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Abstract 
We propose an approach to decision support systems (DSS) that 
starts with the user first making their own unassisted decision αU 
and providing this as an input to the algorithm. Then, if the algo-
rithm disagrees with the user’s initial decision, it iteratively works 
with the user to converge on a common decision or at least make 
the user reconsider input values that are inconsistent with αU. We 
also suggest a way in which the DSS can explain the machine 
learning (ML) algorithm’s decision to the user. We provide a de-
tailed description of this approach along with examples, and then 
discuss potential benefits and limitations. 

 
INTRODUCTION 

 With rapid progress across a broad range of machine learn-
ing applications in recent years, some implications of these 
advances are also causing concern. One set of issues that 
may arise as people increasingly rely on these systems is that 
they diminish the users’ sense of responsibility for decisions 
and outcomes, and that by reducing the need for human ex-
pertise, they gradually lead to a loss of human expertise in 
certain important areas. Current approaches to addressing 
these issues focus on improving the explainability of deci-
sions generated by ML algorithms or by requiring that hu-
mans confirm or approve ML decisions (Goodman and Flax-
man, 2017). These measures are indeed very helpful, but ex-
plainability remains challenging, particularly for complex 
ML models. Additionally, the better ML systems become, 
the more likely it will be that users will stop putting much 
effort into analyzing or critically evaluating the algorithms’ 
decisions, even if automated explanations are also provided.   

Here we propose an approach that introduces a meta-
agent or decision support system (DSS) between the user 
and the ML algorithm. This DSS restructures the interaction 
between a user and the ML in order to mitigate the potential 
loss of expertise and restore a fuller sense of responsibility 
to users.  

Central to this is that it requires the user to first make an 
unassisted decision and provide this as an input to the algo-
rithm before the algorithm generates its own automated 

decision. The DSS is trying to find "weaknesses" in the de-
cision of the user, which may be, in particular, a result of the 
user's "cognitive bias" (Scott, 1993). If the user’s decision 
continues to differ from the decision of the ML, the DSS 
helps the user identify the reasons. Figure 1 shows the sche-
matic diagram of the DSS. 

 

 
Figure 1. Traditional vs. proposed user interaction flow 

EXAMPLE 
As a simple illustrative example, let’s say a hiker notices a 
wolf in the distance. She takes a picture of the animal or 
takes some notes, and later wants to double-check that the 
animal was indeed a wolf, rather than a dog or a coyote. 
Image recognition algorithms are unlikely to be helpful in 
this case since dogs, wolves and coyotes are similar, espe-
cially when seen from far away. Instead we propose a sys-
tem where the user can enter key features such as size, fur 
color, posture, approximate tail length, etc. into a DSS and 
iteratively converge on the solution.  

 



Step 1 (User enters input values):  
Length = 110 cm, with error bounds [90 – 130] 
Color = light grey, with error bounds [white … grey] 
Height = 70 cm, with error bounds [55 – 85] 
Speed =  60 km/h, with error bounds [45 – 75] 
Tail.length = long, with error bounds [long or average] 
Tail.direction =  down, with error bounds [down or  
horizontal] 
Step 2 (User enters their initial decision):  
user thinks that it’s a wolf 
Step 3 (User enters what parameters were most  
important to their decision):  
Length, Color, Height, Tail.direction 
Step 4 (DSS uses grid search to perturb parameters  
within error bounds to test the stability of the user’s  
decision): 
DSS: If input values are passed to the ML without any 
changes, ML => wolf 
DSS: If Length is changed from 110 cm à 100 cm and 
Height from 70 cm à 55 cm, ML => coyote 
DSS: If Tail.direction is changed to horizontal,  
ML => dog 
Step 5 (DSS finds that a small perturbation of the input 
values within their error bounds causes the ML’s deci-
sion to switch from “wolf” to “dog” ): 
DSS asks user if she’s sure about the value of Tail.direction 
User: Reconsiders Tail.direction and changes it to “horizon-
tal”, but also begins to doubt her initial value for Tail.length 
and decides to also change this to Tail.length = average. De-
spite this, the user maintains their initial conclusion that this 
is a wolf. 

 
The user enters the modified input values into the DSS: 
Tail.direction =  horizontal, with error bounds [down, hori-
zontal, or up] 
Tail.length = average, with error bounds [short, average, or 
long] 

 
The change in input values changes the ML decision:  
ML =>  dog 

 
Step 6 (DSS explains ML decision):   
ML => dog. DSS identifies the following inputs as key dis-
tinguishing features in the pair-wise difference between dog 
and wolf: 
Tail.direction =  horizontal 
Speed = 60 km/h 
Step 7 (User evaluates the ML decision): 
User: what if Tail.direction =  down? 
ML=> dog. DSS identifies the following inputs as key dis-
tinguishing features in the pair-wise difference between dog 
and wolf: 
Speed = 60 km/h 
Tail.length = average 
User: What if both Tail.direction =  down and speed = 45 
km/h? 

