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Abstract. Generative adversarial nets (GANs) have shown their poten-
tial in various tasks like image generation, 3D object generation, image
super-resolution, and video prediction. Nevertheless, they are still consid-
ered as highly unstable to train and are endangered to miss modes. One
problem is that real data is usually discontinuous, whereas the prior dis-
tribution is continuous. This circumstance can lead to non-convergence
of the GAN and makes it hard for the generator to generate fair results.
In this paper, we introduce an approach to directly learn modes in the
prior distribution - which map to the modes in the real data - by chang-
ing the training procedure of GANs. Our empirical results show that this
extension stabilizes the training of GANs, and it captures discrete uni-
form distributions fairer. We use the score of the earth mover’s distance
as an evaluation metric to underline this effect.

Keywords: Generative Models · Mode Collapse · Learning Latent Dis-
tributions

1 Introduction

In 2014 generative adversarial nets (GANs) [8] were proposed as a novel gener-
ative model, which does not formulate the distribution of training data explicit
but instead allows to sample additional data coming from the distribution. They
directly achieved state-of-the-art results on a lot of different tasks from image
generation [15], through image super-resolution [17], 3D object generation [18],
anomaly detection [5], and video prediction [12].

Despite their success, training GANs is notoriously unstable, and the theoret-
ical knowledge of why GANs work well is still not fully explored [7]. One problem
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is that the distribution of data is usually multimodal and discontinuous, whereas
the latent space usually comes from a continuous space e.g., uniform or Gaussian
with no mode respectively only one mode. Therefore, the generator function G
has to learn a transform from the continuous latent space to the discontinu-
ous multimodal distribution, which can be seen as a mixture of different simple
distributions. For example, a human either wears glasses or does not. This tran-
sition is discrete and has to be learned by the generator. However, this is quite
difficult, and generators tend to learn ambiguous faces.

Additionally, this makes it difficult for the GAN to train and endangers
mode collapse when the model only captures a single mode and misses other
ones. Gurumurthy et al. [10] propose to define a multimodal prior distribution
directly; however, this only works if we know already the real data distribution,
which is not the case in practice. If we knew the distribution already, a GAN
would not be required anymore.

Therefore, we propose to learn the modes directly in the latent distribution.
We achieve this by restricting the prior distribution in the training procedure.
Besides, this helps the training procedure to be more stable and finally, helps
the GAN not to miss modes, as our results show.

2 Training generative adversarial nets

The idea of GANs, introduced in [8], is to have two adversarial neural nets which
play a two-player minimax game. On the one hand, there is a generator func-
tion G which learns the distribution pg over given data x, which draws noise z
randomly from a prior distribution pz and generates out of it an implicit distri-
bution pg. On the other hand, there is a discriminator function D, which tries to
distinguish accurately between real data x and the generated data G(z, θg). It
returns a single scalar which expresses the probability that a given input comes
rather from the data x than from the generator. Both G and D are non-linear
mapping differentiable functions and in general, expressed by a neural net. In
the training process of GANs, the discriminator D is trained to correctly dis-
criminate between the real data input x and the generated samples G(z, θg). At
the same time, the generator G is trained to fool the discriminator as much as
possible. Thus, it wants to maximize the function D(G(z)), whereas the discrim-
inator wants to minimize it and maximize D(x). In [8], the objective function is
expressed as followed:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1)

The objective function is trained via gradient descent step until convergence,
which is the case when we have reached a Nash equilibrium. In [15], the authors
extended convolution and pooling layers into the architecture. Further exten-
sion of the GAN framework are e.g., the Conditional GAN[14] or the unrolled
GAN[13].
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Degenerative prior distribution and manifold problem: A huge problem
of GANs is that samples from the generator are degenerative when instantiating
the GANs. In [2] it is remarked that if the dimension k of the prior distribu-
tion pz is smaller than the dimension n of the data distribution, the output of
the generator will always lie in the k-dimensional manifold in the n-dimensional
space. Also, the distribution of the real data pdata lies often in a o-dimensional
manifold with o << n. Having two distributions which lie on lower-dimensional
manifold, results in the situation that the support of the real data distribution
pdata and the generated distribution pg often are non-overlapping. In such cases
minimizing divergences is meaningless as they are “maxed out” [2]. Further-
more, the discriminator can be perfect, which leads to instabilities and also to a
vanishing gradient problem in the generator [2] [17].

As minimizing divergence is meaningless if the pg and pdata are disjoint, the
Wasserstein GAN (WGAN) is aiming at minimizing the Wasserstein distance
instead of any type of f-divergence [3]. A theoretical solution for ensuring that
the degenerative distributions of the generator and the real data lying on a low-
dimensional manifold overlap, is to add noise to the generated and the real data
[2] [17].

