

Framework for Interaction Between Expert Users and
Machine Learning Systems

Saveli Goldberg1, Boris Galitsky2, Ben Weisburd3
1 Massachusetts General Hospital. Boston MA 02114, USA. savelig@gmail.com

2 Oracle Corp. Redwood Shores CA 94065, USA. bgalitsky@hotmail.com
3 Broad Institute. Cambridge MA 02142, USA. ben.weisburd@gmail.com

Abstract
We propose an approach to decision support systems (DSS) that
starts with the user first making their own unassisted decision αU
and providing this as an input to the algorithm. Then, if the algo-
rithm disagrees with the user’s initial decision, it iteratively works
with the user to converge on a common decision or at least make
the user reconsider input values that are inconsistent with αU. We
also suggest a way in which the DSS can explain the machine
learning (ML) algorithm’s decision to the user. We provide a de-
tailed description of this approach along with examples, and then
discuss potential benefits and limitations.

INTRODUCTION

 With rapid progress across a broad range of machine learn-
ing applications in recent years, some implications of these
advances are also causing concern. One set of issues that
may arise as people increasingly rely on these systems is that
they diminish the users’ sense of responsibility for decisions
and outcomes, and that by reducing the need for human ex-
pertise, they gradually lead to a loss of human expertise in
certain important areas. Current approaches to addressing
these issues focus on improving the explainability of deci-
sions generated by ML algorithms or by requiring that hu-
mans confirm or approve ML decisions (Goodman and Flax-
man, 2017). These measures are indeed very helpful, but ex-
plainability remains challenging, particularly for complex
ML models. Additionally, the better ML systems become,
the more likely it will be that users will stop putting much
effort into analyzing or critically evaluating the algorithms’
decisions, even if automated explanations are also provided.

Here we propose an approach that introduces a meta-
agent or decision support system (DSS) between the user
and the ML algorithm. This DSS restructures the interaction
between a user and the ML in order to mitigate the potential
loss of expertise and restore a fuller sense of responsibility
to users.

Central to this is that it requires the user to first make an
unassisted decision and provide this as an input to the algo-
rithm before the algorithm generates its own automated

decision. The DSS is trying to find "weaknesses" in the de-
cision of the user, which may be, in particular, a result of the
user's "cognitive bias" (Scott, 1993). If the user’s decision
continues to differ from the decision of the ML, the DSS
helps the user identify the reasons. Figure 1 shows the sche-
matic diagram of the DSS.

Figure 1. Traditional vs. proposed user interaction flow

EXAMPLE
As a simple illustrative example, let’s say a hiker notices a
wolf in the distance. She takes a picture of the animal or
takes some notes, and later wants to double-check that the
animal was indeed a wolf, rather than a dog or a coyote.
Image recognition algorithms are unlikely to be helpful in
this case since dogs, wolves and coyotes are similar, espe-
cially when seen from far away. Instead we propose a sys-
tem where the user can enter key features such as size, fur
color, posture, approximate tail length, etc. into a DSS and
iteratively converge on the solution.

Step 1 (User enters input values):
Length = 110 cm, with error bounds [90 – 130]
Color = light grey, with error bounds [white … grey]
Height = 70 cm, with error bounds [55 – 85]
Speed = 60 km/h, with error bounds [45 – 75]
Tail.length = long, with error bounds [long or average]
Tail.direction = down, with error bounds [down or
horizontal]
Step 2 (User enters their initial decision):
user thinks that it’s a wolf
Step 3 (User enters what parameters were most
important to their decision):
Length, Color, Height, Tail.direction
Step 4 (DSS uses grid search to perturb parameters
within error bounds to test the stability of the user’s
decision):
DSS: If input values are passed to the ML without any
changes, ML => wolf
DSS: If Length is changed from 110 cm à 100 cm and
Height from 70 cm à 55 cm, ML => coyote
DSS: If Tail.direction is changed to horizontal,
ML => dog
Step 5 (DSS finds that a small perturbation of the input
values within their error bounds causes the ML’s deci-
sion to switch from “wolf” to “dog”):
DSS asks user if she’s sure about the value of Tail.direction
User: Reconsiders Tail.direction and changes it to “horizon-
tal”, but also begins to doubt her initial value for Tail.length
and decides to also change this to Tail.length = average. De-
spite this, the user maintains their initial conclusion that this
is a wolf.

The user enters the modified input values into the DSS:
Tail.direction = horizontal, with error bounds [down, hori-
zontal, or up]
Tail.length = average, with error bounds [short, average, or
long]

The change in input values changes the ML decision:
ML => dog

Step 6 (DSS explains ML decision):
ML => dog. DSS identifies the following inputs as key dis-
tinguishing features in the pair-wise difference between dog
and wolf:
Tail.direction = horizontal
Speed = 60 km/h
Step 7 (User evaluates the ML decision):
User: what if Tail.direction = down?
ML=> dog. DSS identifies the following inputs as key dis-
tinguishing features in the pair-wise difference between dog
and wolf:
Speed = 60 km/h
Tail.length = average
User: What if both Tail.direction = down and speed = 45
km/h?

