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Users expect route planners that combine all modes of transportation
to propose good journeys to their destination. These route planners use data from
several sources such as road networks and schedule-based public transit. We
focus on the link between the two; specifically, the walking distances between
stops. Research in this field so far has found that computing these paths
dynamically is too slow, but that computing all of them results in a quadratically
scaling number of edges which is prohibitively expensive in practice. The
common solution is to cluster the stops into small unconnected graphs, but this
restricts the amount of walking and has a significant impact on the travel times.
Moreover, clustering operates on a closed-world assumption, which makes it
impractical to add additional public transit services. A decentralized publishing
strategy that fixes these issues should thus (i) scale gracefully with the number of
stops; (ii) support unrestricted walking; (iii) make it easy to add new services and
(iv) support splitting the work among several actors. We introduce a publishing
strategy that is based on the Delaunay triangulation of public transit stops, where
every triangle edge corresponds to a single footpath that is precomputed. This
guarantees that all stops are reachable from one another, while the number of
precomputed paths increases linearly with the number of stops. Each public
transit service can be processed separately, and combining several operators’ can
be done with a minimal amount of work. Approximating the walking distance
with a path along the triangle edges overestimates the actual distance by 20% on
average. Our results show that our approach is a middle-ground between
completeness and practicality. It consistently overestimates the walking distances,
but this seems workable since overestimating the time needed to catch a
connection is arguably better than recommending an impossible journey. The
estimates could still be improved by combining the great-circle distance with our
approximations. Alternatively, different triangulations could be combined to
create a more complete graph.

1. Introduction

Fueled by the need for more sustainable transportation, users can pick between more
forms of transport than ever before – and they expect that route planners can combine
these to find the ideal journey. Those route planners integrate various kinds of data
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such as road networks and schedule-based public transit. In this article, we focus on
the link between the two, specifically on how to walk between stops. The walking
time from one stop to another is commonly referred to as a footpath [1, 2].
Computing these paths dynamically is often too slow in practice [3, 4], yet computing
them beforehand quickly becomes prohibitively expensive in practice [5, 1, 2]. A
small country such as Belgium already contains 100,000 public transit stops, yielding
10 billion pairs of stops. These scaling issues are often avoided by only evaluating
algorithms on small unconnected footpath graphs. However, this restricts the amount
of walking in a journey and has a significant impact on travel times [4]. On top of
that, determining which stops belong to the same graph ultimately relies on a closed-
world assumption; which makes it impractical to add additional public transit
services.
Our goal is to find a method to compute and publish these footpaths in a scalable and
decentralized manner. This implies that we need not publish all the paths, but ideally
the ones that are published should allow for unrestricted walking. In practice this
means that every stop in the footpath graph must be reachable from every other stop if
there is a path between those stops in the real world. Various actors should be able to
add information to this footpath graph, and adding a new service should not require
changes in existing information. These actors would need a common frame of
reference to combine their efforts, which can be provided by Semantic Web
technologies.

2. Related work

The publication of transfer footpaths is closely related to the publication of road
networks. The Routable Tiles [6] dataset was recently proposed as a scalable and cost-
efficient way to republish the OpenStreetMap roads using Linked Data Fragments [7].
The data is fragmented into hierarchical tiles, which are interconnected with
hypermedia controls for automatic data discovery. This allows clients to find and
download the data they need without having to ingest en entire data dump, while
being significantly cheaper than a full-fledged querying API.
Determining which stops have to be connected with each other can be seen as a
problem in the field of computational geometry. One of the classical problems in this
field is the creation of a point set triangulation. A point set triangulation of a set of
points  can be defined as a maximal set of non-crossing edges between the points of 

. Any triangulation of  points has exactly  edges where  is the number
of points on the convex hull. Triangulations are not unique however, and certain
triangulations are NP-hard to compute [8].
One particularly interesting triangulation, which can be computed in just 
time, is the Delaunay triangulation [9]. This triangulation tries to maximize the
minimum angle of all the triangles, effectively avoiding long and narrow triangles.
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The Delaunay graph, which is simply the graph representation of the triangulation,
contains several other interesting graphs such as the nearest neighbor graph and the
minimal spanning tree of  [10, 11]. They are also known to be good approximations
of complete graphs: the length of the shortest path between two points along
Delaunay edges is at most  times the Euclidean distance between
them [12].