Mode collapse and mode dropping One common failure of GANs happens
when the generator collapses to a set of parameters, and the GAN always outputs
the same value. This output fools the discriminator so well that the discriminator
cannot discriminate the fake samples from the real data.

Similar to mode collapse is mode dropping. As there is no communication
between the points in GANs, it can happen that the loss function is close to the
optimum the score of the fake samples G(z) are all almost 0.5 which indicates
that the algorithm has almost reached the Nash equilibrium, but some modes
are not captured and missed out.

Our approach, we introduce in this paper, focuses on manipulating the prior
distribution. In [1] also the prior is manipulated, but they use an associative
memory in the learning process.

3 Masked and weighted prior distribution for GANs

In this section, we introduce our novel approaches to stabilize the training of
GANs by finding modes in the prior distribution. We achieve this by masking
and weighting the latent distribution of the GAN during training.

3.1 Using the information of the discriminator

The standard GAN samples a batch {z(1), . . . ,z(m)}3 of size m from the prior
distribution pz(z) and passes them to the generator. The prior distribution has

3 Note, that we denote the batches as sets although there are not mathematical sets
but arrays or vectors of samples. We adapted the set notation from [8]
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a dimension of k, and its distribution is defined once and is constant over time.
In practice, the uniform distribution Uk(−1, 1) or the standard normal distribu-
tion Nk(0, 1) are used. Training a GAN, there are two steps that are iteratively
repeated: in the first step the discriminator is updated, and in the second step
the generator. In both steps, we sample a batch {z(1), . . . ,z(m)} from the prior
distribution pz(z) identically and independently. We propose to use the informa-
tion the discriminator gives us about every faked sample when we pass the noise
through the generator G(z(i)). The information we obtain for a noise sample z(i)

is a score:

s(i) := s(z(i)) := D(G(z(i))) (2)

The score s(i) lies in the case of standard GAN in [0, 1] and gives us information
about how likely it is that the generated samples fool the current parameteri-
zation θg of the discriminator D. Having this information, we restrict and ma-
nipulate the prior distribution before we resample again from the manipulated
prior distribution and optimize the generator and the discriminator with a batch

of resampled noise values {z(1)
r , . . . ,z

(m)
r }. We distinguish between two different

approaches:

Masking the prior by restricting it to the portion which has a higher probability
of fooling the generator. This gives a hard constraint, and only the part of pz(z)
is processed, which falls into this region. The portion of the part being restricted
is a hyperparameter r which lies in (0, 1]. Because the rate r determines the
portion of the prior distribution we select from, a rate of 1 means that we draw
from the normal GAN prior constantly and a rate r close zero means we only
optimize for a tiny region. In Definition 1, we denote the density function of the
masked prior.

Definition 1. The probability density function of the masked prior is defined as

pz,masked(z) =

{
1
r · pz(z) if P (s(pz(z)) > s(x)) > 1− r for x ∼ pz
0 otherwise

(3)

Weighting the prior by using the score to define a weight. In this case, we resam-
ple from the prior distribution weighted by the scores, respectively, a function
of the scores. The new density is given in Definition 2.

Definition 2. The probability density function of the weighted prior is defined
as

pz,weighted(z) = pz(z) · w(s(z)) (4)

and w is chosen such that it holds

∀s0, s1 ∈ [0, 1] : s0 < s1 ⇒ w(s0) < w(s1) (5)

and ∫
z

pz(z) · w(s(z))dz = 1 (6)
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Equation 5 ensures that a higher score leads to a higher probability to be drawn
and equation 6 guarantees that pz,weighted is a density as the weights are nor-
malized. We propose to define w(s) such that it additionally holds

∀s0, s1 ∈ (0, 1] :
s0
s1
⇒ w(s0)

w(s1)
(7)

Equation 7 leads to the proportionality between s and w(s).
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Fig. 1. In a), c) and e) examples of theoretical distributions of constant, weighted,
and masked 0.5 can be seen. In the right column, there are the empirical counterparts.
Note, that d) and f) are based on restricting b) and are not samples from the restricted
density functions c) and e).

In the following, we always call the GAN with a fixed prior distribution
traditional GAN or GAN with a constant prior distribution. In Figure 1, we see
how the theoretical prior distribution changes by looking at an example in the
one-dimensional case. While training a traditional GAN, we draw from a uniform
distribution that has a minimum value of −1 and a maximum value of 1. In this
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example the scores are determined by the function f(z) = (z−0.3)3 +z+0.0173
for x ∈ [−1, 1] (Figure 1 c) ). The theoretical distribution of weighting changes
due to the priors, if the weighting function is w(z) = f(z). The masked prior of
r = 0.5 can be seen under e). The lower the masking score is, the higher their
density value is because the range we draw from decreases.