ML => wolf. Here the ML’s decision matches the user’s
decision so it’s unnecessary for the DSS to explain this de-
cision.
Step 8 (Final User decision).
Now the user can make a final judgement.

METHODS
Let x = [x1, x2, .., xn] be the n input parameters to the ML

algorithm. xi can be continuous (numerical) or categorical
variables. Let X be a set of x. Let v = [v1 , …, vn] be the par-
ticular input values entered by the user.

Let D = {αj } , j=1,..., k be the set of k possible decisions
or output classes.

Let αU ∈ D be the initial unassisted decision of the user.
Additionally we allow the user to mark a subset of input

parameters [v1 , …, vm] m ≤ n as being particularly important
to their decision αU

We define the ML algorithm’s decision function f as a
black box which maps an input vector v and a decision α ∈
D to interval [0, 1]:

f(α,x): α,x → [0, 1].
Let αML be the ML decision based on the user-provided

input values v.
f(αML,v) = max(f(α,v)) for all α ∈ D

For any parameter of x, its value xi may have bias or error
so we define Ω(xi) such that Ω(xi) > Ωlower(xi) & Ω(xi) <
Ωupper(xi) as the set of values which are considered within
the error bounds for xi. Ω includes both measurement error
as well as user bias - for example “confirmation bias” (the
tendency to search for, interpret, focus on and remember
information in a way that confirms one's preconceptions) .

We introduce a feature normalization xinorm (α) for each
i-th dimension and class α, set based on the following five
thresholds: th0i (α), th1i(α), th2i(α), th3i(α), th4i(α) (Goldberg,
2007).

хi < th 0i (α) : strong_deviation

xinew (α) = 0 + хi / th 0i (α)
th 1i (α) < хi < th 2i (α): abnormal

xinew (α) = 1 + (хi - th 1i (α))/(th 2i (α)- th 1i (α))
th 2i (α) < хi < th 3i (α) : normal

xinew (α) = 2 + (хi - th 2i (α))/(th 3i- th 2i (α))
th 3i (α) < хi < th 4i (α) : abnormal

xinew (α) = 3 + (хi - th 3i (α))/(th 4i- th 3i (α))
th 4i (α) < хi : strong_deviation

xinew (α) = 4 + хi /(th 4i (α))

The normalization can be defined for categorical parameters
also. For example, for wolves, normal colors are gray, light
gray or dark gray = 2. White and black are considered ab-
normal so white = 1 and black = 3, and all other colors would

be considered strong deviation = 4. We expect that, when
implementing a DSS based on this approach, the thresholds
will be provided by domain experts using empirically estab-
lished knowledge of what values of the input parameters are
normal or abnormal for a given decision class α.
 Based on this definition, we can define a mapping between
the input parameters X and the normalized parameters
Xnorm: X à Xnorm and Xnorm à X.

We can then use the vector distance ||x - y|| in the input
parameter space or in the normalized space to measure sim-
ilarity between input parameters.

Algorithm for Step 4: Stability assessment

In this step the DSS checks whether αml is stable when

the input parameters are perturbed within the error bounds
Ωlower(vi) Ωupper(vi). If, when entering the input values, the
user also marked a subset of input parameters (v1 .. vm) as
particularly important to their decision αU , then the DSS
only perturbs this subset because, given the user’s focus on
these parameters, they are the ones more likely to contain
user bias.

As DSS uses grid search to perturb one or more of the
input parameters, it passes these perturbed inputs v' to the
ML and checks – if αML' differs from the original αML , then
it uses v' in step 5. If more than one αML' is found, then the
DSS uses the αML' for which v' differs from the original in-
puts v in the fewest dimensions (eg. where the smallest num-
ber of input parameters needed to be perturbed). If, on the
other hand, the search does not identify any points v', and
αml remains stable, then step 5 is skipped.

Algorithm for Step 5: Discovering “suspicious”
parameters

The DSS asks the user to reconsider the input values of

the input parameters for which v' differs from v. The user
may then realize that these input values imply a different αU

and change their initial αU to a different αU'. Alternatively, if
input values have a subjective component or contain errors
or bias, the user may adjust the input values. In either case,
if changes are made, the DSS goes back to step 4 with the
new values but does this no more than 3 times to avoid end-
less iteration.

