
Have your Students build their own Mini Hive
in just Eight Weeks

Stefanie Scherzinger?

OTH Regensburg, Regensburg, Germany
stefanie.scherzinger@oth-regensburg.de

Abstract. This paper summarizes a published report on miniHive, a
Python-based prototype implementation of the SQL-on-Hadoop engine
Hive. Master-level students at OTH Regensburg have built miniHive over
the course of just eight weeks. miniHive compiles basic SQL queries into
MapReduce workflows. These can then be executed directly on Hadoop.
Like the original Hive, miniHive performs generic logical query optimiza-
tions (selection and projection pushdown, or cost-based join reordering),
as well as MapReduce-specific optimizations. By building the query en-
gine, the students learn about database systems implementation and
gain an appreciation for the power of query optimizers. We share our
experience as well as our code for building miniHive with the academic
database community, and hope to inspire engaging discussions.

Keywords: Teaching database systems architecture · Hadoop · Hive.

1 Introduction

As for coming up with instructive coding exercises when teaching cloud database
technologies, writing MapReduce jobs seems to be the state-of-the-art: In a sur-
vey conducted within the German-speaking academic database community [8],
the majority of the participating lecturers reported to not only teach the theory
of MapReduce processing (90%), but to also have students code MapReduce
jobs (about 70%). Yet teaching how to write MapReduce jobs is a two-edged
sword: One the one hand it makes for straightforward exercises and exam ques-
tions. On the other hand, the trend in big data processing is clearly towards
declarative query languages. While it is crucial that students understand the
principles behind MapReduce, it is unlikely that they will be making a living
writing MapReduce functions. Accordingly, more than half of the survey par-
ticipants reported that they also include declarative query languages such as
HiveQL or Pig Latin in their syllabi. Inspired by this study, the author of this
paper re-designed her Masters-level course “Modern Database Concepts” for the
summer term of 2018. To provide her students with hands-on experience, they

? Copyright ©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 Stefanie Scherzinger

were asked to build miniHive, a prototypical SQL-on-Hadoop engine for com-
piling a fragment of SQL into MapReduce workflows. miniHive is written in
Python and designed along Facebook’s original demo of Hive at VLDB’09 [9].

In the following, we sketch the milestones in building miniHive. We refer
to [7] for the extended version of this report.

2 Query Compilation and Optimization

miniHive is written in Python 3.6, Figure 1a shows the architecture, adapted
from the generic architecture in [4]. Simple SQL statements (conjunctive queries
and only equality comparisons in predicates, as discussed in the typical text-
book chapter on query compilation, c.f. [4]) are parsed using the Python mod-
ule sqlparse1. The query compiler then performs the canonical translation to
relational algebra. To programmatically handle relational algebra queries, we in-
stantiate the classes representing the operators selection, projection, cross prod-
uct, join, and renaming from the interactive relational algebra interpreter radb,
an open source Python module2. A first rewrite phase performs selection push-
ing, supported by a data dictionary, and further translates cross products into
joins, where possible. (Projection pushing was left as an optional later task.)

In plan generation, each relational algebra operator is encoded in MapReduce
function code. The algorithms are comprehensively described in the textbook
“Mining of Massive Datasets” [1]. The result is a workflow of Map-only and
MapReduce jobs, managed using the popular Python module luigi3. This first
version of a physical query plan can be immediately executed on Hadoop, which
makes for a great sense of achievement. Like in Hive, the intermediary results
of physical operators are stored in HDFS. Reducing the amount of intermediary
data is the main optimization goal, as described next.

For optimization, it was recommended that the second rewrite phase performs
chain folding, a generic and well-explored MapReduce design pattern [2, 3, 6, 9].
Chain folding can be as simple as folding sequences of Map-only jobs into a single
stage. Fewer stages means fewer temporary files in HDFS, which reduces the
overall communication costs (c.f. [1]). Again, the resulting MapReduce workflow
can be directly executed on Hadoop.

The students were encouraged to implement further optimizations, by their
own choosing. In the first rewrite phase, some added projection pushing or cost-
based join reordering. Others also added MapReduce n-way joins (as described
in [1]) to the plan generation phase.

Example 1. We next exemplify the four milestones towards a fully functional
miniHive and consider a query over Jennifer Widom’s pizza scenario4:

1 Available at https://github.com/andialbrecht/sqlparse.
2 Available at https://github.com/junyang/radb.
3 Available at https://github.com/spotify/luigi.
4 Online at https://lagunita.stanford.edu/courses/DB/2014/SelfPaced/about.

https://github.com/andialbrecht/sqlparse
https://github.com/junyang/radb
https://github.com/spotify/luigi.
https://lagunita.stanford.edu/courses/DB/2014/SelfPaced/about


Have your Students build their own Mini Hive in just Eight Weeks 3

(a) Architecture. (b) Naive workflow. (c) Workflow after chain folding.