As pz(z) is continuous, it is impossible to get the score of each point a priori
because we have uncountable infinity points. Therefore, we have to find an-
other way to draw appropriately from the theoretical distributions pz,masked

and pz,weighted. We resample from the batch Z retrieving after masking or
weighting it. In the case of masking, this means that we keep the samples with
the higher score and resample from them Z∗ ⊆ Z as showcased in Figure 1
f). In case of weighting, this means that we assign a weight to every sam-
ple and resample again from the batch Z weighted with the batch of weights
W = {w(s(1)), . . . , w(s(n))}(Figure 1 d)). If we have a minibatch size of m, it
follows that the pre-sample size n is higher than m to get enough diversity for
each training step. This is required because the masked region we resample from
only has a size of r · n, and we want that value not to be much smaller than m
and ideally higher. The distribution - we draw our masked and weighted samples
from in the algorithm - is not continuous anymore but is based on the pre-sample
batch. Therefore, we do not use densities for masked and weighted prior in the
algorithm but probability mass functions. Thus, we slightly adjust Definition 1,
leading to Definition 3.

Definition 3. The probability mass function of the masked prior is defined as

pmz,masked(z) =

{
1

r·n if z ∈ {z(1), . . . ,z(n)} and s(x) > pct1−r({s(1), . . . , s(n)})
0 otherwise

(8)

where pct1−r is the 1 − r percentile. Note, that we assume that the elements
in {z(1), . . . ,z(n)} are disjunct which is true with a probability of 1 as they are
drawn from a continuous distribution. The finite sample version of the weighted
prior is defined in Definition 4.

Definition 4. The probability mass function of the weighted prior is defined as

pmz,weighted(z) =

{
p(z) · w(s(z)) if z ∈ Z = {z(1), . . . ,z(n)}
0 otherwise

(9)

and w is chosen such that it holds

∀s0, s1 ∈ [0, 1] : s0 < s1 ⇒ w(s0) < w(s1) (10)

and

n∑
i=1

w(s(i)) = 1 (11)
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Layer Layer type Hyperparameters

input z 500 components sampled from U2(−1, 1)
1 Fully Connected 128 Neurons, ReLU
2 Fully Connected 128 Neurons, ReLU

output Fully Connected 2 (3) Neurons, tanh

Layer Layer type Hyperparameters

input x (2, 1) or (3, 1)
1 Fully Connected 128 Neurons, tanh
2 Fully Connected 128 Neurons, tanh
3 Fully Connected 128 Neurons, tanh

output Fully Connected 1 Neuron, Sigmoid

Table 1. This table shows the parameter setting we use for the eight modes

4 Experiments

In this section, we discuss the results of applying our novel learning algorithm
to GANs on different data sets. The data sets are both a synthetic toy data set,
and standard deep learning data sets MNIST and CelebA.We train the GAN
using a multi-layer perceptron as well as the DCGAN. For the DCGAN we use
the implementation of Taehoon Kim4.

traditional
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generated masked 0.5

masked 0.5 weighted
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Fig. 2. This figure shows the heatmap of the generated distribution and the EMDs of
GAN experiments on eight modes.

To spectate the effect of masking and weighting the prior distribution, we
apply our GAN extension on a mixture of eight Gaussians lying in R2. The eight
Gaussian mode data set has been used to show stabilizing effects in [4], [16], and
[13].

4 https://github.com/carpedm20/DCGAN-tensorflow
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Besides applying our modified GAN on a mixture of eight Gaussians, we also
apply them to MNIST [6] and CelebA [11], two datasets which are commonly
used in deep learning and image processing tasks.

4.1 Mixture of Gaussians

traditional masked weighted
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Fig. 3. This figure shows the prior distribution of the GANs after 50 epochs for eight
modes. We mask the prior for the traditional GAN also although we do not use this
information during training.

We compare the performance of the different GANs on an example of eight
modes. The parameters of the networks are summarized in Table 1. We use
Wasserstein-GAN [3] with five discriminator steps per one training step of the
generator, a minibatch size of 500, a learning rate of 0.0001, and we train the
GAN for 50 epochs. The masking rate is 0.5, and for masking and weighting,
we have a pre-sample size of 1000. In Figure 2, we see the result of the GANs.
The traditional GAN does not capture all modes. It can be observed that es-
pecially two modes have gotten a lot of mass. Also, some outliers between each
mode are visible. These are visible anymore if we sampled masked during gener-
ation. Having a look at the prior distribution in Figure 3, we see that different
areas get a higher score, which leads to the modes. But as we do not use this
information during training discriminator and generator. Looking at the results
of the masked and the weighted GAN we see a huge improvement. The prior
distribution is separated into eight modes which correspond to the eight modes
in the resulting distribution. The EMDs of the GAN with a traditional prior
distribution is 0.3195. Masking the prior distribution of a traditional GAN only
for the generation, the EMD score is even a little bit higher (0.3378). Although
the outliers disappear, masking only the prior distribution during the genera-
tion does not help in this case. The EMD of the weighted and the masked GAN
though are smaller: 0.0891 respectively 0.1328. We repeated this also with the
standard GAN with the alternative loss function. The results were similar.

