = k . DivSumm(e) is called a diverse summary of e
and it contains a set of unique triples.

2

Figure 1: A subscriber is interested in information about Rice University and publishers publish timestamped information
records about it. In this example, the temperature and city information is duplicate between timestamps t2 and t1.

Figure 2: Part of a knowledge graph of Rice University

3.2 Publish/Subscribe Systems
In a typical Publish/Subscribe system [7], subscribers could be from
users to applications that they subscribe their interest in an event
or pattern of events. These subscriptions are sent to the Event En-
gine where they are stored. Publishers could be sensors, users or
applications generating events or publications and sending them
to the Event Engine. A matcher is contained in the engine that
matches specific events to subscriptions based on their conditions.
When this is happening, the subscribers are getting these events
as notifications. Its decoupling capabilities in space, time and syn-
chronisation, make it a suitable interaction scheme for dynamic
large-scale applications.

Publish/Subscribe systems typically are topic-based or content-
based [7]. In the topic-based, publishers publish events on specific
topics expressed as keywords (e.g. Sports), and subscribers that have
subscribed to these topics get notified whenever there is a match.
The content-based improves on the expressiveness of the first one
by adding event content filtering on the subscription side. This
filtering typically involves comparison operators (=, <, 6, >, >) on
attribute-value pairs derived from the events. Complex subscription

patterns can also be created by logical combinations (and, or etc.)
of individual constraints. For example, an event could be (gender
= female, age = 20) and a subscription that matches it could be
(gender = female, age < 30).

Lately, there has been some attention drawn in graph-based Pub-
lish/Subscribe systems [3] that represent publications as graphs.
Within these graphs, points of interest are nodes and relations be-
tween them are edges. Subscriptions can be SPARQL-like by asking
for specific nodes and their relation among them. The notifications
are those graphs that match the subscriptions.

4 RELATEDWORK
Related work is analysed below, and it is mainly split into two
categories; Streaming and Non-Streaming.

4.1 Streaming
4.1.1 Stream Processing Frameworks. There is a plethora of ex-

isting stream processing frameworks, like Apache Spark1, Apache
Flink2 and Apache Kafka3 that could be extended to support entity
summarisation techniques, but some of them do not support Pub-
lish/Subscribe. Publish/Subscribe systems, like Apache Kafka, are
topic-based; therefore, they are not capable of supporting entities
that contain complex semantic data. Furthermore, the constraints
of these frameworks in supporting specific data formats or SQL-like
APIs could lead to low usability if the user has low expressibility.

4.1.2 Graphs in Publish/Subscribe Systems. As discussed above,
topic-based and content-based Publish/Subscribe systems are not
capable of supporting entities. Cañas et al. [3] introduce GraPS, a
graph-based Publish/Subscribe system that can model publications
as graphs, where points of interest are nodes and relations between
them form edges. Subscriptions can be either simple ones, like a
collection of nodes or complex ones, like specific relations among
nodes. Nevertheless, they assume that the subscribers have limited

1https://spark.apache.org/
2https://flink.apache.org/
3https://kafka.apache.org/

3

knowledge of the graph published to filter it; therefore, they are
aware of the semantics and schematics of the graph. This could
lead to low usability if the subscribers have low expressibility. Also,
they do not support summarisation of the semantic information.

4.1.3 Diversity in Publish/Subscribe Systems. Diversity of events
has not been considerably explored in Publish/Subscribe systems.
Chen et al. [4] focus on top-k diverse publications in the form of
tweets by calculating their cosine similarity, whereas Drosou et al.
[6] emphasise on top-k diverse publications in the form of attribute-
value pairs by calculating the commonalities among the events.
However, both works do not support heterogeneity neither they
consider entities as publications, which is a more complex problem.

4.1.4 Summarisation in Publish/Subscribe Systems. Summarisa-
tion has been examined in Publish/Subscribe systems by several
works. Triantafillou et al. [21] focus on subscription summarisation
in the sense of subscription subsumption, that is an attribute-value
constraint of a subscription is subsumed by that of another sub-
scription if the values are the same or if they are contained in
the values of the latter subscription. Specifically, each subscription
is split into its attribute-value pairs, which are then merged into
summary structures. Wang et al. [22] emphasise on subscription
summaries by partitioning via random, R-tree and K-means cluster-
ing techniques and summary-based routing via R-trees among a set
of servers to address high system throughput. These works focus
on subscription subsumption or covering without considering pub-
lication summarisation. They also support simple attribute-value
pairs, so they cannot be used for complex semantic data.