3. Method
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Fig. 1: Illustration of how two footpath graphs are merged. The subfigures from top to
bottom, left to right: (i) an existing triangulation of a larger network; (ii) the



We use a Delaunay triangulation of the public transit stop locations to approximate
the full footpath graph, based on the insights from the related work section. The
triangle edges represent which stops will be directly connected through a footpath.
Our representation of a footpath differs slightly from the conventional one; we use
walking distances instead of walking times to avoid making assumptions about
walking speeds. A road network route planner is used to compute the walking
distances between the stops.
Delaunay triangulations can be generalized to any metric space, but the walking
distance is not a mathematical metric because it could, in theory, lack the required
symmetry property. Even on foot, you cannot always retrace your steps – either due to
legal restrictions or due to physical limitations. And, equally importantly, this would
bring us back to the case where an impractical number of path lengths have to be
precomputed. This is why we the triangulation uses the Euclidean distance between
the stops’ WGS84 coordinates instead. Other metrics such as the great-circle distance
can be used, but none of them have any relation to the walking distance so we opted
for the most simple metric to implement. This also means that the theoretical
guarantees of the Delaunay triangulation only hold for the Euclidean distance because
that’s the metric was used for its construction.
The paths between stops of a single operator can be calculated independently from the
rest. Combining the graphs of two operators is done by comparing their individual
triangulations to the triangulation of their combined stops – and computing the
missing footpaths. This process is illustrated in Fig. 1 where the graph of a city’s
public transit network is merged with the one from the region around it. The
combined graph is the union of each operators’ graph with the additional edges that
connect the two graphs. Operators typically have their own service area, which means
that the vast majority of paths will be between stops of the same operator, thus
making it possible for anyone to combine several operators’ graphs with minimal
work. The results can be shared and reused, which stands in stark contrast to the
conventional approaches. The paths can be published similar to the Routable Tiles
dataset so that sharing them does not come at a significant extra cost.

4. Results

triangulation of an additional regional operator; (iii) the edges that are needed to
attach the new triangulation to the existing one and (iv) the end result.



We aim to verify two claims about our method: (i) the graph we construct is almost as
good as the complete graph for route planning and (ii) footpath graphs can be merged
with minimal effort. To verify the first claim we have used a graph of paths between
bus stops to approximate the distances between railway stations. Edges between train
stations and bus stops have also been added to make the railway stations reachable.
Fig 2 shows that the approximation overestimates the actual distance by about 20% on
average. This seems reasonable for route planners – it is better to underestimate the
time needed to catch a connection than to recommend an impossible route.

Table 1: The number of paths that need to be computed to connect two operators.

Case Paths of first
operator

Paths of second
operator

Additional required
paths

Flanders + Brussels 107,171 7,969 2,508

Flanders +
Wallonia

107,171 94,730 4,020

2b: The same linear regression plot but
with 8 bins. The mean and standard
deviation is shown for each bin, along
with the 95% CI in the grey shaded
area. The approximation error does not
exceed 25% in 95% of cases.

2a: Linear regression plot comparing
the actual distances to the
approximations. The relative
approximation error decreases as the
distance increases. Note that the
approximations are strictly
overestimations due to the triangle
inequality.

Fig. 2: The relative difference between the actual and the approximated distance has a
higher variance for shorter paths. Every data point in these plots is a path in between
railway stations where the distance is approximated using a graph of bus stops and the
footpaths between bus stops and railway stations.



To verify that combining the graphs from two operators does not require excessive
work, we consider both the usual and the worst case scenario, respectively being
mostly disjoint service areas and entirely overlapping service areas. We have taken
the public transit operators from the Belgian regions of Flanders and Wallonia for the
usual case and we revisit the case from Fig. 1 for the worst case, where the Brussels
public transit network is added to the one from Flanders. The results in Table 1 show
that in the usual scenario merging two operators is relatively straight-forward as most
work has already been done. The worst case scenario shows that it is possible that
merging two operators can still require a significant amount of work, although the
vast majority has already been done. Our implementation contains some additional
experiments and is available on https:/ / github.com/hdelva/planner.js/tree/footpaths as
a frozen branch of an experimental serverless route planner.

5. Conclusion and future work

This paper introduced a decentralized publishing method for transit footpaths based
on Delaunay triangulations. We have shown that different actors can add information
to the footpath graph, splitting the work between them. The amount of paths scales
linearly with the amount of public transit stops, and every stop is reachable from
every other. This last property could prove useful in its own right, as it allows for
unrestricted walking unlike conventional methods. However, this comes at the cost of
precision; the walking distance between stops is consistently slightly overestimated
which could cause route planners to discard the most optimal journeys. Future work
could focus on comparing the results from a route planner with a complete footpath
graph to the one as we describe in this paper. If the difference in quality is negligible
our methods could prove useful even for centralized services.
The approximations may still be improved with different kinds of point set
triangulations and several triangulations could even be combined to create a more
complete graph. Alternatively, combining the haversine distance and the currently
approximated distance seems promising as well – although this could lead to
underestimations. Another open question is how scalable this approach is when more
modes of transportation are required. It seems undesirable to create separate graphs
for bicycles, electric bikes, wheel chairs, etc. but they might be able to share
information.
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