Fig. 1. In miniHive, SQL queries are compiled to executable MapReduce workflows.

SELECT DISTINCT P.age FROM Person P, Eats E

WHERE P.name = E.name AND E.pizza = 'mushroom'

The milestone 1 code parses and translates this query into relational algebra,
as shown below using the straightforward radb syntax:

\project_{P.age} \select_{P.name = E.name and E.pizza = 'mushroom'}

(\rename_{P:*}(Person) \cross \rename_{E:*}(Eats))

The first rewrite phase, implemented in milestone 2, yields:

\project_{P.age}

(\rename_{P:*}(Person) \join_{P.name = E.name}

(\select_{E.pizza = 'mushroom'} \rename_{E:*}(Eats)))

In the third milestone, the physical plan is generated. The output is a tree-
shaped workflow of MapReduce jobs, as shown in Figure 1b. Renaming and
selection can be realized as Map-only jobs. In the syntax used in this figure,
this is denoted as “Map: [ρE]” and “Map: [σE.pizza='mushroom']” respectively,
where we first specify the type of the function (either Map or Reduce), and
then the operator implemented. Join and relational projection (due to duplicate
elimination) require a full MapReduce job. Let us consider the projection. The
Map-job “Map: [MπP.age]” emits key-value pairs where the key is the person’s
age. Then the Reduce-job “Reduce: [RπP.age]” simply outputs all input keys.

The fourth milestone covers the second rewrite phase, where the students
were asked to optimize their query engine. As a practical means for capturing the
effects of optimization (without requiring access to a large Hadoop cluster), we



4 Stefanie Scherzinger

measured the amount of intermediate data stored in HDFS. The most “bang” for
one’s money was to be gained by chain folding, as outlined previously: Figure 1c
shows the physical query plan for our running example after chain folding. Now,
renaming, selection and join are evaluated within a single MapReduce stage
(symbolized by the Unix pipe operator). �

3 Summary and Outlook

Among the 60 students taking the final exam in 2018, 25 students built a working
SQL-on-Hadoop engine (milestone 3), and 11 implemented all four milestones.
This is impressive, as the term project was not mandatory. The project was
again offered in 2019, with equal success.

A natural future extension to miniHive is to allow aggregation queries, since
Hive is intended for data warehousing scenarios. As both sqlparse and radb

already support aggregate queries, this does not require any customization of
third-party libraries. Further, it would be instructive to add partition pruning :
Provided that a Hive table is divided into several HDFS folders, based on parti-
tioning attribute values (similar to building a cluster index), Hive can ignore data
in irrelevant folders when evaluating selection predicates [9]. More sophisticated
forms of indexing for Hadoop processing have by now been explored, e.g. [5], so
this would be an opportunity to integrate more recent research results.

Access to materials: The miniHive material for students, including skeleton code and

unit tests, is available at https://github.com/miniHive/assignment. To instructors,

the complete course material, including a prototype solution, can be made available.

References

1. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd Ed.
Cambridge University Press (2014)

2. Lim, H., Herodotou, H., Babu, S.: Stubby: A Transformation-based Optimizer for
MapReduce Workflows. Proc. VLDB Endow. 5(11), 1196–1207 (Jul 2012)

3. Miner, D., Shook, A.: MapReduce Design Patterns. O’Reilly Media, Inc. (2012)
4. Moerkotte, G.: Textbook query optimization. In: Building Query Compilers,

chap. 2. Online draft from http://pi3.informatik.uni-mannheim.de/~moer/

querycompiler.pdf (Mar 2019)
5. Richter, S., Quiané-Ruiz, J.A., Schuh, S., Dittrich, J.: Towards Zero-overhead Static

and Adaptive Indexing in Hadoop. The VLDB Journal 23(3) (Jun 2014)
6. Sauer, C., Härder, T.: Compilation of Query Languages into MapReduce.

Datenbank-Spektrum 13(1), 5–15 (2013)
7. Scherzinger, S.: Build your own SQL-on-Hadoop Query Engine – A Report on a

Term Project in a Master-level Database Course. SIGMOD RECORD, accepted for
publication (Jun 2019)

8. Scherzinger, S., Thor, A.: Cloud-Technologien in der Hochschullehre - Pflicht oder
Kür? - Eine Standortbestimmung innerhalb der GI-Fachgruppe Datenbanksysteme.
Datenbank-Spektrum 14(2), 131–134 (2014)

9. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., et al.: Hive: A Warehousing Solution
over a Map-Reduce Framework. Proc. VLDB Endow. 2(2), 1626–1629 (Aug 2009)

https://github.com/miniHive/assignment
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf

	Have your Students build their own Mini Hive in just Eight Weeks