4.1.5 Fusion in Publish/Subscribe Systems. Fusion has been used
in Publish/Subscribe systems before. Kolozali et al. [13] fuse sen-
sor data from heterogeneous sources and translate attribute-value
pairs as time series and then approximate themwith dimensionality
reduction. Nevertheless, the approximation is done outside the Pub-
lish/Subscribe system, and it is not related to entity summarisation.
Wun et al. [23] fuse attribute-value pairs that result in semantic
interpretations with the use of ontologies. Nevertheless, they tackle
a different problem than entity summarisation.

4.1.6 Approximate Semantic Matching in Publish/Subscribe Sys-
tems. Approximate semantic matching in Publish/Subscribe sys-
tems has been examined by a number of works. These works intro-
duce an additional layer of decoupling, that of semantic decoupling,
in Publish/Subscribe systems. Hasan et al. [11] create an approxi-
mate semantic single-event processing model for attribute-value
pairs coming from heterogeneous sources. Top-1 and top-k match-
ers are created based on Wikipedia ESA and probabilistic models.
Their earlier work [12] focuses on RDF graphs as publications. S-
TOPSS [17] uses synonyms, taxonomies and mapping functions
specified by domain experts for creating an approximate matcher.
Although approximate semantic matching could be related to our
work, nevertheless, it is a different problem to entity summarisation.

4.2 Non-Streaming
4.2.1 Diverse Entity Summarisation. Top-k diversity in entities

in the form of sophisticated summaries that detect duplication and
conceptual similarity has been tackled by a number of works. These

works consider high usability as they use keyword-based queries.
DIVERSUM [20] focuses on a per-property basis summarisation
based on novelty, importance, popularity and diversity by adapt-
ing the document-based Information Retrieval to the knowledge
graphs. FACES [10] emphasises on summaries based on diversity,
uniqueness, and popularity via hierarchical conceptual clustering
and the use of WordNet for related terms. FACES-E [9] improves
on FACES by considering types in datatype properties instead of
only object properties for entity summarisation. Pouriyeh et al. [18]
emphasise on summaries based on topic modelling by considering
predicates as topics and use of Word2Vec for related terms. All of
these works contain static methodologies; therefore, they need to
be extended to support a complex dynamic environment.

In conclusion, no existing approach covers the requirements of
our problem. Comparison among the works covered in the different
subsections is shown in Table 1.

5 APPROACH
The approach is analysed below that defines the event model, the
subscription model and the architecture of the summarisation en-
gine.

5.1 Event Model
To support complex semantic data, the event payload contains RDF
triples of the form <subject, property, object>. Each event is an
instance of an entity (subject) with one predicate (property) and
one value for this predicate (object). Below there is an example of a
publication payload:

{< Rice_University >< city >< Houston >}
Therefore, the definition of the event model is as follows: Let EV

be the set of events, PID the set of publisher IDs, PubID the set of
publication IDs, T the set of timestamps and Tr (e) the triple set of
an entity e , respectively, then:

ev ∈ EV ⇔ ev =
{(
pID,pubID, t , tr

)
, ... :

pID ∈ PID,pubID ∈ PubID, t ∈ T , tr ∈ Tr (e)}
(1)

5.2 Subscription Model
To support high usability, we do not assume that subscribers are
aware of the semantics and structure of the events or that they are
experts in complex query languages, like SPARQL. Therefore, a
subscription should ideally be in the form of a keyword query [20].

Subscriptions, therefore, are a set of attribute-value pairs. Only
conjunction has been considered in this work. This means that each
event needs to fulfil all constraints of a subscription so that it can
be considered a match. Each pair consists of an attribute, an equal
operator and a value. Below there is an example of a subscription
payload:
{entity = "< Rice_University >", k = 5, windowSize = 10, ranking

= "Diversity"}
In the example above, the subscriber is interested in an event

summary of the entity < Rice_University > with top-5 diverse
information facts derived from the analysis of data taken from
count windows of size 10, that is 10 events.

4

Table 1: Overall comparison of different works

Subsection High Usability Diversity Fusion Dynamism Windowing Entities Summarisation
4.1.1 No (SQL-like) No Yes Yes Yes No No
4.1.2 No (SQL-like) No No Yes No Yes No
4.1.3 Yes/No (keywords or Yes (duplicates) No Yes Yes No Yes (top-k

attribute-value pair constraints) publications)
4.1.4 No (attribute-value pair No No Yes No No Yes (subscription

constraints) summaries)
4.1.5 No (attribute-value pair No Yes Yes No No Yes (approximation)

constraints)
4.1.6 Yes (approximate semantic No No Yes No No No

matching)
4.2.1 Yes (keywords) Yes (conceptual No No No Yes Yes (top-k triples)

similarity)