Algorithm for Step 6: Explainability of ML
If	at	this	point	the	user’s	decision	still	differs	from	the	

ML’s	decision,	the	DSS	attempts	to	explain	the	difference	
between	the	ML	decision	αml	and	the	user	decision	αU	in	
a	way	that	is	intuitive	for	a	human	user	rather	than	a	way	
that’s	based	on	the	ML’s	internal	representation.	To	do	

this,	 the	DSS	 determines	what	 input	 parameters	were	
most	important	for	the	ML’s	decision.	This	can	be	done	
by	finding	the	input	vector	z	which	is	closest	to	the	user’s	
input	values	v	and	which	leads	the	ML	to	change	its	de-
cision	from	αml to		αU	.		A	crucial	part	of	this	step	is	that	
the	distance	between	points	v	and	z'	is	computed	in	nor-
malized	parameter	space	(Xnorm	(αML)).	The	DSS	can	use	
a	 grid	 search	 in	 normalized	 parameter	 space	 to	 find	
points	on	the	boundary	between	αML		and	αU		(Figure	2).	
Once	 z	 is	 found,	 the	 parameters	 that	 have	 the	 largest	
one-dimensional	distance	between	z'	and	v	are	taken as
the parameters that are most important to explaining the dif-
ference between αml		and		αU	.	
	

Figure 2. Finding z'

	

Here is the user interaction flow:

1st Step:
User input1: v = [v1 , …, vn] ∈ X

2nd Step:
Initial unassisted decision αU of the user

3nd Step:
User indicates m out of n input values as being particu-

larly important to his decision αU [v1,... vm] m<<n
 4th Step:

Now ML verified the decisions of user αU without sharing
αML

In order to determine how stable αU is relatively to per-
turbations of v within error bounds Ω, we compute
αML by means of Stability Assessment Algorithm.
If αML does not match αU , go to Step 5.
If αML matches αU , then αU is selected as a preliminary

solution, and we proceed to Step 6.

5th Step:
Since αU ≠ αML iteratively work with the user to see if

we can converge on a stable decision. We apply Discovering
suspicious parameters Algorithm.

We could, at this point, just show αML to the user, but we
specifically avoid doing this in order to prevent the user
from unthinkingly changing their decision to αML. Instead
we use a more nuanced, indirect approach where we try to
find the parameter whose value vi, from the ones indicated
by the user to be in the set proving αU, vi, is such that its
possible deviation affects αU in the highest degree.

After finding this parameter, we report to the user that the
value they provided for this parameter is to some degree in-
consistent with αU. We then give the user the option to
change their initial αU

If the user maintains the same decision αU , αU is set as a
preliminary decision and we proceed go to Step 6

If user changes their decision, go to Step 2 (unless this
point is reached a third time, in which case go to Step 6 to
avoid an overly long interaction loop).
 6th Step:

Compute decision αml based on unchanged input values
v. αml is set as a decision of ML and is shown to the human
expert along with the set of key features which has yielded
αML instead of αU. Explainability of ML algorithm is in use
here.
7th Step:

The human expert can modify v and observe respective
decisions of ML. ML can in turn change its decision and
provide an updated explanation. Once the human expert ob-
tained ML decision for all cases of interest, she obtains the
final decision.

 Hence in the third step the human explains its decision,
and in the sixth step the ML explains its decision. In the
fifth step ML assesses the stability of human experts’ deci-
sion with respect to selected features.	In	the	seventh	step	
the	human	expert	does	the	same	with	ML	decisions.	So,	
the sixth step is inverse to the third and the seventh is in-
verse to the fifth.
	

APPLICATION
Some features of this proposed approach were implemented
in the decision support system “Dinar-2” which assisted
physicians in establishing the pathology and severity of
cases when triaging emergency calls at the Center for Child
Air-Ambulance Services in Yekaterinburg, Russia (Gold-
berg et al. 1991) One of the goals of this Center was to pro-
vide remote consultation to regional medical centers and
doctors involved in treating seriously ill children, and
thereby reduce the need to airlift children to larger or more
specialized hospitals.

The Center was responsible for a large geographic area,
which meant that air-ambulance services, when dispatched,
could still take a long time to reach their destination. Given
the volume and complexity of requests for consultation and
air-ambulance services, a computerized decision support
system was key to the efficient functioning of the Center.
Dinar-2 was developed to fill this need. This system pro-
vides assistance in diagnosing the type of pathology (8 dis-
tinct classes of pathology), and in determining its severity
(between 3 and 5 levels of severity - depending on the class).
It also assists in selecting the best course of action, and in
selecting the healthcare center that’s best suited for treating
a given patient.

The Dinar-2 decision support algorithm consists of 3
stages:

1. Identification of informative patterns and groups of
symptoms

2. Determination of the likely pathologies based on 1.

3. Determination of severity

These steps were implemented using rule-based machine
learning algorithms.

Besides objective measurements and test results, the sys-
tem had to take into account a significant amount of subjec-
tive information about the patient's’ condition. This made
the decision support task more complicated because the sub-
jective information was susceptible to conscious and sub-
conscious biases on the part of the reporting physicians.
Specifically, these biases tended to skew the provided infor-
mation toward making a patient’s condition appear either
more or less severe than it actually was.