ML  =>  wolf. Here the ML’s decision matches the user’s 
decision so it’s unnecessary for the DSS to explain this de-
cision.  
Step 8 (Final User decision).  
Now the user can make a final judgement. 

METHODS  
Let x  = [x1, x2, .., xn] be the n input parameters to the ML 

algorithm. xi can be continuous (numerical) or categorical 
variables. Let X be a set of x. Let v = [v1 , …, vn] be the par-
ticular input values entered by the user.  

Let D = {αj } , j=1,...,  k  be the set of k possible decisions 
or output classes. 

Let αU ∈  D be the initial unassisted decision of the user. 
Additionally we allow the user to mark a subset of input 

parameters [v1 , …, vm]  m ≤ n as being particularly important 
to their decision αU   

We define the ML algorithm’s decision function f as a 
black box which maps an input vector v and a decision α ∈ 
D to interval [0, 1]:   

f(α,x):  α,x → [0, 1]. 
Let αML be the ML decision based on the user-provided 

input values v.  
f(αML,v) = max(f(α,v)) for all α ∈ D  

 
For any parameter of x, its value xi  may have bias or error 
so we define Ω(xi) such that Ω(xi) > Ωlower(xi) & Ω(xi) < 
Ωupper(xi) as the set of values which are considered within 
the error bounds for xi. Ω includes both measurement error 
as well as user bias - for example “confirmation bias” (the 
tendency to search for, interpret, focus on and remember 
information in a way that confirms one's preconceptions) .  

We introduce a feature normalization xinorm (α) for each 
i-th dimension and class α, set based on the following five 
thresholds: th0i (α), th1i(α), th2i(α), th3i(α), th4i(α) (Goldberg, 
2007). 

 
хi < th 0i (α)                 : strong_deviation  

xinew (α) = 0 + хi / th 0i (α) 
th 1i (α) < хi < th 2i (α): abnormal  

xinew (α) = 1 + (хi - th 1i (α))/( th 2i  (α)- th 1i (α)) 
th 2i (α) < хi < th 3i (α)  : normal  

xinew (α) = 2 + (хi - th 2i (α))/( th 3i- th 2i (α)) 
th 3i (α) < хi < th 4i (α)  : abnormal  

xinew (α) = 3 + (хi - th 3i (α))/( th 4i- th 3i (α)) 
th 4i (α) < хi                                         : strong_deviation  

xinew (α) = 4 + хi /( th 4i (α)) 
 

The normalization can be defined for categorical parameters 
also. For example, for wolves, normal colors are gray, light 
gray or dark gray = 2. White and black are considered ab-
normal so white = 1 and black = 3, and all other colors would 



be considered strong deviation = 4. We expect that, when 
implementing a DSS based on this approach, the thresholds 
will be provided by domain experts using empirically estab-
lished knowledge of what values of the input parameters are 
normal or abnormal for a given decision class α.  
  Based on this definition, we can define a mapping between 
the input parameters X and the normalized parameters 
Xnorm:   X à  Xnorm and Xnorm à X.  

We can then use the vector distance ||x - y|| in the input 
parameter space or in the normalized space to measure sim-
ilarity between input parameters. 

 
Algorithm for Step 4: Stability assessment 

 
In this step the DSS checks whether αml  is stable when 

the input parameters are perturbed within the error bounds 
Ωlower(vi) Ωupper(vi). If, when entering the input values, the 
user also marked a subset of input parameters (v1  .. vm) as 
particularly important to their decision αU , then the DSS 
only perturbs this subset because, given the user’s focus on 
these parameters, they are the ones more likely to contain 
user bias. 

As DSS uses grid search to perturb one or more of the 
input parameters, it passes these perturbed inputs v' to the 
ML and checks – if αML' differs from the original αML , then 
it uses v' in step 5. If more than one αML' is found, then the 
DSS uses the αML' for which v' differs from the original in-
puts v in the fewest dimensions (eg. where the smallest num-
ber of input parameters needed to be perturbed). If, on the 
other hand, the search does not identify any points v', and 
αml  remains stable, then step 5 is skipped.  
 

 
Algorithm for Step 5: Discovering “suspicious” 
parameters 

 
The DSS asks the user to reconsider the input values of 

the input parameters for which v' differs from v. The user 
may then realize that these input values imply a different αU  

and change their initial αU to a different αU'. Alternatively, if 
input values have a subjective component or contain errors 
or bias, the user may adjust the input values. In either case, 
if changes are made, the DSS goes back to step 4 with the 
new values but does this no more than 3 times to avoid end-
less iteration.  