Therefore, the definition of the subscription model is as follows:
Let S be the set of subscriptions, SID the set of subscriber IDs,
SubID the set of subscription IDs,T the set of timestamps, ATT the
set of attributes, OP the set of operators and VAL the set of values,
respectively, then:

s ∈ S ⇔ s =
{(
sID, subID, t , (att ,op,val)

)
, ... :

sID ∈ SID, subID ∈ SubID, t ∈ T , (att ,op,val) ∈ ATT ×OP ×VAL
}

(2)

5.3 Architecture
Our architecture is illustrated in Fig. 3. In the architecture, a Pub-
lisher creates a number of entity-based publications and a Subscriber
a number of entity-related subscriptions. All publications and sub-
scriptions enter the Summarisation Engine, which is the processing
engine of the system.

The engine contains a booleanMatcher that extracts the matched
entities based on the stored subscriptions and publications. All
publications enter theWindow Partitioning that is responsible for
creating tumbling Count Windows for each matched entity. The cor-
responding window is then populated with events from all publish-
ers concerning this entity. All events are fused within the window
incrementally, and through the Summarisation they are checked
for duplicates. Then a score is given in each triple. Triples that
are non-duplicates and they are the most recent ones have higher
scores. Top-k filtering then involves the diverse top-k most recent
triples. Once the corresponding window reaches its capacity that is
based on the windowSize defined by the subscriber, the subscriber
is notified by the Notification, and then the process starts again.

For example, if a subscriber is interested in an event summary
of the entity < Rice_University > with top-5 diverse notifications
deriving from the analysis of the last 10 events of Fig. 1 in a window,
then, a possible notification payload would be:

{< Rice_University >< temperature >< 15°C>}
{< Rice_University >< enerдyUsaдe >< 5kWh >}

{< Rice_University >< city >< Houston >}
{< Rice_University >< state >< Texas >}

{< Rice_University >< country >< UnitedStates >}

as the duplicate information of temperature and city was dis-
carded and the rest of the triples were the most recent ones based
on their timestamps.

6 EVALUATION
To the best of our knowledge, no one has tackled entity summari-
sation in Publish/Subscribe systems. Therefore, we compare our
approach with the non-top-k non-fused approach, where all events
are sent separately to the subscriber without being fused or checked
for duplicates and with the non-top-k fused approach, where the
events are fused in the window, but they are not checked for dupli-
cates.

6.1 Dataset
The DBpedia dataset4 has been selected for our evaluation, as it is
highly popular in the field of entity summarisation. Following the
entity selection of FACES, 50 entities were chosen that belong to
different domains (e.g. politician, actor, country, etc.) and they have
per entity an average of 44 distinct direct features. As in FACES, we
filtered out any schema information and dataset dependent details,
such as dcterms:subject, rdf:type, owl:sameAs, wordnet type and
Wikipedia related links. We did not consider literals, only resource-
based objects, as they provided richer information.

To simulate the graph evolution, we extracted information from
different versions of DBpedia, and we started by adding triples from
the oldest version to the newest. All entities and their triples follow
a uniform distribution in the selection process by the publishers.
50 publishers are used, and each one is responsible for generat-
ing events of one entity. The subscriber is one and generates 50
subscriptions, one for each entity.

All experiments were ran for 5 times, and the average was taken.
All runs took place in a laptop with Intel(R) Core(TM) i7-6600U
CPU@2.60GHz 2.80GHz and 16GB of RAM.

6.2 Metrics
6.2.1 Redundancy-aware F-score. We are using the metrics of

redundancy precision and redundancy recall defined in [24], and

4https://wiki.dbpedia.org/

5

Figure 3: Entity summarisation architecture.

through these, we calculate the redundancy-aware F-score. For our
work, we define as "redundant" the duplicate triples. The score is
defined as:

Red_precision =
R−

R− + N−
(3)

Red_recall =
R−

R− + R+
(4)

Red_F − score = 2 ×
Red_precision × Red_recall
Red_precision + Red_recall

(5)

where R− is the set of non-delivered redundant triples, N− is
the set of non-delivered non-redundant ones and R+ is the set of
delivered redundant ones.

6.2.2 End-to-End Latency. For the non-fused events, the end-
to-end latency is the time it takes between the publication of an
event until its delivery. For the fused events, it is the time it takes
between the earliest triple in the fusion until the time of the fusion’s
delivery.

6.2.3 Number of Messages. This metric is split between the
number of forwarded messages, that is the number of triples that
are sent upstream and the number of redundant messages, that is
the number of duplicates within the event set.