Due to this, the Dinar-2 decision support system as-
signed an a-priori confidence interval to every input param-
eter that was based on subjective information. Then, the sys-
tem perturbed the inputs within the bounds of these confi-
dence intervals, and checked whether it’s computed diagno-
sis was consistent with the diagnosis initially proposed by
the user (in this case a physician at the Center, in consulta-
tion with the regional doctor). If, under these perturbations,
Dinar-2’s diagnosis of the pathology or severity did not
match that of the user, Dinar-2 would follow the proposed
interaction flow (described in section II above) to clarify the
diagnosis.

After its initial deployment in 1989, Dinar-2 was soon
adopted by 39 air-ambulance centers across Russia, Kazakh-
stan, and Belarus, and has been in continuous use since then.
For example, available statistics for the Yekaterinburg re-
gion for 2017 indicate that during that year, the system as-
sisted in evaluating 537 cases. In 131 of these cases (24%),
effective remote diagnosis and consultation proved suffi-
cient for resolving the patient’s crisis, and the need to dis-
patch an air-ambulance was avoided (Report Neonatology
Department of Sverdlovsk State Children Hospital, 2018)

DISCUSSION
There are a number of benefits and opportunities afforded
by the proposed approach. Requiring the user to first reach
their own decision serves to counteract the loss of users’ ex-
pertise and sense of responsibility that often occurs when
users delegate decisions to a DSS. It prevents the user from
becoming complacent and motivates them to give more
thought to their initial decision. It provides continued oppor-
tunity for user to revisit and refresh their domain knowledge.
When the user and the algorithm don’t agree, it forces the
user to reconsider their decision in light of parameters high-
lighted by the algorithm. In the end, it makes it more likely
that the user will critically evaluate the machine’s decision.
In applications where the algorithm is more accurate than
human users, this even allows the user to challenge them-
selves to anticipate the algorithm’s answer – either on their
own, or explicitly, by adding game-playing elements to the
interaction.

Additionally, the DSS elements presented here may be
used separately. Approach to explaining the ML decision
and the algorithm for evaluating the users initial decision αU

can be used independently from each other. However, for
applications where the ML algorithm must discriminate be-
tween multiple classes (k > 2) and input parameters contain
uncertainty, we consider both elements to be necessary.

Explaining an ML classifier’s decision while treating the
classifier as a black box has been proposed before, for ex-
ample (Baehrens at al. 2010). However, our approach serves
to provide explanations that are more intuitive to the user
because it uses the normalization of input parameters to map
them into a space that’s based on the way experts naturally
think about these parameters.

This approach is also relevant in light of the European
Union's new General Data Protection Regulation which con-
trols the applicability of machine learning
(https://eugdpr.org/). These regulations restrict automated
individual decision-making (that is, algorithms that make
decisions based on user-level predictors) which "signifi-
cantly affect" users. The law effectively creates a right to
explanation, whereby a human user can request an explana-
tion of an algorithmic decision that was made about them.

Our approach has several limitations. The user’s interaction
with the DSS requires time which may be unavailable, or
example in a system that assists with time-sensitive tasks
such as operating machinery or driving a car. Additionally,
in applications where the ML algorithm is significantly bet-
ter than the user at accurate classification, the approach be-
comes unnecessary.

CONCLUSION
In conclusion, there are a number of benefits to structuring
decision support systems in a way that makes the user pro-
vide their own unassisted decision to a decision support
system as a first step. We expect this approach will in-
crease the accuracy of the final decision and will serve to
maintain and possibly even improve the expert users’ do-
main knowledge.
.

References
Baehrens D.; Timon Schroeter, Stefan Harmeling, Motoaki Ka-
wanabe, Katja Hansen, Klaus-Robert Müller How to Explain In-
dividual Classification Decisions.; 11(Jun):1803−1831, 2010.

Goldberg S.I.; Lomovskikh V.E.; Makhanek A.O.; Sklyar M.S.
1991, Expert system "DINAR-2".-methodological basis for the pe-
diatric emergency aid organization in a large region. In: Medical
Informatics Europe 1991, Vienna, Austria, 270-274
Goldberg S.; Nikita Shklovskiy-Kordi.; Boris Zingerman. 2007.
Time-oriented multi-image case history - way to the "disease im-
age" analysis. VISAPP (Special Sessions) 200-203.
Goodman B.; Flaxman S. 2017, European Union regulations on al-
gorithmic decision-making and a "right to explanation" AI Mag
Magazine, Vol 38, No 3,
Report Neonatology Department of Sverdlovsk State Children
Hospital, Russia, 2018, 43-47
Scott, 1993, The Psychology of Judgment and Decision Making