   
Algorithm for Step 6: Explainability of ML 
If	at	this	point	the	user’s	decision	still	differs	from	the	

ML’s	decision,	the	DSS	attempts	to	explain	the	difference	
between	the	ML	decision	αml	and	the	user	decision	αU	in	
a	way	that	is	intuitive	for	a	human	user	rather	than	a	way	
that’s	based	on	the	ML’s	internal	representation.	To	do	

this,	 the	DSS	 determines	what	 input	 parameters	were	
most	important	for	the	ML’s	decision.	This	can	be	done	
by	finding	the	input	vector	z	which	is	closest	to	the	user’s	
input	values	v	and	which	leads	the	ML	to	change	its	de-
cision	from	αml  to		αU	.		A	crucial	part	of	this	step	is	that	
the	distance	between	points	v	and	z'	is	computed	in	nor-
malized	parameter	space	(Xnorm	(αML)).	The	DSS	can	use	
a	 grid	 search	 in	 normalized	 parameter	 space	 to	 find	
points	on	the	boundary	between	αML		and	αU		(Figure	2).	
Once	 z	 is	 found,	 the	 parameters	 that	 have	 the	 largest	
one-dimensional	distance	between	z'	and	v	are	taken as 
the parameters that are most important to explaining the dif-
ference between αml		and		αU	.	
	

 
Figure 2. Finding z' 

	

Here is the user interaction flow: 

1st Step: 
User input1: v = [v1 , …, vn] ∈ X   

2nd Step: 
Initial unassisted decision αU of the user 

3nd Step: 
User indicates m out of n input values as being particu-

larly important to his decision αU   [v1,... vm ] m<<n 
 4th Step: 

Now ML verified the decisions of user αU without sharing 
αML  

In order to determine how stable αU is relatively to per-
turbations of v within error bounds Ω, we compute 
αML by means of Stability Assessment Algorithm. 
If αML does not match αU  , go to Step 5. 
If αML  matches αU  , then αU is selected as a preliminary 

solution, and we proceed to Step 6. 
  



5th Step: 
Since αU  ≠  αML  iteratively work with the user to see if 

we can converge on a stable decision. We apply Discovering 
suspicious parameters Algorithm. 

We could, at this point, just show αML to the user, but we 
specifically avoid doing this in order to prevent the user 
from unthinkingly changing their decision to αML. Instead 
we use a more nuanced, indirect approach where we try to 
find the parameter whose value vi, from the ones indicated 
by the user to be in the set proving αU,  vi, is such that its 
possible deviation affects αU  in the highest degree.  

After finding this parameter, we report to the user that the 
value they provided for this parameter is to some degree in-
consistent with αU. We then give the user the option to 
change their initial αU 

If the user maintains the same decision αU ,  αU is set as a 
preliminary decision and we proceed go to Step 6 

If user changes their decision, go to Step 2  (unless this 
point is reached a third time, in which case go to Step 6 to 
avoid an overly long interaction loop). 
 6th Step: 

Compute decision αml based on unchanged input values 
v. αml is set as a decision of ML and is shown to the human 
expert along with the set of key features which has yielded 
αML instead of αU.  Explainability of ML algorithm is in use 
here. 
7th Step:  

The human expert can modify v and observe respective 
decisions of ML. ML can in turn change its decision and 
provide an updated explanation. Once the human expert ob-
tained ML decision for all cases of interest, she obtains the 
final decision.  
 
    Hence in the third step the human explains its decision, 
and in the sixth step the ML explains its decision.  In the 
fifth step ML assesses the stability of human experts’ deci-
sion with respect to selected features.	In	the	seventh	step	
the	human	expert	does	the	same	with	ML	decisions.	So,	
the sixth step is inverse to the third and the seventh is in-
verse to the fifth. 
	

APPLICATION  
Some features of this proposed approach were implemented 
in the decision support system “Dinar-2” which assisted 
physicians in establishing the pathology and severity of 
cases when triaging emergency calls at the Center for Child 
Air-Ambulance Services in Yekaterinburg, Russia  (Gold-
berg et al. 1991)  One of the goals of this Center was to pro-
vide remote  consultation to regional medical centers and 
doctors involved in treating seriously ill children, and 
thereby reduce the need to airlift children to larger or more 
specialized hospitals. 