6.3 Results
The results are illustrated in Fig. 4. We selected the k value to range
from 5 to 30 and the window size to be either of 50 or 100 events.

In Fig. 4(a) we observe that in terms of end-to-end latency, all
approaches have higher latencies for larger windows. This is ex-
pected as although the fusion and top-k diversity are incremental
within the window, the notification is sent after the window is pop-
ulated; therefore, the population time is also considered. No fusion
non-top-k approach behaves slightly better in terms of latency, as
once the window is populated all events are sent separately and
their latencies are not dependent on the earliest event in the win-
dow as in the fused case. The fusion non-top-k and fusion top-k
approach have similar behaviour in terms of latency, although the
top-k filtering might fluctuate it according to the k, as we observe
a slight rise with k.

Fig. 4(b) shows that the number of forwardedmessages is reduced
within the ranges of 50% to 80% depending on the k for the top-
k approach compared to the baselines (both of them had similar
results, so only one is shown). For higher values of k, more messages
are forwarded upstream. Therefore, the power of top-k filtering
is more evident for lower k, assuming not much loss of valuable
information occurs. From these messages, the baselines show that
22% and 42% were duplicates for windowSize = 50 and windowSize
= 100 respectively (Fig. 4(c)). The top-k approach can discard this
duplicate information, therefore, reducing the overall forwarded
messages. There is an increase of forwarded messages in the top-k
approach for smaller windows. This happens because even though

6

Figure 4: Evaluation results for 50 publishers and 1 subscriber with 50 subscriptions.

the number of forwardedmessages is dependent on k for all window
sizes, for the same duration there are more notifications produced
for smaller windows compared to bigger ones; therefore, more
messages are sent in total. This is dependent on the number of
events produced by the publishers.

On the other hand, by using top-k filtering results not only in
the elimination of duplicate redundant information but in possibly
valuable information. This is depicted in Fig. 4(d) by the redundancy-
aware F-score that ranges from 0.35 to 0.73. Lower F-score occurs
for lower k as stricter content filtering is taking place, whereas
higher F-score is observed with the increase in window sizes, as
the bigger the window, the more probable redundant information
exists.

Therefore, we observe a trade-off between latency, forwarded
messages, and expressiveness. Specifically, although top-k filtering
reduces the number of duplicates and overall messages sent to the
subscriber compared to the baselines with comparable end-to-end
latencies, some non-redundant information will be lost.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduce the first window-based diverse entity
summarisation in Publish/Subscribe systems that provides high
usability and expressive notifications of data deriving from het-
erogeneous sources in environments like the Internet of Things.
We examine the trade-off between latency, number of forwarded
messages, and expressiveness. Future work will focus on diversity
not only based on duplicates but also on conceptual similarity [16]

7

and more sophisticated ranking methodologies to boost expressive-
ness. This work will be further evaluated by adapting static entity
summarisation techniques in streaming environments. More per-
sonalised subscriptions will also be explored that give opportunities
for the subscribers to define which information might be more in-
teresting to them. Finally, more types of windows apart from count
ones will be implemented to determine their performance.

ACKNOWLEDGMENTS
This work was supported by the European Union’s Horizon 2020
research programme Big Data Value ecosystem (BDVe) grant No
732630 and in part by Science Foundation Ireland (SFI) under Grant
Number SFI/12/RC/2289_P2, co-funded by the European Regional
Development Fund.

REFERENCES
[1] Charu C Aggarwal. 2007. Data streams: models and algorithms. Vol. 31. Springer

Science & Business Media.
[2] Ejaz Ahmed and Mubashir Husain Rehmani. 2017. Mobile edge computing:

opportunities, solutions, and challenges. (2017).
[3] César Cañas, Eduardo Pacheco, Bettina Kemme, Jörg Kienzle, and Hans-Arno

Jacobsen. 2015. Graps: A graph publish/subscribe middleware. In Proceedings of
the 16th Annual Middleware Conference. ACM, 1–12.

[4] Lisi Chen and Gao Cong. 2015. Diversity-aware top-k publish/subscribe for
text stream. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 347–362.

[5] Gong Cheng, Thanh Tran, and Yuzhong Qu. 2011. Relin: relatedness and
informativeness-based centrality for entity summarization. In International Se-
mantic Web Conference. Springer, 114–129.

[6] Marina Drosou, Kostas Stefanidis, and Evaggelia Pitoura. 2009. Preference-
aware publish/subscribe delivery with diversity. In Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems. ACM, 6.

[7] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. 2003. The many faces of publish/subscribe. ACM computing surveys (CSUR)
35, 2 (2003), 114–131.

[8] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais.
1987. The vocabulary problem in human-system communication. Commun.
ACM 30, 11 (1987), 964–971.