We also want to investigate the influence of the masking rate more detailed.
So far, we only used the rate of 0.5, but in general, every value r ∈ (0, 1] is
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Fig. 4. This figure shows the earth mover’s distance depends on the hyperparameter
masked rate r for WGAN a) and the standard GAN b).

a) traditional b) weighted c) masked 0.05

Fig. 5. This figure shows the plots of GANs we apply on MNIST using only fully
connected layers.

possible. We repeated the experiment for several rates from 0 to 1. We used the
same parameter setting but increased the pre-sample size to 2000 that we have
more points to resample from which especially helps the low masking rates as
they mask out most of the points. In Figure 4, we see on the x-axis the rate and
on the y-axis the resulting EMD. We plot the average EMD of three different
runs of the experiments. We observe that a low masking rate does not work in
this case as it restricts too much of the prior distribution. A masking rate of 0.5
to 0.9 improves the GAN in quality as it has a smaller EMD (Figure 4).

MNIST On MNIST we train a GAN using only multilayer perceptron (MLP)
networks as well the DCGAN architecture. The hyperparameters of the MLP
version are based on the parameters in [8] but we use a slower learning rate of
0.01. The minibatch size is 100 and SGD is used with a momentum of 0.5 at the
start, which increases to 0.7 at the epoch of 250. The model is trained 300 epochs
and several times with different starting states of the seed. In Figure 5, we see the
resulting images of the traditional GAN and the output of the two masked GAN
and the weighted GAN. Whereas the quality of the resulting pictures is similar,
respectively, one cannot see a clear difference, we see that the traditional GAN
lacks to capture different modes and only captures the digit 1. Masking the GAN
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Fig. 6. Barchart of the different distributions of MNIST

and weighting the GAN solves this problem and leads to more stable results. In
Figure 6, we observe the bar charts of the resulting distribution drawing 2000
samples from the generator and classifying them. They underline that the modes
are captured more fairly for our approach. We also use the DCGAN architecture
to learn the MNIST. The architecture of the generator and the discriminator
nets are adapted from [15]. For the convolutional and transposed convolutional
layers, we use a filter width and filter height of 5 and a stride of 1 respectively 2.
The results can be seen in Figure 7. Also, in this setting, the fairness of modes
is better when applying masking and weighting.

a) traditional b) masked 0.5 c) weighted

Fig. 7. This figure shows the results we have on MNIST using DCGAN.

CelebA We also apply our new proposed GAN on the CelebA data set. We
use the DCGAN architecture as well as the parameters of [15]. We train the
model for 10 epochs. Besides, we reduce the depth of the convolution layers for
a second experiment. This time we allow it to train for 25 epochs as we want to
guarantee that it has time to converge. Reducing the depth of convolution has
also been done in [9] to show stabilization effects.

In Figure 8, the results of the three different GANs are shown. We observe
that for the first parameter setting traditional GAN, masked GAN, and weighted
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a)
traditional GAN

with depth convolutions
b)

masked GAN
with depth convolutions

c)
weighted GAN

with depth convolutions

d)
traditional GAN with

non-depth convolutions
e)

masked GAN with
non-depth convolutions

f)
weighted GAN with

non-depth convolutions

Fig. 8. The upper row figures a), b) and c) show the results of a normal trained
DCGAN. Figures d),e) and g) are results where the depth of the convolutional layers
is reduced.

GAN produce results of similar quality. If we reduce the depth of the convolu-
tional layers in the generator and the discriminator, the traditional GAN cap-
tures only a few modes and is not able to replicate the faces properly. However,
also the masked and the weighted GAN images become worse as we see a lot of
similar faces and not the full variety like in the training set. Also, the quality is
reduced, which is caused by the weaker architecture. Nevertheless, the quality of
the results of masked and weighted GAN is better than the traditional GAN.

5 Conclusion and future work

In this paper, we propose a new extension of GANs, which focuses on reducing
the prior distribution to particular regions instead of leaving it constant. Our
experiments show the potential of the novel idea as it decreases the EMD between
the training data and the generated data. In the case of estimating a multimodal
distribution, we noticed that masked GAN finds the corresponding island in the
latent space. On MNIST, we could observe that the generated distribution is
fairer when applying masking and weighting.
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In the future, we want to tackle the uncomfortableness that we, in our essen-
tial extension, have to use the discriminator to generate new samples. We think
that it is worthwhile to eliminate this. We have two different ideas in mind:
diminishing the masking and weighting effect by either increase the masking
rate or blurring out the weights, and optimizing for the prior distribution, which
shows higher gradients.
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