The Center was responsible for a large geographic area, 
which meant that air-ambulance services, when dispatched, 
could still take a long time to reach their destination. Given 
the volume and complexity of requests for consultation and 
air-ambulance services, a computerized decision support 
system was key to the efficient functioning of the Center. 
Dinar-2 was developed to fill this need. This system pro-
vides assistance in diagnosing the type of pathology (8 dis-
tinct classes of pathology), and in determining its severity 
(between 3 and 5 levels of severity - depending on the class). 
It also assists in selecting the best course of action, and in 
selecting the healthcare center that’s best suited for treating 
a given patient. 

The Dinar-2 decision support algorithm consists of 3 
stages:   

1. Identification of informative patterns and groups of 
symptoms 

2. Determination of the likely pathologies based on 1. 

3. Determination of severity 

These steps were implemented using rule-based machine 
learning algorithms. 

Besides objective measurements and test results, the sys-
tem had to take into account a significant amount of subjec-
tive information about the patient's’ condition. This made 
the decision support task more complicated because the sub-
jective information was susceptible to conscious and sub-
conscious biases on the part of the reporting physicians. 
Specifically, these biases tended to skew the provided infor-
mation toward making a  patient’s condition appear either 
more or less severe than it actually was. 

Due to this, the Dinar-2 decision support system as-
signed an a-priori confidence interval to every input param-
eter that was based on subjective information. Then, the sys-
tem perturbed the inputs within the bounds of these confi-
dence intervals, and checked whether it’s computed diagno-
sis was consistent with the diagnosis initially proposed by 
the user (in this case a physician at the Center, in consulta-
tion with the regional doctor). If, under these perturbations, 
Dinar-2’s diagnosis of the pathology or severity did not 
match that of the user, Dinar-2 would follow the proposed 
interaction flow (described in section II above) to clarify the 
diagnosis. 

After its initial deployment in 1989, Dinar-2 was soon 
adopted by 39 air-ambulance centers across Russia, Kazakh-
stan, and Belarus, and has been in continuous use since then. 
For example, available statistics for the Yekaterinburg re-
gion for 2017 indicate that during that year, the system as-
sisted in evaluating 537 cases. In 131 of these cases (24%), 
effective remote diagnosis and consultation proved suffi-
cient for resolving the patient’s crisis, and the need to dis-
patch an air-ambulance was avoided (Report Neonatology 
Department of Sverdlovsk State Children Hospital, 2018)    



DISCUSSION 
There are a number of benefits and opportunities afforded 
by the proposed approach. Requiring the user to first reach 
their own decision serves to counteract the loss of users’ ex-
pertise and sense of responsibility that often occurs when 
users delegate decisions to a DSS. It prevents the user from 
becoming complacent and motivates them to give more 
thought to their initial decision. It provides continued oppor-
tunity for user to revisit and refresh their domain knowledge. 
When the user and the algorithm don’t agree, it forces the 
user to reconsider their decision in light of parameters high-
lighted by the algorithm. In the end, it makes it more likely 
that the user will critically evaluate the machine’s decision. 
In applications where the algorithm is more accurate than 
human users, this even allows the user to challenge them-
selves to anticipate the algorithm’s answer – either on their 
own, or explicitly, by adding game-playing elements to the 
interaction.  

Additionally, the DSS elements presented here may be 
used separately. Approach to explaining the ML decision 
and the algorithm for evaluating the users initial decision αU  

can be used independently from each other. However, for 
applications where the ML algorithm must discriminate be-
tween multiple classes (k > 2) and input parameters contain 
uncertainty, we consider both elements to be necessary.  

Explaining an ML classifier’s decision while treating the 
classifier as a black box has been proposed before, for ex-
ample (Baehrens at al. 2010). However, our approach serves 
to provide explanations that are more intuitive to the user 
because it uses the normalization of input parameters to map 
them into a space that’s based on the way experts naturally 
think about these parameters.  

This approach is also relevant in light of the European 
Union's new General Data Protection Regulation which con-
trols the applicability of machine learning 
(https://eugdpr.org/). These regulations restrict automated 
individual decision-making (that is, algorithms that make 
decisions based on user-level predictors) which "signifi-
cantly affect" users. The law effectively creates a right to 
explanation, whereby a human user can request an explana-
tion of an algorithmic decision that was made about them.  

Our approach has several limitations. The user’s interaction 
with the DSS requires time which may be unavailable, or 
example in a system that assists with time-sensitive tasks 
such as operating machinery or driving a car. Additionally, 
in applications where the ML algorithm is significantly bet-
ter than the user at accurate classification, the approach be-
comes unnecessary. 

CONCLUSION  
In conclusion, there are a number of benefits to structuring 
decision support systems in a way that makes the user pro-
vide their own unassisted decision to a decision support 
system as a first step. We expect this approach will in-
crease the accuracy of the final decision and will serve to 
maintain and possibly even improve the expert users’ do-
main knowledge.  
. 
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