[9] Kalpa Gunaratna, Krishnaprasad Thirunarayan, Amit Sheth, and Gong Cheng.
2016. Gleaning types for literals in rdf triples with application to entity summa-
rization. In European Semantic Web Conference. Springer, 85–100.

[10] Kalpa Gunaratna, Krishnaprasad Thirunarayan, and Amit P Sheth. 2015. FACES:
Diversity-Aware Entity Summarization Using Incremental Hierarchical Concep-
tual Clustering.. In AAAI. 116–122.

[11] Souleiman Hasan and Edward Curry. 2014. Approximate semantic matching
of events for the internet of things. ACM Transactions on Internet Technology
(TOIT) 14, 1 (2014), 2.

[12] Souleiman Hasan, Sean O’Riain, and Edward Curry. 2012. Approximate semantic
matching of heterogeneous events. In Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems. ACM, 252–263.

[13] Sefki Kolozali, Maria Bermudez-Edo, Daniel Puschmann, Frieder Ganz, and
Payam Barnaghi. 2014. A knowledge-based approach for real-time iot data
stream annotation and processing. In 2014 IEEE International Conference on
Internet of Things (iThings), and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom). IEEE,
215–222.

[14] K Prasanna Lakshmi and CRK Reddy. 2010. A survey on different trends in data
streams. In Networking and Information Technology (ICNIT), 2010 International
Conference on. IEEE, 451–455.

[15] Shobharani Pacha, Suresh Ramalingam Murugan, and R Sethukarasi. 2017. Se-
mantic annotation of summarized sensor data stream for effective query pro-
cessing. The Journal of Supercomputing (2017), 1–23.

[16] Niki Pavlopoulou and Edward Curry. 2019. Using Embeddings for Dynamic Di-
verse Summarisation in Heterogeneous Graph Streams. In 2019 First International
Conference on Graph Computing (GC). IEEE.

[17] Milenko Petrovic, Ioana Burcea, andHans-Arno Jacobsen. 2003. S-topss: Semantic
toronto publish/subscribe system. In Proceedings 2003 VLDB Conference. Elsevier,
1101–1104.

[18] Seyedamin Pouriyeh, Mehdi Allahyari, Krys Kochut, Gong Cheng, and
Hamid Reza Arabnia. 2018. Combining word embedding and knowledge-based

topic modeling for entity summarization. In 2018 IEEE 12th International Confer-
ence on Semantic Computing (ICSC). IEEE, 252–255.

[19] Yongrui Qin, Quan Z Sheng, Nickolas JG Falkner, Schahram Dustdar, Hua Wang,
and Athanasios V Vasilakos. 2016. When things matter: A survey on data-centric
internet of things. Journal of Network and Computer Applications 64 (2016),
137–153.

[20] Marcin Sydow, Mariusz Pikuła, and Ralf Schenkel. 2010. DIVERSUM: Towards
diversified summarisation of entities in knowledge graphs. In Data Engineering
Workshops (ICDEW), 2010 IEEE 26th International Conference on. IEEE, 221–226.

[21] Peter Triantafillou and Andreas Economides. 2004. Subscription summarization:
A new paradigm for efficient publish/subscribe systems. In 24th International
Conference on Distributed Computing Systems, 2004. Proceedings. IEEE, 562–571.

[22] Yi-min Wang, Lili Qiu, Chad E Verbowski, Demetrios Achlioptas, Gautam Das,
and Per-Ake Larson. 2007. Summary-based routing for content-based event
distribution networks. (April 3 2007). US Patent 7,200,675.

[23] Alex Wun, Milenko Petrovi, and Hans-Arno Jacobsen. 2007. A system for se-
mantic data fusion in sensor networks. In Proceedings of the 2007 inaugural
international conference on Distributed event-based systems. ACM, 75–79.

[24] Yi Zhang, Jamie Callan, and Thomas Minka. 2002. Novelty and redundancy
detection in adaptive filtering. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval. ACM,
81–88.

[25] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web. ACM, 22–32.

8

	Abstract
	1 Introduction
	2 Problem Analysis
	2.1 Motivational Scenario
	2.2 Problem Challenges

	3 Background
	3.1 Knowledge graphs and Entity Summarisation
	3.2 Publish/Subscribe Systems

	4 Related Work
	4.1 Streaming
	4.2 Non-Streaming

	5 Approach
	5.1 Event Model
	5.2 Subscription Model
	5.3 Architecture

	6 Evaluation
	6.1 Dataset
	6.2 Metrics
	6.3 Results

	7 Conclusion and Future Work
	Acknowledgments
	References

